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The rapid development of artificial intelligence (AI) facilitates various applications from all areas but also
poses great challenges in its hardware implementation in terms of speed and energy because of the
explosive growth of data. Optical computing provides a distinctive perspective to address this bottleneck
by harnessing the unique properties of photons including broad bandwidth, low latency, and high energy
efficiency. In this review, we introduce the latest developments of optical computing for different AI mod-
els, including feedforward neural networks, reservoir computing, and spiking neural networks (SNNs).
Recent progress in integrated photonic devices, combined with the rise of AI, provides a great opportunity
for the renaissance of optical computing in practical applications. This effort requires multidisciplinary
efforts from a broad community. This review provides an overview of the state-of-the-art accomplish-
ments in recent years, discusses the availability of current technologies, and points out various remaining
challenges in different aspects to push the frontier. We anticipate that the era of large-scale integrated
photonics processors will soon arrive for practical AI applications in the form of hybrid optoelectronic
frameworks.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the past decade, artificial intelligence (AI), with the wide-
spread use of deep learning, has achieved great success in various
fields such as machine vision [1], autonomous driving [2], playing
board games [3,4], and clinical diagnosis [5,6]. Despite rapid devel-
opments of AI in theories and applications [7], the computing
power required to train or execute state-of-the-art AI models
increases much faster than the development of integrated elec-
tronic circuits characterized by the well-known Moore’s law,
which seems to be slowing [8]. Vast quantities of data are gener-
ated every second from enormous numbers of sensors and
internet-connected devices with an explosive growth rate in the
coming fifth generation mobile communication technology (5G)
era. These data are required to be processed by AI as fast as possi-
ble. Neural networks, a representative AI model composed of mul-
tiple layers of neurons with thousands or millions of
interconnections to learn representations of data with multilevel
abstractions, are becoming increasingly complicated. As the cur-
rent AI models have sufficient performance for many applications,
they have recently met another fundamental bottleneck for their
future development in computing hardware in terms of speed
and power consumption [9,10].

To solve this generally recognized problem, various efforts have
been conducted in recent years in innovations of electronic archi-
tectures to accelerate AI inference and training at low power con-
sumption [11,12]. For example, application-specific integrated
circuits (ASICs) have been widely accepted in industry by eliminat-
ing unnecessary operations [13]. Brain-inspired (neuromorphic)
computing mimics the working principle of the brain with
colocations of both the memory and processor, which can solve
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the well-known ‘‘memory wall” problem in traditional Von
Neumann architecture, leading to extremely high power efficiency
[14]. Both spiking neural networks (SNNs) [14] and memristive
crossbar arrays [15] have recently shown great potential for
in-memory computing with integrated chips. However, these
methods still rely on electronic components whose speed and
energy are fundamentally limited by Joule heating, capacitance,
and radio frequency (RF) crosstalk [16].

Optical computing provides another solution by harnessing the
unique properties of light [17,18]. As light has a much broader
bandwidth, the information can be highly parallelized at different
wavelengths with almost no crosstalk between adjacent channels
[19,20]. Other dimensions such as polarization and orbit angular
moments can also be explored to further increase the bandwidth
[21,22]. With the data or weight encoded in different wavelengths
by an optical frequency comb, the operation at a single time step
can be inherently applied to thousands or millions of channels
simultaneously. In addition, the modulation of light can be con-
ducted in the phase domain with low power consumption [23].
The development of fibers and waveguides causes extremely low
loss for light to propagate a long distance at unparalleled light
speeds [24]. All these factors make photons more attractive than
electrons as information carriers, except for the difficulty of manip-
ulation. Telecommunication is a typical example, as the data can be
transferred with a much larger throughput by optical fibers than
by traditional electric cables at lower consumptions. Moreover, it
has become increasingly popular to apply chip-to-chip optical
interconnections in cloud computing due to the high bandwidth
density [25].

Although optical computing also has a long history with various
pioneering architectures [26–29], it remains a great challenge to
apply photons for computing with performance comparable to that
of state-of-the-art electronic processors in previous decades,
mainly due to the lack of suitable integrated architectures and
integrated photonics devices including efficient and high-speed
opto-electro modulators [30,31], detectors [32], low-power optical
frequency combs [33], and nonlinear nonvolatile optical materials
[34]. While recent developments of various integrated photonics
devices and novel materials, together with the rise of AI, seem to
provide a great opportunity for the renaissance of optical comput-
ing, different kinds of optical neural networks (ONNs) and photon-
ics processors have been proposed recently to address the
computing power bottleneck of AI. This research is more practical
than ever, as we do not need to replace electronic computers
totally but strive to find an entry point for optical computing in
specific tasks or operations. Perhaps a hybrid optoelectronic frame-
work can facilitate complementation of both electrons and photons
with orders of magnitude improvement in AI-specific applications
[35], working as the transitory stage for all-optical computers in
the future.

Therefore, AI-specific optical computing is a relatively young
field but has become very popular and competitive in the past five
years, with large developments occurring in almost every aspect.
Since the development of integrated photonics processors defi-
nitely requires multidisciplinary efforts, it is necessary to gather
an increasing number of people in this exciting area. Here, we pro-
vide a brief review of the recent breakthroughs of analog optical
computing in different AI models with their unique strengths in
solving versatile applications and remaining challenges for practi-
cal implementations. The remainder of this review is arranged by
different mainstream AI models. Section 2 focuses on the forward
ONN, with a description of different optical methods for different
mathematical operations involved. Section 3 describes the optical
reservoir computing (RC) and Section 4 briefly introduces other
AI models. Finally, in Section 5, we summarize several important
challenges remaining to be solved.
134
2. Feedforward optical neural network

In a feedforward artificial neural network, all the neurons in
neighboring layers are interconnected with different synaptic
weights. For each neuron, a linear weighted summation operation
is first performed. It is assumed that there are a total of N incoming
signals conveyed from the previous layer, denoted by a column
vector x ¼ ½x1; x2; � � � ; xN�T (where xN is the Nth signal intensity; N
is the total number of incoming signals; T is matrix transpose).
The corresponding weighting coefficients are denoted by another
row vector w ¼ ½w1;w2; � � � ;wN� (where wN is the Nth weighting
coefficient; N is the total number of weighting coefficients). The
linear summation result for this individual neuron is
y ¼ Pn¼N

n¼1xnwn, which further triggers a nonlinear activation func-

tion f ðyÞ. The final output of this neuron is f ðPn¼N
n¼1xnwnÞ. If we con-

sider all M neurons in the same layer, then the entire linear
operation is a vector–matrix multiplication, y0 ¼ w0x, where y0

refers to a vector consisting of M linear weighted summation
results for different neurons and w0 refers to an M � N matrix con-
sisting of all the weighting coefficients. Compared to the electronic
implementation of artificial neural networks, optical implementa-
tion can support intrinsic parallel calculations at the speed of light
with a lower energy cost [36–38].

2.1. Optical linear weighted summation

For the optical implementation of a fully connected neural net-
work, it is necessary to optically perform a weighted summation
operation or a vector–matrix multiplication operation. To date,
there have been several experimental realizations of optical
weighted summation as follows.

2.1.1. Cascaded Mach–Zehnder interferometers (MZIs)
In this scheme [36,39–50], the input and output vectors are rep-

resented by multiple coherent light signal intensities at different
ports. They are connected by a mesh of cascaded MZIs, which serve
as the optical computing device for vector–matrix multiplication.
The basic concept of cascaded MZIs dates back to early work in
1994 [39], and a programmable nanophotonic processor contain-
ing 56 MZIs in a silicon photonic integrated circuit was presented
in recent work [36].

In mathematics, a general real-valued matrix w0can be decom-
posed as w0 ¼ U�V by singular value decomposition (SVD), where
U and V are both unitary matrices with sizes M �M and N � N,
respectively, and R is an M � N rectangular nonnegative real-
valued diagonal matrix. Both U and V can be optically imple-
mented by a mesh of MZIs, and R can be implemented by optical
attenuators. As the basic unit in this system, an MZI has two beam
splitters and two tunable phase shifters, as shown in Fig. 1 [47]. It
should be noted that an MZI is not equivalent to a neuron in an
artificial neural network, but a mesh of MZIs can jointly perform
the same linear vector–matrix multiplication operation between
two layers of neurons in a network. In the design of an MZI mesh,
the interconnection topology of all the MZIs and the phase-shifting
angle for each phase shifter need to be optimized. For a typical cas-
caded MZI system, an N � N matrix multiplication requires at least
N N � 1ð Þ=2 beam splitters [41]. The method of constructing an MZI
mesh is not unique for the vector–matrix calculation [41,42]. For
example, two different MZI meshes can be designed for the same
vector–matrix calculation, with features of either being more tun-
able or being more fault tolerant [42]. The susceptibility of the MZI
mesh to fabrication errors and imprecisions for practical imperfect
photonic components has been investigated [42,43]. With three-
dimension (3D) printed photonic waveguides, a system of cascaded
MZIs can be extended from two-dimension (2D) to 3D to achieve



Fig. 1. A system of cascaded MZIs for linear vector–matrix multiplication (Si: silicon material; SiO2: silicon dioxide material). Reproduced from Ref. [47] with permission of
the Optical Society of America, �2019.
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higher computational capabilities [44,45]. Complex-valued com-
puting operations can also be implemented efficiently with this
architecture [46]. Cascaded MZIs have been attempted for various
artificial intelligent tasks such as vowel recognition [36], flower
data classification [47], and wine data classification [47].
Fig. 2. Optical system of D2NN. L1, L2, L3, and Ln: first, second, third, and nth
diffractive layer. Reproduced from Ref. [51] with permission of the American
Association for the Advancement of Science, �2018.
2.1.2. Deep diffractive neural network (D2NN)
In the D2NN architecture [51], multiple layers of cascaded

diffractive optical elements (DOEs) are placed perpendicular to
the light propagation direction with certain space separation, as
shown in Fig. 2 [51]. The spatial light intensity distributions in
the input and output planes correspond to the input and output
vectors, respectively. The incident light field propagates forward
in free space and it is sequentially modulated by each DOE. The
pixel values (phase-only, amplitude-only, or complex-amplitude)
of all the DOEs are optimized by an error backpropagation algo-
rithm similar to the counterpart in deep learning. The entire opti-
mized system performs a linear transform from the input light field
to the output light field to realize vector–matrix multiplication.
The information processing capacity of a D2NN system depends
on the number of diffractive layers [52]. This architecture can be
used as a linear classifier and has been proven to be able to opti-
cally classify number digit images in the Modified National
Institute of Standards and Technology (MNIST) dataset and fashion
product images in the Fashion-MNIST dataset with moderately
high accuracy [51]. The D2NN architecture has been improved from
different aspects in later works [53–68]. The original D2NN was
driven by a terahertz source, and a more compact system with
an infrared source is presented in Ref. [53]. The implementation
of D2NN is not limited to monochromatic coherent light illumina-
tion, and a broadband D2NN can be realized for spectral filtering
and wavelength demultiplexing applications [54]. D2NN can be
combined with a digital processor [55–57] or a digital neural net-
work [58] to improve the inference performance. A residual D2NN
architecture is also proposed, analogous to the residual deep learn-
ing network, and the direct shortcut connection between the input
and output is optically implemented simply with multiple reflect-
ing mirrors [59]. Lensless free-space propagation can be replaced
with an optical Fourier transform with a lens to improve the pre-
diction accuracy [60]. The shift-, rotation-, and scale-invariant
recognition capability of a D2NN system can be enhanced by geo-
metrically transforming the training images [61]. Simulation
results show that a D2NN system can solve more diversified com-
puter vision tasks such as image segmentation [60], salience detec-
tion [60] and image superresolution [59], as well as object
classification [51].

In addition to conventional machine learning tasks, D2NN can
be applied to other optical computing and optical signal processing
tasks including intelligent beam steering for lidar [62], image
encryption [63], optical logic gates [64], pulse shaping [65], and
135
mode recognition/multiplexing/demultiplexing in mode-division
optical fiber communication [66–68].

2.1.3. Spatial light modulator (SLM) and lens-based optical computing
Unlike the previous two architectures designed for coherent

light, this architecture based on an SLM and lens can work with
both coherent and incoherent light illumination [69–74]. The
intensity distribution of incident light illuminating different pixels
(or portions) of an SLM plane carries input vector values. Different
pixels of the SLM are encoded according to the weighting coeffi-
cients. The SLM is placed at the back focal plane of the lens, and
the light converges to the focal point. A detector placed in the focal
point of the lens then collects the total light intensity on the SLM
plane as the inner product between the input vector and weighting
coefficient vector. This architecture shown in Fig. 3(a) is similar to
the single-pixel imaging (or ghost imaging) concept in optical
imaging [70,71].

By using different types of lenses, there are many ways to real-
ize complete vector–matrix multiplication. Typically, one can use a
Fourier lens to realize the summation of the output lights along the
same direction, and the different focal points for parallel lights



Fig. 3. (a) Linear weighted summation operation with SLM and a Fourier lens; (b) vector–matrix multiplication with SLM and cylindrical lenses [74]. VCSEL: vertical-cavity
surfaceemitting lasers. (a) Reproduced from Ref. [69] with permission of the Optical Society of America, �2019.

Fig. 4. Optical computing with WDM and MRR. k1, k4: wavelength for the first and
fourth MRR weight bank; BPD: balanced photodiode; LD: laser diode; MZM: Mach–
Zehnder modulator. Reproduced from Ref. [75] with permission of Springer Nature,
�2017.
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along different directions correspond to the different elements of
the output vectors [69]. An alternative is to use the cylindrical lens
[73,74]. A cylindrical lens only performs a transformation between
parallel light and converged light in either the horizontal direction
or vertical direction. The input vector is represented by the light
intensity distribution along a horizontal pixelated array. Two cylin-
drical lenses perform a fanout of a one-dimensional input array
and a one-dimensional weighted summation on the SLM plane,
as shown in Fig. 3(b) [74]. Finally, the multiplication result is rep-
resented by the light intensity distribution along a vertical array in
the output focal plane. In addition, vector–matrix multiplication
can be implemented by simply repeating the weighted summation
operation multiple times with a single Fourier lens.

The SLM- and lens-based architecture can be easily combined
with cold atom systems to realize an all-optical deep neural net-
work with both linear and nonlinear transformations [69,72]. It is
feasible to build a large-scale programmable all-optical deep neu-
ral network with 174 optical neurons based on this architecture
[72]. Compared to other architectures, this implementation is fully
reprogrammable for different tasks without changing the physical
setup.

2.1.4. Wavelength division multiplexing (WDM)
In this approach [34,75–81], linear weighted summation is real-

ized in a WDM manner. Each element in the input vector is repre-
sented by a light wave with a unique frequency (or wavelength),
which then undergoes different spectral filtering by photonic
weight banks usually constructed by microring resonators (MRRs);
hence, the input signals are weighted, as shown in Fig. 4 [75]. A
balanced photodiode (BPD) collects the total light power of all
the signals in different wavebands to realize the weighted linear
summation. This architecture is considered to be potentially com-
patible with the mainstream silicon photonic device platform. A
simplified feedback control method for microring weight banks
to produce favorable filtering responses is proposed in Ref. [78].
The MRR control method can be improved to be compatible with
large-scale photonic integrated circuits [80]. This architecture has
been used in principal component analysis [81]. In recent works
[19,38,82], the WDM architecture has been combined with pho-
tonic chip-based microfrequency combs, which can significantly
increase the data processing speed and capacity. Nonvolatile phase
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changing materials (PCMs) are integrated onto waveguides to
locally store weighting values on chip [38]. The optical vector con-
volutional accelerator in Ref. [82] can perform more than ten tril-
lion operations per second.
2.1.5. Other implementations
Vector–matrix multiplication can also be implemented based

on light propagation through a nanophotonic medium, as shown
in Fig. 5 [83]. The input light intensity distribution entering the
medium denotes the input image pattern. The output intensity dis-
tribution after the light field passes the medium denotes the com-
putational result, such as image classification result. The medium
consists of host materials and inclusion materials with different
indices, and the inclusion materials can more strongly scatter light.
With the locations and shapes of inclusions appropriately opti-
mized, the light field inside the medium can be scattered as
designed to realize vector multiplication with the weight matrix.
In a more recent work [84], to reduce the design complexity, the
continuous medium was replaced with multiple layers of metasur-
faces with optimized ribbon sizes.



Fig. 5. Nanophotonic medium with inclusions for optical computing. Gray: host
material, white: inclusions. Reproduced from Ref. [83] with permission of China
Laser Press, �2019.
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In an architecture based on a coherent matrix multiplier [85],
both the input vector and weighting values are encoded as multi-
ple channels of coherent light signals. Linear weighted summation
is implemented by the quantum photoelectric multiplication pro-
cess in homodyne detectors. The coherent matrix multiplier has
some potential advantages for implementing a large-scale and
rapidly reprogrammable photonic neural network.

Furthermore, an ONN can be realized inside a multicore optic
fiber. Each input, output, and weighting value is represented by
the light intensity in each individual core inside a multicore fiber.
The weighting cores are doped with erbium and serve as controlled
amplifiers. Optical signals are transferred transversely between
cores by means of optical coupling to mimic forward signal propa-
gation in a neural network. The simulation results show that a
three-layer neural network can be constructed by a multicore fiber
in Refs. [86,87].
2.2. Optical linear convolution

Compared with a fully connected neural network, the neurons
are connected more sparsely in a convolutional neural network
(CNN). In addition, the same weight values are shared by multiple
connections. The vector–matrix multiplication operation between
the neurons in two neighboring neuron layers is essentially a con-
volution operation.

Mathematically, the convolution between an input image and a
kernel is equivalent to Fourier filtering of the input image. In
optics, the Fourier transform and inverse Fourier transform of an
input light field containing the image information can be easily
implemented by a 4f double-lens setup. A filtering mask designed
according to the convolution kernel can be placed in the Fourier
plane of the 4f setup. Previous works [37,88–90] demonstrate that
such an optical convolution operation can significantly reduce the
computational cost in a CNN. A generalized photonics tensor oper-
ation processor to perform convolution in the Fourier domain is
further implemented in Ref. [91]. Alternatively, the convolution
operation can be implemented in other ways such as cascaded
acousto-optical modulator arrays [92], WDM plus optical delay
lines [93] or dispersion-induced delay [82], and 3D printed pho-
tonic waveguide circuits [44].
2.3. Optical nonlinear activation function

If a neural network is fully linear without any nonlinear activa-
tion function, there could be physically multiple layers of linear
transformations, but the effective computation is always equiva-
lent to one layer since the multiplication results of multiple matri-
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ces is still one single matrix. To realize an all-optical deep neural
network, the implementation of a nonlinear activation function is
indispensable. Unfortunately, nonlinear behavior in optics is not
easily implemented experimentally, which makes the realization
of a feasible nonlinear activation function one of the most chal-
lenging issues in ONN research. In many ONN studies, only the lin-
ear operation is implemented optically, and the nonlinear
operation is usually simulated [36,37,58,60,89,94].

In general, the nonlinear activation function can be imple-
mented as a hybrid system composed of both electronic compo-
nents and optical components [36,55,56,95,96], but this approach
inevitably slows down the performance of optical computations
due to the mutual conversion between optical and electronic sig-
nals. The ideal scenario is to realize nonlinear activation functions
using pure optical elements, which was recently demonstrated to
be possible by using electromagnetically induced transparency
(EIT) [69,72].

EIT is a coherent optical nonlinearity in a medium in which the
transparency of one light is controlled by another light, as shown in
Fig. 6 [69]. Theoretically, EIT can happen in any real material sys-
tem with triplets of states, where the transition probability ampli-
tude between different states depends on their particle
populations. In Refs. [69,72], Zuo et al. used cold atom systems in
a two-dimensional magneto-optical trap (MOT). The authors com-
bined the linear transformation using SLM and a lens and the non-
linear activation functions using EIT to construct a complete all-
ONN and used it to classify different phases of the Ising model.

In addition, there are other approaches [94] such as reverse sat-
urated absorption (RSA) to realize the nonlinear activation func-
tion, but so far, none of them has been proven to be feasible in
experiments.

2.4. In situ optical training

A deep learning network is usually first trained by a large num-
ber of samples to optimize all the weighting coefficients. After the
network is trained, it can perform a certain inference task effi-
ciently for testing samples. In many ONN works, such as in Refs.
[36,51], the training is conducted fully digitally offline on a com-
puter, and only the inference operation of the ONN is performed
optically. However, the challenge of in situ training of an ONN
has been addressed to a certain extent.

The in situ training of an MZI mesh has been investigated in
several works [36,47,48]. Error backpropagation is the most widely
used training algorithm for a digital neural network. Adjoint vari-
able methods are used to derive the photonic analog of the back-
propagation algorithm for a mesh of MZIs [48]. In the training,
the gradients in the calculation can be measured by the light inten-
sities at different nodes of the MZI mesh. Alternatively, a forward
propagation and finite difference method without backpropagation
can be used for the on-chip training of a system of cascaded MZIs
[36].

Two neuroevolutionary algorithms, the genetic algorithm and
particle swarm optimization, are proposed to optimize the param-
eters of an MZI mesh for in situ training [47]. These global opti-
mization algorithms are gradient-free and can avoid the local
minimum problem.

For the D2NN architecture, an in situ training method has also
been investigated [56]. The standard training algorithm for DNNs
is based on error backpropagation, and the in situ gradients are
obtained by measuring the forward and backward propagated
optical fields based on light reciprocity and phase conjunction
principles. Each layer of static DOE is replaced with an SLM for
dynamic training and updating of parameters. The residual error
between the actual output light field and the target light field is
generated from a complex field generation module (CFGM) for



Fig. 6. Nonlinear activation functions were realized using EIT. xc: frequency of coupling beam; xp: frequency of probe beam; MOT: magneto-optical trap; rþ: circularly
polarized light. Reproduced from Ref. [69] with permission of the Optical Society of America, �2019.
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light field propagation in the inverse direction. The simulation
results show that this in situ training scheme can save significant
computational cost compared with offline computer training.

For other ONN architectures, on-chip in situ training can be real-
ized if proper optimization algorithms, accurate experimental
measurements, and dynamically encoded optical elements are
available.

3. Optical reservoir computing

RC is a type of neuromorphic computing framework derived
from the recurrent neural network that allows for fast learning
and easy implementations with various hardware systems.
Because of its special advantage in processing temporal data, this
architecture has shown optimum results when performing time-
dependent tasks, such as sequential signal prediction and voice
recognition. An RC structure is generally composed of a fixed non-
linear mechanism, such as reservoir nodes, which allows the input
signal to be transformed into spatiotemporal states in a higher-
dimensional space. The temporal output data of the reservoir are
obtained by training a reservoir state reader to determine the
reservoir dynamics. This section reviews the all-optical and opto-
electronic implementation of RC on integrated optical circuits or
developed by spatial optical diffraction.

3.1. All-optical RC

The difference between all-optical and optoelectronic imple-
mentations of RC depends on the different types of reservoirs
and input layers. In the following, we introduce the all-optical
structure from spatially distributed RC to delay-based RC.
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Ultrahigh-speed computation and low power consumption are
the main advantages of an all-optical RC system.
3.1.1. Spatially distributed RC based on diffractive coupling
Spatially distributed photonic RC is suggested as one method of

RC implementation by utilizing a DOE. In 2015, Brunner and
Fischer [97] introduced a network of vertical-cavity surface-
emitting lasers (VCSELs). Fig. 7 shows a chip from Princeton
Optronics [97].

The RC architecture has shown the realization of laser coupling
and diffractive multiplexing by the DOE. Fig. 7 shows the experi-
mental implementation, which introduces the structure of an
image consisting of VCSEL. Here, the combination of the VCSEL
array lattice spacing and the focal length of the imaging lens can
form an angle between the chief rays of adjacent lasers, which
can be adjusted by the focal length of the lens.

Due to the inherent manufacturing process, the lasers located
on the array are affected by parameter changes throughout the
laser integrated circuits. Therefore, the demonstrated diffractive
coupling with a periodic DOE is susceptible to such differences.
In addition to network coupling, diffraction imaging allows parallel
optical modulation of multiple lasers, and the primary restriction
on laser coupling is determined by optical aberration from the
image. The structure has shown considerable scalability [98,99],
which is expandable to a network composed of hundreds of nodes
placed with an area less than 1 mm2. For technically relevant
implementations, the miniaturization of the introduced method
must first be declared. In particular, a concentration on wavelength
uniformity is required because of the phenomena of injection lock-
ing [100].



Fig. 7. (a) VCSEL diode array and (b) coupling between lasers by implementing the designed diffractive resonator. d1: image distance; d2: object distance; k: wavelength;
u: angular offset; jDOE: the efficiency of DOE; POL: polarizer. Reproduced from Ref. [97] with permission of the Optical Society of America, �2015.
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3.1.2. Delay-based RC
To simplify the intricate hardware of photonic systems,

Appeltant et al. [99] and Paquot et al. [101] introduced a novel type
of RC, which is delay line-based RC. They combined a feedback
structure divided into a series of virtual nodes and only one nonlin-
ear node together in a circle to form delayed feedback. Compared
with spatially distributed RC with high network degrees of free-
dom, these kinds of reservoirs are fixed, which allows more tradi-
tionally used optical communication hardware. The diagram of
delay line-based RC is shown in Fig. 8(a) [99], and in the following,
we demonstrate two typical delays in line-based RC.

We first discuss the first type of delay-based RC with optical
inputs to an all-optical reservoir. This kind of RC contains several
implementations based on semiconductor lasers [102], semicon-
ductor optical amplifiers (SOAs) [103], or passive optical cavities
[104]. Duport et al. [103] and Brunner et al. [102] utilized active
devices to introduce two different types of nonlinear responses,
an SOA and a semiconductor laser. A modulated optical field was
injected into the input, and after detection, they utilized the output
layer. This RC paradigm has the potential for complicated tasks for
computation. Moreover, the optical reservoir is able to process
information at a relatively high rate of gigabytes. Fig. 8(b) shows
the schematic of this system [102]. The external input layer
injected through the semiconductor and optical feedback can be
used to form an optical reservoir. According to Hicke et al. [105]
and Nakayama et al. [106], their method can improve the process-
ing ability.

Moreover, the delay-based optical reservoir can be imple-
mented onto a chip. Nguimdo et al. [107] demonstrated that the
necessary optical bias injection can increase the optical modula-
tion bandwidth of semiconductor lasers, allowing shorter delay
times than that of the system of Brunner et al. [102]. An on-chip
semiconductor ring laser subject to optical feedback can be used
to solve two different tasks simultaneously, such as a classification
task and a time series prediction task [108]. The bandwidth of a
semiconductor laser can be increased by the bias injection method
of Nguimdo et al. [107] to formulate a shorter delay time than that
of the system of Brunner et al. [102]. The classification and predic-
tion task [108] can be solved by an on-chip semiconductor laser
based on optical feedback. If the readout layer is slightly modified
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[106], using short external cavities could avoid phase sensitivity
[109]. It is indispensable for passive devices to develop
low-consumption and high-efficiency photonic computers.
Dejonckheere et al. [110] placed a semiconductor saturable absor-
ber mirror (SESAM) in a ring-like optical cavity. Vinckier et al. [104]
demonstrated photonic RC subject to a kind of coherently driven
passive cavity. If we conduct a nonlinear output in the reservoir
computer, utilizing linear fiber cavities becomes possible, and they
can easily perform tasks such as digit recognition based on voice
information.

3.2. Optoelectronic RC

RC based on optoelectronic systems has been widely used and
performed marvelously in several fields, such as voice recognition
[111–113], chaotic temporal prediction [111,114,115], and radar
signal forecasting [116,117]. The processing speed of present opto-
electronic RC has realized megahertz speed and has, in the foresee-
able future, potential to develop gigahertz speed [118].

3.2.1. RC at the chip-scale
In 2008, Vandoorne et al. [119] declared the first RC on hard-

ware based on silicon-on-insulator, consisting of waveguides, opti-
cal combiners, and optical splitters. Researchers have found that
detection through standard fast photodiodes can solve the problem
of nonlinearity. However, since this system relies on photoelectric
conversion in the detector, it cannot be fully optically operated
[119–121].

The advantages of using passive components are their wide
bandwidth, and it is even possible to send several wavelengths into
the system synchronously, thereby realizing a parallel operating
system of discrete wavelengths. New learning techniques can be
used to adapt to long-term phase drift. One of the disadvantages
is that as the chip expands to more nodes, the increased optical
loss may be considerable, and it is difficult to realize a parallel
measurement of all nodes. In a passive component network, the
frequency of the input signal clock and memory timescale is
dependent on the propagation delay between separated nodes,
which would request a high injection frequency of up to hundreds
of gigabit per second [122].



Fig. 8. (a) Scheme of delay line-based RC. The delay loop, which is divided by many intervals, forms the reservoir. The reservoir contains virtual nodes along the delay line.
(b) Scheme of a reservoir based on a semiconductor laser; it utilizes a series of optical devices to establish RC. NL: nonlinear element; s: the delay in the feedback loop; h: the
separation time; PD: photo diode; uðeÞðtÞ: electrical information input; uðoÞðtÞ: optical information input; sD: feedback delay. (a) Reproduced from Ref. [99] with permission of
Springer Nature, �2011; (b) reproduced from Ref. [102] with permission of Springer Nature, �2013.
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The estimation of RC’s computing property is measured through
various tasks. For this reason, researchers have simplified the ran-
dom input connectivity in the software RC by injecting the pho-
tonic signal into the reservoir at one point. When processing
longer time-series data, a larger chip is necessary. As shown in
Fig. 9, the experimental results have shown digital values only,
which can be constructed as an integrated filter [122]. In experi-
ments and the digital implementation of the system, several fur-
ther tasks, such as recognition of voice digits, still need to be
assessed. In all tests, the system produced sufficient results. More-
over, optoelectronic implementation Ikeda-like ring optical cavi-
ties [123,124] can be implemented on silicon chips to construct
delay-based RC. Larger et al. [111] (Fig. 10(a)) and Paquot et al.
[112] developed this kind of optoelectronic implementation of RC
separately.

The input and output layers of most hardware implementations
of optoelectronic RC are emulated offline on a standard computer,
where the computer simulates most of the input and output layers
in RC implementations on hardware. Single reservoir computers
with optoelectronic devices, however, have been established by
implementing the three layers of RC on analog hardware [116].
The input layer can be implemented by a mask with two different
sinusoidal frequencies. A dual-output Mach–Zehnder modulator
(MZM) obtains the signal from the optical reservoir, and an RLC fil-
ter filters the signal that the BPD outputs, as shown in Fig. 10(b)
[116]. The output of the whole analog system becomes the termi-
nal output of the reservoir computer. Fig. 10(b) shows the readout
layer.

Although training the readout weights of delay RC has seldom
been considered, Antonik et al. [125] proposed using field-
programmable gate arrays (FPGAs) as dedicated hardware for a
Fig. 9. Reservoir based on a passive silicon chip. (a) A specific design of the related optica
task. ER: error rate; ‘‘–” represents the previous bit number. Reproduced from Ref. [122
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novel access to train the weights online. This optoelectronic imple-
mentation has been favorably applied to neural information pro-
cessing [125] and emulating chaotic systems [126]. FPGAs can
process information at a speed of hundreds of megahertz. More-
over, traditional training algorithms such as genetic and gradient
descent algorithms can be utilized in the online training discussed
above. Additionally, multiple delays can be implemented to
increase the performance of photonic delay RC [113,127,128].
3.2.2. Free-space optical RC
Another method of RC photonic realization is using the

excitability of special optical components. Neuromorphic excitable
photonic devices based on the spike model can be realized using
semiconductor technology [77,129–132,133]. Therefore, the net-
work of this excitable nanophotonic device was achieved similarly
to neuromorphic inspiration, which brings very favorable power
consumption [134]. A laser is transformed as an excited system,
such as a spike, as the optical power increases above a stable
threshold. In 2016, Shastri et al. [132] accomplished a digital
experiment with two excitable lasers. They evaluated a larger net-
work based on the electro-optical excitation of semiconductor
lasers [135]. To facilitate numerous nodes on one chip, the system
is constructed based on WDM technology. In 2011, Barbay et al.
[129] established another structure, which is the excitable
neuron-like pulse behavior of a monolithic semiconductor
micropillar laser. The structure has a refractory period [136].
Microring and disk lasers have also shown optical excitability
[133,134]. Compared with the previous design, the mechanism of
these synchronized laser devices has replaced the saturable absor-
ber and shown internal symmetry breaking characteristics. To
l computing chip; (b) the performance of the chip on 2-bit exclusive-OR (XOR) gate
] with permission of Springer Nature, �2014.



Fig. 10. (a) Scheme of the optoelectronic reservoir computer. The optical path is depicted in red and the electronic is depicted in blue. (b) Scheme of the analog readout layer.
DFB: distributed feedback-based; x tð Þ: delayed signal; /0: offset phase of the MZM; G: gain; ui(t): input information; TR: characteristic response time; S: normalized time;
w tð Þ: continuous time weight function; AWG: arbitrary waveform generator; R: resistor; L: inductor; C: capacitor. (a) Reproduced from Ref. [111] with permission of The
Optical Society of America, �2012; (b) reproduced from Ref. [116] with permission of Springer Nature, �2016.
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date, the latest developments indicate that photonics can achieve
SNNs with incomparable speed.

Recently, a new method based on the spatially scalable pho-
tonic library of digital micromirror devices (DMDs) and SLM has
been presented [137–141]. In 2018, Bueno et al. [137] proved that
an optical system with SLM, DOE, and camera could store a net-
work of up to 2500 diffraction coupled photon nodes. By modulat-
ing the intensity of light in a binary way, Dong et al. [139] encoded
the input information and the reservoir with DMDs. Later, they
applied the same method using phase-only SLM to obtain a
large-scale optical reservoir network. Input and reservoir informa-
tion can be introduced by the reservoir network with the assis-
tance of the spatial phase distributions. In 2020, Rafayelyan et al.
[140] showed that strong scattering media play a key role in opti-
cal networks to guarantee stochastic coupling weights among the
numerous photonic nodes as well as parallel processing in the net-
work. Prediction tasks in multidimensional large chaotic systems
have been demonstrated in their large system with excellent accu-
racy and achieved a relatively high speed with low power con-
sumption. The proposed network has demonstrated the potential
scalability and capability of processing larger datasets.
3.3. Outlook

With the appearance of the architecture of combined nanopho-
tonics and RC, a new way of processing photonic information is
leading the field. The low power consumption and ultrafast speed
represent relative advantages over traditional methods. For the
potential future development of photonic RC, ultrahigh-speed opti-
cal nonlinearities and optical devices with ultralow power con-
sumption may lead to a bright future in the field, which can
greatly increase the reservoir performance in terms of speed and
power efficiency [142,143]. Additionally, the scalability of the pho-
tonic chip with a multi-node reservoir is required for research in
the future.
4. Spiking neural network

4.1. Recent development

SNNs are proposed as an interdisciplinary topic of biology and
neuroscience [144]. Compared with feedforward neural networks
and recurrent neural networks, SNNs are more widely used in neu-
romorphic computing. In addition to the meta model, neurons in
SNNs are activated only when their membrane potential reaches
the threshold. When a neuron is activated, a signal is generated
and transmitted to modify the membrane potential of the cascad-
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ing neurons. In SNNs, the current activation level of the neuron is
usually modeled as a certain differential equation. The level rises
after the arrival of the stimulation spiking and continues for a per-
iod of time and then declines gradually.

SNNs enhance the ability to process spatiotemporal data. On the
one hand, neurons in SNNs are only connected to nearby neurons
and processed separately to enhance the ability to process spatial
information. On the other hand, since the training relies on the
spiking interval, information lost in the binary code can be
retrieved from time information of the spiking, thereby increasing
the ability to process temporal information. Facts have demon-
strated that spiking neurons are better computing units than tradi-
tional artificial neurons. Nevertheless, due to difficulties in the
training and physical implementation of SNNs, they have not yet
been widely used. Most of the research works on SNNs still focus
on theoretical analysis and the verification of simple structures.
However, more researchers are now engaged in training algo-
rithms and hardware (optical) implementation of SNNs.

In 2016, Princeton University’s Prucnal research group proposed
a spiking processing system based on an activatable graphene fiber
laser [132]. The system contains an erbium-doped fiber (gain part),
a graphene saturated absorber (loss part) with a 980 nm laser
acting as a pump source, and a 1480 nm laser carrying a spiking
stimulation signal to excite the system to generate a leaky
integrate-and-fire spiking neuron response. In 2018, the research
team proposed a distributed feedback-based (DFB) laser-
structured neuromorphic photonic integrated circuit [145]. In
addition, the research team discussed the feasible scheme of
constructing programmable and cascadable photonic neural
networks, including broadcast-and-weight network prototypes
[132] and coherent optical schemes. Among them, the broadcast-
and-weight network prototype is a network architecture that can
support the parallel interconnection of large-scale photon spiking
neurons. The training method of SNNs mainly follows supervised
learning algorithms. These supervised learning algorithms include
① the SpikeProp algorithm [146], which utilizes gradient descent
and is usually employed for multilayer feedforward artificial
neural networks; ② the Tempotron algorithm [147], which
changes the network weights using the difference between the
spiking sequence output and the expected sequence; ③ synaptic
plasticity-based algorithms such as the Hebbian learning algorithm
[148–152]; ④ remote supervised learning algorithms such as the
ReSuMe algorithm [149]; and ⑤ supervised learning algorithms
based on spiking sequence convolution, such as the spike pattern
association neuron (SPAN) algorithm [150] and precise-
spike-driven (PSD) algorithm [151]. There are also supervised
and unsupervised learning algorithms that are based on VCSELs
[152] and use vertical-cavity semiconductor optical amplifiers
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(VCSOAs) for spike timing-dependent plasticity (STDP) implemen-
tation [153].

In 2019, Feldmann et al. [34] proposed another scheme based
on PCM and adopted this scheme to perform nonlinear transforma-
tions for photonic neurons. Light-controlled PCM is a type of work-
ing state. The working state of the material between crystalline and
amorphous materials is controlled by the input optical power.
When the input optical power becomes lower than the threshold,
the PCM is in the crystal state, and a large amount of optical power
is absorbed. When the input optical power becomes higher than
the threshold, the PCM is in an amorphous state, and most of the
optical power passes through it. Therefore, integrating the material
into the optical transmission medium can change the optical per-
meability of the material according to the input optical power. In
this way, it is capable of working as the activation function of
the photonic neuron.
4.2. Comparison between neuromorphic photonics and electronics

Compared with the neuromorphic electronics implementation
of SNNs, such as TrueNorth [154], Neurogrid [155], and SpiNNaker
[156], neuromorphic photonics process information using light
that enables much higher bandwidths and data throughput as well
as lower latencies. It has been shown that the optoelectronic SNN
using a hybrid silicon/III–V platform achieves a 20 GHz processing
rate, which is over six orders of magnitude higher than that of a
pure electronic SNN [157]. Since the energy is mainly consumed
by the laser source and the passive filters have a low leakage cur-
rent, the energy efficiency of the hybrid silicon/III–V platform is
0.26 pJ per operation, which is approximately three orders of mag-
nitude higher than that of Neurogrid and is over six orders of mag-
nitude higher than that of SpiNNaker. The computing performance
of neuromorphic photonic platforms can be further improved by
using optimized subwavelength structures (e.g., photonic crystals)
and wavelength multiplexing.
5. Conclusions

While optical computing has been widely exploited in different
AI models, its practical application with significantly better perfor-
mance than that of traditional electronic processors has still not
been demonstrated due to various challenges. For example, how
can strong optical nonlinear properties be obtained with a short
response time and low requirement for the power of the probe
light? How can the nonlinear characterization be optimized in dif-
ferent architectures? How can high-speed large-scale reconfigura-
bility be achieved on chips with low power? How can different
photonics devices be integrated on a single chip, especially with
peripheral units? How can an ONN be designed with automation
software for different tasks? Despite many problems remaining
to be solved in the future, current techniques of analog optical
computing have already shown the unique potential of light in
terms of speed, data parallelization, and power consumption [158].

For the next step, we think more efforts needs to be invested to
address key shortcomings of light and demonstrate the superiority
of optical computing over electronic computing in different practi-
cal applications. Different architectures, as described before, may
be suitable for very specific tasks with their unique characters. A
more accurate and efficient model to describe the propagation
and modulation of partially coherent light fields in free-space opti-
cal computing may facilitate high-speed data processing in com-
puter vision. Because most of the light in natural scenes such as
autonomous driving is incoherent, it is difficult to apply the coher-
ent model in current diffractive neural networks. As nonlinear
properties play a key role in deep neural networks, a better strat-
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egy to realize nonlinear activation functions by optics with low
power and short response time can significantly improve the accu-
racy of the current ONN. Memory and access are fundamental tech-
nologies required to scale up neuromorphic processors. However,
it has long been a challenge to construct optical random access
memory with extremely fast read and write speed, which provides
a great opportunity for the development of specific materials for
optical computing and storage. Despite the use of bulky systems,
free-space optical computing may accelerate cloud computing in
various data centers that do not require portable systems. We
expect more advanced SLMs with a high refreshing speed up to
megahertz and for giga-scale pixel numbers. High-speed low-
power photoelectric conversion is increasingly important at the
current transitory stage, requiring both photons and electrons for
practical applications. All challenges and applications indicate an
increasing number of breakthroughs in the near future [159].

In summary, we have reviewed the developments of optical
computing for AI-specific hardware implementations mostly in
the last five years. We describe the unique strengths of different
architectures regarding several representative AI models. Although
most methods are still at the stage of proof-of-concept systems, we
expect the future development of these frameworks for practical
applications with orders-of-magnitude improvement in either
speed or power efficiency. With increasing efforts from different
fields including photonics, electronics, materials, fabrications,
computer science, and biology, we believe that hybrid optoelec-
tronic computers to accelerate AI training and inference will come
soon as a transitory stage toward all-optical computers for general
applications.
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