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Collaborative unmanned systems have emerged to meet our society’s wide-ranging grand challenges,
with their advantages including high performance, efficiency, flexibility, and inherent resilience.
Increasing levels of group/team autonomy have also been achieved due to the embodiment of artificial
intelligence (AI). However, the current networked unmanned systems are primarily designed for and
applicable to a narrow range of domain-specific missions, and do not have sufficient human-level intel-
ligence and human needs fulfillment for the challenging missions in our lives. We propose in this paper a
vision of human-centric networked unmanned systems: Unmanned Intelligent Cluster (UnIC). Within
this vision, distributed unmanned systems and humans are connected via knowledge sharing and social
awareness to achieve collaborative cognition. This paper details UnIC’s concept, sources of intelligence,
and layered architecture, and reviews enabling technologies for achieving this vision. In addition to
the technological aspects, the social acceptance issues are highlighted.
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1. Introduction

Our society evolves and is profoundly transformed by the
advances in science and technology. However, grand engineering
challenges remain open in environmental sustainability, urban
infrastructure, health treatment, among others [1,2]. Nowadays,
sophisticated unmanned systems have become increasingly cap-
able at an affordable cost. Further blending such systems with
cloud and edge computation, 5G, Internet of Things (IoT), and big
data allows networked unmanned systems to collaboratively oper-
ate as a ‘‘team” to meet our society’s grand challenges [3]. As we
can see in the daily life, unmanned systems, as the embodiment
of artificial intelligence (AI), are step-by-step becoming common-
place. For example, multiple unmanned aerial systems aviate in
national airspaces, connected autonomous vehicles drive on the
roads, surgery robots operate in the hospital, and service robots
walk into a home for the heath care of the elderly and children
with special needs.

Yet, despite the remarkable achievements of networked
unmanned systems, there is a gap between their current capabili-
ties and the required capabilities for the grand challenges. We
argue that the potential reasons are mainly twofold. First, the cur-
rent networked unmanned systems are primarily designed for and
applicable to a narrow range of domain-specific missions. This pre-
vents the emergence of collective intelligence on a larger scale to
deal with complexities in missions and environments. Second,
the increasing trend of being ‘‘unmanned” leaves the ‘‘humanity”
part un-inherited, which makes it hard for people to trust, accept,
and use unmanned systems. Indeed, human attitude towards
unmanned systems and the impact of unmanned systems on
human behaviors are relatively less explored, which ultimately
compromises the expected social and economic benefits of using
unmanned systems in our society.

In fact, the high expectations associated with smart society
requirements increasingly demand that unmanned systems leave
their typical structured and controlled environments to work
alongside humans. In other words, the unmanned systems should
reach well-rounded human-level intelligence to perform diverse
missions with humans in complex environments. To achieve satis-
factory and harmonious co-existence of humans and unmanned
systems for better living and working, the following questions
arise: ① How to jointly gather the strength of various unmanned
systems and regenerate services for humans as a response to
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demanding requirements and never-encountered events in uncer-
tain and changing environments? ② How can such capable sys-
tems humanly collaborate, be positively perceived, and be widely
accepted in society? The integration of unmanned systems into
society is non-trivial, as our well-being or even lives to some
extent depend on these unmanned systems (e.g., autonomous driv-
ing applications).

The urgent requirement is that multiple unmanned systems
must socialize to recognize, understand and establish relationships
with each other, humans, or objects (possibly unknown in prior) in
unknown environments. Unmanned Intelligent Cluster (UnIC), pro-
posed in this study to meet this requirement and serve our society
better, is composed of socially aware unmanned systems. The core
principle is to increase the cognitive ability of unmanned systems
and to integrate human needs as an indispensable part, which
allows the artificial unmanned systems to think humanly in the
interactions and act compatibly with human preferences in per-
ception, decision, and operation.

‘‘Un” of UnIC stands for a cohesive union of networked
unmanned systems, and more specifically, it stands for a union of
the capabilities from a large scope of unmanned systems. In a
broad sense, regarding the scope, we do not explicitly distinguish
between robots/machines and autonomous unmanned vehicles
operating in multiple domains (air, sea, land, and space), for the
following reasons. First, they share common characteristics in that
they are usually mobile, self-sustained, self-directed, and rich in
resources. Second, despite operating in different domains, there
are overlaps in their safety-critical or mission-critical task charac-
teristics. Third, they face a high level of challenge in cooperation,
cognition, and sociability. Unlike intelligent virtual agents,
unmanned systems in UnIC have physical bodies as the embodi-
ment of AI and are mobile in multiple domains. To name a few,
unmanned systems in UnIC include spacecraft, airship, unmanned
aerial vehicle (UAV), unmanned ground vehicle (UGV), unmanned
surface vehicle (USV), unmanned underwater vehicle (UUV),
humanoid, and humanoid robots.

‘‘Intelligence” is at the heart of UnIC, which mainly refers to col-
laborative, interactive, and social intelligence. The source of such
intelligence can be bio-inspired, brain-inspired, and society-
inspired. The interpretation and source of intelligence of UnIC are
different as compared to those of the current unmanned systems.
When interacting with each other, humans, objects, and environ-
ments, the state-of-the-art unmanned systems have shown capa-
bilities to solve the ‘‘what,” ‘‘when,” and ‘‘where” problems, but
leave the essential ‘‘who,” ‘‘why,” ‘‘how,” and ‘‘what if” problems
to humans [4]. With these limitations, it is not surprising to occa-
sionally observe naive machine behaviors that humans perceive as
awkward, strange, unsafe, or even dangerous. In fact, these deep-
level problems require unmanned systems to own strong human-
like cognitive capabilities such as inference and reasoning, as well
as human-like social capabilities such as relationship understand-
ing and establishing. To reach this goal, UnIC is expected to possess
a high level of collaborative, interactive, and social intelligence,
which are complementary with each other.

‘‘Cluster” is a fundamental form to address complexity [5]. Clus-
ter in UnIC means an emerging pattern of cooperation, intuitively
referring to teams, functions, and services arised from the net-
working of unmanned systems. Here we mainly highlight two
aspects of the cluster: membership and structure. Concerning
membership, the clustering pattern is open and dynamic, meaning
that members in a cluster may adapt their strategy and reform new
clusters across the physical, information, and social space. Thereby,
an unmanned system might be involved in multiple clusters, play-
ing variable roles. Concerning structure, the cluster could be in the
form of hierarchically layered and nested groups, or teams of vari-
ous qualities, sizes, and compositions. Note that these characteris-
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tics are also different from those of the traditional clusters in
satellite cluster/constellation, service robots, UAV formation or
swarms, connected autonomous cars, and UUV fleet. For the tradi-
tional clusters, unmanned systems are usually designed with fixed
configurations for a specific mission, and the social interaction
rules between machines or between humans and machines are
often designed task-by-task. The drawback of such closed systems
is that they cannot establish relationships with the right partici-
pants in large-scale networked unmanned systems and thus can-
not generalize the respective capability for different missions in
novel situations. UnIC distinguishes itself from the closed systems
via the large-scale social connection and collaboration, which are
enabled by the following: scalability with volatile group member-
ship, interoperability with secure access, functionality and service
virtualization, and flexibility of on-demand reconfiguration.

Unmanned systems have been traditionally employed for so-
called dangerous, dull, and dirty (3D) tasks to work for humans.
In a more digitalized modern world, however, they are expected
to live in symbiosis with humans as cognitive, collaborative, and
companionable (3C) partners in an organized and networked man-
ner [6–8]. UnIC is expected to adapt to this role change and the
new challenges coming along.

The research on networked unmanned systems has received
considerable attention globally. China launched an eight-year,
200 million USD national research initiative called the
coexisting–cooperative–cognitive (Tri-Co) Robot in 2016, for the
purpose of exploring human–machine and machine–machine col-
laboration. The proposed coexistence will allow robots to ubiqui-
tously and safely work alongside humans, whereas cooperation
will enable robots to coordinate and collaborate effectively with
other agents (either people or robots). In Europe, the H2020 project
launched ‘‘Road-, Air- and Water-based Future Internet Experi-
mentation” that focused on coordinating multiple cross-domain
unmanned vehicles; likewise, the project of the cooperative–cogni
tive–control for autonomous underwater vehicles (Co3AUV) has
been initiated [9]. Another European project named Robotic
UBIquitous COgnitive Network, investigated the robotic ecology
concept for the purpose of providing pervasive services in daily life
by using collaborative platforms [10]. In the United States, the
National Ubiquitous Collaborative Robots Initiative (NRI-3.0) and
many global robotics projects were introduced towards a similar
goal [11]. In the industry community, Starlink systems from
SpaceX have been providing internet services via a large number
of cooperative low orbit satellites. All these research efforts have
contributed to a solid foundation for the implementation of UnIC.

The organization of this paper is as follows. Section 2 discusses
related works and concepts. In Section 3, we outline the fundamen-
tal concepts of unmanned intelligent system clusters, highlighting
the roles of humans and social interactions. Section 4 introduces
the key-enabling technologies to support UnIC. In Section 5, we
briefly introduce some research on social integration of machines.
Section 6 lists the remaining critical open questions, and finally,
Section 7 presents the conclusions.
2. Related works and concepts

Existing research related to collaborative unmanned systems is
rich, with ubiquitous robotics and swarm being representative
topics. Both topics and UnIC emphasize collaboration and network-
ing of multiple unmanned systems. In addition, ubiquitous robotics
shares in common with UnIC in that embedding unmanned sys-
tems in daily life and environments is proposed [10,12]. Yet, UnIC
distinguishes with them in group formation and composition.
Compared to ubiquitous robotics, UnIC can form dynamic clusters
with varying sizes and memberships. As for swarm, it often refers
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to a group of homogenous members for a narrow range of tasks,
and in many cases its members are less capable, intelligent, and
expensive [13]. Compared to swarm, UnIC allows for heterogeneity
of unmanned systems in multiple aspects such as autonomous
level or social identity. Moreover, neither swarm nor ubiquitous
robotics seems to actively consider the role of human in the system
design [14], while the UnIC concept stresses an open, interopera-
ble, reconfigurable, and particularly human-aware collaborative
group structure.

Recently, a renewed trend of bringing humans into the engi-
neering system has been observed [15]. Related works include
human and system of systems [16,17] and human centered multi-
ple agent system (MAS) [18]. In the following, we briefly cover two
representatives: cyber–physical–human system (CPHS) and
human-in-the-loop IoT, highlighting the similarities and differ-
ences compared to the proposed UnIC concept.
2.1. Cyber–physical–human system

Cyber–physical system (CPS) is not only a field closely related to
UnIC, but also one of UnIC’s main precursors. CPS captures the
interactions between cyber aspects (e.g., communication and com-
putation) and physical systems, ranging from avionics on aircraft
to connected mobile vehicles used in multiple systems. Based on
CPS, CPHS further recognizes that humans are social beings and
have social relationships. In this context, humans move within
social connections, with cyber information augmentation overlay-
ing on human activities and behaviors. The importance of human
involvement is also recognized in industrial CPS [19], factory CPS,
and residential CPS [20,21]. Extensions of these concepts to a larger
scale include cyber–physical social system (CPSS) [22–24].

Compared to CPHS or CPSS, UnIC focuses more specifically on
multiple unmanned systems. It features a high level of heterogene-
ity and mobility, and has outstanding capabilities in sensing and
actuating. In addition, UnIC can respond to human social need by
sharing humans’ physical or cognitive workload in a real-time
fashion. In other words, humans play a more central role in bridg-
ing the physical and cyber worlds in UnIC.
2.2. Human-in-the-loop IoT

UnIC and human-in-the-loop IoT share the common vision that
human needs and social networks are considered as essential fac-
tors to be coupled with IoT research. In the IEEE IoT committee, a
working group initialized in 2018 explicitly considers human’s role
in IoT development [25], paying particular attention to how the
increasing usage of technology affects human. UnIC aligns with
human-in-the-loop IoT in the basic idea that the objects around
us should understand humans desires, requirements, and interests,
so that they can provide reliable and trustworthy solutions [26,27].
The advantage of such human and IoT integration is to foster ser-
vice discovery, resource visibility, object reputation assessment,
and source crowding. Note that robots can also be seen as a special
category of things, and in this context, Internet of Robotic Things
(IoRT) is proposed to further converge sensing, actuation, connec-
tivity, and services [28,29].

Compared to human-in-the-loop IoT, which generally explores
networked objects, UnIC particularly focuses on human interac-
tions with intelligent and mobile entities. Despite the fact that
human-in-the-loop IoT can interact with humans via providing
context information, the information required may easily exceed
the perception range, sensing dimensions, and the precision of
the sensor network. The problem, however, might not exist for
UnIC, as it pursues information richness and broader contexts by
mobility. Besides, UnIC allows to form open and dynamic clusters
26
by inviting new socially connected unmanned systems that may
contribute to the mission.
3. UnIC concepts

This section details the concept and intelligence-driven features
of UnIC. We also elaborate on the physical, information, and social
space from which UnIC emerges.
3.1. UnIC overview

UnIC refers to autonomous unmanned systems that are human-
centered and networked through intelligent social collaboration.
This human–machine collective optimizes the coordination of
humans, machines, objects, and environments via knowledge shar-
ing and social awareness, such that it continuously improves the
capabilities of both individuals and teams by increasing mutual
understanding and trust. The aim is to provide humans with a
set of personalized, diversified, and socially acceptable functionali-
ties and services. These services emerge around humans by clus-
tering necessary virtual and physical resources. When required,
both the clusters and the clustering approaches can be reconfig-
ured according to human intention and adapt to the dynamic,
unknown environment.

The following are essential features of the UnIC operation.
� Unmanned systems form clusters with adequate scalability to
respond to events.

� Clusters can both emerge and be dismissed depending on the
mission and human needs.

� Human preferences and social acceptance play essential roles.
� UnIC is both the service provider and the service consumer.
� UnIC can serve as mobile infrastructures for themselves and
others.

The autonomous mobility of UnIC facilitates close-to-human
capabilities not only in perception and cognition, but also in
actions and behaviors. The prominent intelligent features include
self-sensing, self-decision making, self-actuation, self-learning,
self-healing, self-growing, and self-governance. UnIC uses
unmanned system platforms to provide four basic blocks of
collaborative functionalities, namely perception (UnIC–P),
communication network ((UnIC–N), computation (UnIC–C), and
service (UnIC–S). The concept of UnIC is illustrated in Fig. 1.

We will now briefly introduce these four functional blocks.
UnIC–P is compatible with existing systems like IoT but adds value
to them. The cluster in UnIC can connect to the IoT networks for
cooperative sensing of objects, the environment, and humans. Also,
the knowledge acquired and refined is shared at both the human–
machine and the machine–machine level. UnIC–N can provide
ubiquitous networks, which allows UnIC to be implemented in a
distributed manner or to be configured to form clusters out of
existing distributed systems. UnIC–C is responsible for context-
aware computations in the interpretation of situations, reasoning,
and predictions, while UnIC–S manages the service pool and orga-
nizes services according to the mission objectives. These four
blocks jointly enable the growing capabilities of the human–
machine collective in services and missions.

The implementation of UnIC sits at the intersection of multiple
disciplines: computer science, robotics, communications technol-
ogy, automation, and social science. On the one hand, it exploits
the advances in information and communication technology
(ICT), IoT technologies, and AI to build smart ‘‘minds.” On the other
hand, it benefits from achievements in energy, material sciences,
and manufacturing for its physical ‘‘body.” The ‘‘body” and ‘‘mind”
are integrated by social and life sciences to enable the ‘‘soul.” These
indispensable elements are illustrated in Fig. 2. The interactions



Fig. 1. UnIC concept. Info.: information.

Fig. 2. Enabling elements of UnIC.
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between humans, machines, objects, and environments can be
analyzed in three spaces: the physical space, the information
space, and the social space, as illustrated in Fig. 3. In contrast with
many other paradigms, the social space is highlighted and plays a
unique role in achieving the full benefits of UnIC.
Fig. 3. Human–machine–object–environment interactions in physical, information,
and social space.

27
3.2. Sources of intelligence in UnIC

The intelligence of UnIC originates from three sources: bio-
inspired intelligence, brain-inspired intelligence, and society-
inspired intelligence. The intuitive reason to investigate these three
sources is that organisms in nature, networked neurons in the
brain, and teams in human society all survive and prospect by
working together. In the following, some recent inspirational
results on the three sources of intelligence are introduced to inform
the design and implementation of the intelligence feature of UnIC.

3.2.1. Bio-inspired intelligence
The emergence of collective intelligence in UnIC can be inspired

by understanding nature. Biologically inspired principles have
guided the design of multi-unmanned systems in aspects ranging
from collective information processing to self-organized behavior
patterns. Biologically inspired robotics [30] and swarm robotics
[31] are two related research fields. Below, we will introduce some
potential inspirations for UnIC in collective motion, perception,
and decision-making. First, to achieve collective motion, the bot-
tom–up approach to establish self-organized collective behavior
can be taken. The natural systems indicate that local interactions
lead to global patterns. For example, birds, fishes, and cells can
use local interaction rules to form complex patterns or structures.
Even when the local motion is stochastic, random motion of indi-
vidual components can lead to deterministic behavior [32]. Like-
wise, the morphogenesis principles are used to build an intricate
structure with each robot using identical rules. The robot swarm
shows robustness to noise, damage, and adaptability to changing
environments [33]. Second, a top–down approach to generate local
rules from the desired macro collective behavior can be taken. Pro-
grammable swarm robots have the ability to achieve the desired
collective shape, illustrating an example of highly self-organized
behavior by design [34]. In a similar sense, to achieve collective
sensing, individual local measurement can be modulated with
social cues from neighbors [35]; to achieve efficient decision-
making in dynamic groups, sparse knowledge is sufficient. Such
knowledge accumulates and further improves collective intelli-
gence [36]. Third, group size and hierarchy are found to be vital
for decision-making performance. The larger the group size, the
better the decision accuracy [37] and the smaller the proportion
of informed individuals is needed for the given accuracy [38]. A
well-defined hierarchy may also help efficient group decision-
making from an evolutionary point of view. For example, the fat
tail distribution of competence in the human group suggests better
group performance [39].

The advantages of using bio-inspired intelligence include the
following: ① higher degree of global competence emerging from
a collection of simple distributed systems; ② improved resilience
to failures of individuals and disturbances of the environment;
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and③ increased flexibility and scalability. The findings above shed
light on the design of multiple unmanned systems in UnIC with
self-healing, self-growing, and self-governance capabilities in
uncertain and harsh environments [30,31,40,41].

3.2.2. Brain-inspired intelligence
The breakthroughs in AI have their roots in the increasing under-

standing of humanbrain [4,42,43],which has attracted considerable
attention in governmental funding support all over the world [44].
Such studies are accelerated by systematic nonintrusive imaging
instruments, which allow us to observe neuron activities with
unprecedented spatial–temporal resolutions [45]. Currently, two
approaches are adopted to investigate brain-inspired intelligence.
One approach is the inverse engineering of the brain with biologi-
cally plausible imitations. This includes the efforts to mimic neural
circuits by using spiking neural networks. Recently, low-cost and
large-scale simulations of spiking neural networks has been imple-
mented matching a monkey’s brain [46]. The other approach takes
the working principles of the brain as inspiration to provide new
types of computational models (representation, abstraction, and
reasoning) and architectures. This line of research has fueled the
development of artificial cognition and the transfer of cognitive con-
cepts into robotics [47,48]. The inspired models include spatial rep-
resentation and navigation which leverage human place cells [49],
affordance computation of applicable actions linking to human
mirror cells [50], semantic cognition which supports the use and
generalization of knowledge with neural bases [51], and hierarchy
motor control architectures [52]. Recent neuroscience research has
also identified several neural bases of social interactions, which
include ‘‘social place cell” for identifying others’ location and
‘‘identity cells” for supporting the interactive behavior of social
groups [53]. It’s worth noting that the inspiration is bidirectional
between neuroscience and AI, as AI also offers new perspectives
and tools for neuroscience research [54]. One encouraging example,
is that the deep learning navigation agent shows a grid cell structure
that resembles human brain [49].

It is important to note that a better understanding of the brain
can inspire the human-like ability to discover knowledge. Despite
the success of probabilistic machine learning approaches [55],
brain-inspired connectionism using neural networks seems to pre-
vail [56,57]. By using the insight from neural network, AI is able to
discover knowledge. Currently, for example, AI has been shown to
discover physic laws and new mathematical conjectures and theo-
rems [58–60], to produce interpretable psychological theories [61],
to assist in the discovery of newmaterials [62,63], and to find ways
of achieving nuclear fusion for sustainable energy.

Researchers have also investigated how better systems can be
built by learning. Three approaches may contribute to guiding an
unmanned system how to learn: ① Cognitive science may shed
light on what humans learn and how they learn it [47,52,64];
② inspiration can be obtained from results in developmental
research on how infants acquire skills in a progressive manner
[65–67]; ③ brain–machine interface in both motor control
and mood regulation has emerged as a new scientific tool for
investigating learning [68].

3.2.3. Society-inspired intelligence
Human society sets a good example for UnIC of how complex

problems can be collectively solved when the members possess
human-level intelligence. Teams, groups, communities, or organiza-
tions are the primary forms of problem-solving in human society.
Working in groups improves productivity, and it has been found that
scientific teams produce more frequent knowledge and higher
impact than individuals [69]. Generally speaking, a group of con-
nected people outperforms a single individual in improving produc-
tivity and accurately answering complex questions. To this end,
28
society-inspired intelligence refers to approaches learned from
human society for solving complex problems, with social group
structure and social intelligence playing central roles.

There is evidence that a crowd structured in small groups can
outperform a large unstructured crowd via aggregating knowledge
[70]. Beyond efficiency, the exploration of social network structure
can provide predictions of group behavior. It has been revealed
that people with close social proximity, like friends, usually pos-
sess similar ways of perceiving and responding to the surrounding
world [71]; such findings can be used for the early detection and
management of epidemics [72,73].

It is important to note that social intelligence is essential to
maintain social group relationships. What is social intelligence?
As suggested in Ref. [74], ‘‘Social intelligence is the ability to
understand the feelings, thoughts, and behaviors of persons,
including oneself, in interpersonal situations and to act appropri-
ately upon that understanding.” Evidence shows that general intel-
ligence (defined by verbal and abstract thinking) and social
intelligence are independent regarding the following social intelli-
gence measures: prosocial attitude, emotionality, social anxiety,
social skills, and empathy skills [75]. It is beneficial to have both
general and social intelligence. As reported, human groups charac-
terized by both high general and social intelligence possess a
remarkable ability to manage common resources. More specifi-
cally, these two kinds of intelligences indicate a high cognitive
capability to recognize the usefulness of resources and social rela-
tionships, which enables practical, consistent, and sustainable col-
lective actions [76]. As unmanned systems become increasingly
capable of social interactions with humans, it is important for them
to understand the feelings, thoughts, and behaviors of people in
social settings. Tools in social science like social norms, judgment,
reputation, and trust can be borrowed and used in regulating and
optimizing social behaviors of multiple agents [77,78].

3.3. UnIC and the clustering spaces

The clusters in UnIC emerge from three spaces: physical, infor-
mation, and social. The physical space contains all the physical sys-
tems and objects in the interactions, which ensure safe motion of
unmanned systems in multiple domains. The information space
involves perception, communication networks, and computation.
The high-level outcome of UnIC activities in this space is knowl-
edge generation and sharing. In the social space, UnIC promotes
trustworthy social interactions with the support from the other
two spaces.

3.3.1. Clustering in the physical space
In the physical space, UnIC clusters necessary resources around

humans to set up an ecology in the context of human activities. The
main actors are unmanned systems (e.g., UAV, UGV, and USV) or
UxV, which accommodate payloads such as multiple modal
sensors/communication/computation modules. The main benefit
of using UxV platforms is access to the multi-domain physical
space. Such access is enabled by a series of coordination, ranging
from low-level components’ actuation, subsystems’ actions, plat-
forms’ motion to the overall system behaviors. Since UxV shares
the physical space with humans, tempo-spatial coordination
among UxV platforms needs to guarantee collision-free motion.
In general, UnIC is expected to act as human partners or delegates,
without negative interferences with humans while following
humans’ intention closely.

3.3.2. Clustering in the information space
In the information space, UnIC clusters around the cognitive

needs of humans and augments humans for better thinking. UnIC
processes the heterogeneous, unstructured, incomplete, and
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asynchronized raw data into knowledge, which is more stable over
time than data and context [79]. In this process, semantic technolo-
gies enable interoperability and a human-centric view of the objects
and the environment, allowing for the active participation of non-
expert humans. This is a solid basis for the collaborative ability to
learn, think, andunderstand [80,81],whichproduces fused situation
awareness. In general, humans benefit from augmented cognition
with the help of UnIC. On the other hand, humans also contribute
to knowledge generation through human mobility as sensing, or
through human crowdsourcing as computation units.

3.3.3. Clustering in the social space
In the social space, members in UnIC are expected to actively

understand, model, and infer the behaviors of other machines
and humans. The clusters of UnIC in the social space can thereby
emerge around humans by establishing relationships via social
identity, preference, common ownership, brand, goal, and location.
In fact, social space considerations can be coupled into the two
other spaces. For example, the physical space can be socially parti-
tioned using social cues, signals, and proxemics [82]; social seman-
tic maps can be built for further reasoning, data sharing, and
interoperability in the information space [83,84].

Clustering in the social space requires UnIC to possess a high
level of social autonomy and to exhibit socially acceptable behav-
iors [85–88]. The automated social characteristics include deter-
ministic courtesy [86], social value orientations [89], and other
irrationalities using prospect theory (e.g., framing effect, risk-
seeking behavior, and loss-aversion behavior [90,91]). Social norms
and reputation can also be used to help promote human under-
standing [92]. Learning techniques are proposed to obtain auto-
mated social characteristics such as altruism, curiosity, attention,
and affordance [93–97]. Both short- and long-term learning help
the pursuit of social autonomy [98].

Clustering in the social space also requires the interaction inter-
faces with humans to be personalized with multimodal, interac-
tive, and multitasking properties [99]. Such interfaces can be
physical (e.g., a service robot), virtual (e.g., a software assistant),
bio-physical (e.g., brain machine interface or a body augmentation
form of robotic limb) [100,101], cyberphio–chemical [102], tactile,
and verbal (e.g., natural language interpretation).

4. Technology enablers of UnIC

UnIC takes a human-centric layered structure, as shown in
Fig. 4. It comprises four core layers: ① A1: layer of unmanned sys-
Fig. 4. Human-centric layered architecture of UnIC. A1: layer of unmanned system platfo
service.

29
tem platform (UxV); ② A2: layer of sensing and network ; ③ A3:
layer of computation; ④ A4: layer of service. These four layers
interact with each other, with intelligence, cognition, and ethics
embedded in each layer [86,103]. Key enabling technologies of
the four layers are reviewed as follows.

4.1. Layer of unmanned system platform

In this section, we introduce some latest development of
unmanned systems operating in multiple domains.

4.1.1. Unmanned system as a physical entity
Unmanned systems (including robots) are the fundamental

building blocks of UnIC. They come in different sizes [104], work
in or even across different domains, and perform diverse tasks with
multiple modes, as shown in Table 1. It is also common to use them
in teams for better group performance [105]. In such cases, they
can self-organize, self-assemble, and reconfigure their physical
‘‘body” shapes [33,106].

The latest advances of unmanned systems feature increasingly
small-scale and human-friendly design. At the nano-scale, for
example, the 2016 Nobel Prize in Chemistry was awarded to the
researchers who pioneered building nano-machines on the
molecular scale. Although in their infancy of autonomy, they are
expected to be used for macro-level tasks such as drug delivery
[107,108]. A deeper discussion on building molecular machinery
can be found in Ref. [109]. At a relatively larger scale, a survey
on the design and manufacture of drones can be found in
Ref. [110]. Among these, the Robobee is noteworthy for its cross-
domain operation and untethered flight with a weight of around
100 mg [111,112]. Concerning human-friendly design, soft robots
have attracted a great deal of attention, as safe interactions with
humans is one advantage of soft robots [113,114]. For example,
lightweight and low-speed flapping drones have flexible wings
and a natural appearance, making them ideal candidates for indoor
applications. Some studies on soft robots show that sensing, com-
putation, actuation, and energy supply with machine intelligence
can be integrated with the constructing material of the soft body
[115,116], and that technologies like 4D printing with pro-
grammed tempo-spatial behavior can be utilized for the dedicated
motion [117].

4.1.2. Unmanned systems: From body to mind
The mobility of unmanned systems is enabled by locomotion,

which is the mechanism to transport unmanned systems from
rm (UxV); A2: layer of sensing and network; A3: layer of computation; A4: layer of



Table 1
Heterogeneous unmanned system platforms [110–115,118–130].

Scale Biological Land Marine Air Space Cross-domain

Nano Micro-swimmers – – Nanodrone Femtosatellite Robobee
Micro Capsule robot Microrobot Snailfish robot Mircodrone Picosatellite Terrestrial–aquatic microrobot
Macro Portable medical device Humanoid/robot hands Ocean robots UAV Space robotics –
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place to place by various modes of interactions with the operating
environment. At the macroscale, locomotion modes can be
wheeled, wing-born, or bi-pedal. At the microscale, they can be
very flexible with the possible choice of using smart programmable
materials. These materials can be self-folding [131] and can further
be used for an entire functional system [132]. Since single-modal
locomotion has limitations when operating in dynamic environ-
ments for complex tasks, multi-modal locomotion has been under
intensive investigation. Multi-modal locomotion can be accom-
plished either via a collection of domain-specific and distributed
unmanned systems, or via a single integrated system with multi-
modal capabilities, such as a humanoid [133,134].

When autonomously moving in the physical space, unmanned
systems need to guarantee safety first, both for themselves and
for humans and objects in the environment. In most unmanned
systems, depending on the level of autonomy, safety requirements
often demand detect-and-avoid functions. Reviews concerning
collision-free operations of various unmanned systems in unstruc-
tured environments can be found in the literature, including: UAV
[135], USV [136], UUV [137], autonomous vehicle [138,139], space
systems [140,141], and mobile robots [142,143]. Based on the
collision-free motion, unmanned systems are able to explore the
environments [144] and perform tasks with time-varying group
formations [145,146].

The development of unmanned systems is also reflected by the
‘‘mind” building, which is the ‘‘see–think–act” cycle [147] (i.e., the
perception, decision-making, and action cycle). Due to the current
breakthroughs in AI, recent research advocates cognitive architec-
ture again [148,149]. For unmanned systems, cognition not only
plays a role in their active perception, but is an essential aspect
for their anticipatory decision-making. For example, human-
centered unmanned systems can be designed by integrating
socially aware navigation and motion planning [68]. In general,
the interaction of a cognitive mind and a physical body of an
unmanned system would allow the exploration of challenging
tasks (e.g., dexterous manipulation illustrated by the automatic
assemblage of an IKEA chair) [150].

Overall, the current unmanned systems offer precision, efficacy,
and even safety by working beyond the limits of human perception
and dexterity. Yet, they suffer from limitations in the following two
aspects. First, it is still a challenging task for the current unmanned
systems to perform general thinking and social thinking. The state-
of-the-art achievements and the grand challenges ahead in
robotics have been identified and reviewed in Ref. [151], including
social aspects and ethics. Second, unmanned systems are expected
to be more physical-damage resilient, adaptive in perception and
action, and scalable in system size. When collaborating with
humans, they are desired to possess greater self-predicting, self-
healing, and self-growing capabilities [152,153].

4.2. Layer of sensing and network

Distributed sensing and networked communication technolo-
gies are converging. They are closely interdependent particularly
in the setting of networked unmanned systems. This section dis-
cusses both sensing and communication networks in the tradi-
tional sense and their coupling with human-participated sensing
and social networks.
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4.2.1. Sensing and communication network
Sensing is achieved by using either proprioceptive or exterocep-

tive sensors. Raw sensor data is processed to provide situational
awareness of the unmanned system itself, team members, objects,
and the environment. Enhanced situational awareness can be fur-
ther achieved by combing sensing and communication networks,
as communication networks support the sharing and transmission
of local measurement data among the static/mobile sensor nodes
[154]. Such distributed perception from multiple systems allows
for gathering richer information in shorter time intervals over vast
space. In general, sensing and communication networks collec-
tively promote collaboration of multiple unmanned systems,
ensuring safety, efficiency, and convenience.

When designing communication networks for unmanned sys-
tems, we need to consider the platform mobility and an open
architecture. The mobility of unmanned systems poses challenges
in ensuring highly dynamic connections and mitigating environ-
mental interferences. In this sense, communication requirements
can be demanding regarding availability, continuity, integrity,
latency, and communication transaction time. The emerging 5G
technology can offer wide-area communications for mobility with
ultra-short time delays and massive connectivity. Such characteris-
tics also enable new sensing networking possibilities such as tac-
tile internet [155], which provides humans with immersive
situational awareness to remotely operate unmanned systems.
The mobility also allows unmanned systems to provide dynamic
coverage and seamless service, as unmanned systems are able to
carry relay and base station payload for on-demand communica-
tion. Taken together, unmanned system networks serve dual roles:
communication for mobility and vice versa mobility for communi-
cation [156]. Concerning communication architectures, ad hoc net-
works are often formed to scale multiple unmanned systems.
Examples include mobile ad hoc network (MANET), vehicular
ad hoc network (VANET), flying ad hoc network (FANET), and ocean
networks [157–159]. In UnIC, unmanned systems require a more
open and dynamic communication architecture to form an open
machine society, where the members may represent different
stakeholders. Challenging questions arise concerning who are the
communication partners, what are the information needs, what
to transmit at which rates, and what are the communication proto-
cols (may not be hardwired) [160]. Computational interaction
frames proposed in Ref. [161] explore in this direction, which
may serve as a candidate solution to promote openness for owner-
ship, membership, conventions, and the internal design.

4.2.2. Human involvement and social network
New advances emphasize the role of humans in sensing and

communication networks. On the one hand, sensing and communi-
cations are employed for human well-being. It is possible to sense
and collect data from digital footprints of social behaviors in the
physical and information space, which can then be used for under-
standing human behaviors and activities [162–164]. Human-
centric principles also extend to a new generation of communica-
tion network like 6G, emphasizing the user experience and social
factors like privacy and security [165]. On the other hand, sensing
and communications can be implemented via humans. As an
example of communication via humans, the human body can be
used as the networking channel media to form secure body area
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networks for biomedical sensors in the proximity of human users
[166]. Concerning sensing via humans, participatory sensing and
opportunistic sensing are representative examples. They are possi-
ble approaches to get humans’ cognitive capabilities and intelli-
gence involved in large-scale socio–technical systems. As
participatory and opportunistic sensing rely on human or human
network to relay data, the communication pattern and sensing per-
formance largely depend on human mobility, social network struc-
ture, and human social preference like altruism [167]. In this sense,
mechanism design approaches in social science may provide a pos-
sible solution to improve the availability of social sensing data.
Note that the social sensing and communication concept is not
limited to humans but can be extended to networked unmanned
systems (e.g., in social vehicular networks, opportunistic informa-
tion sharing of events has been found to reduce emissions and alle-
viate traffic congestion) [168,169].

4.3. Layer of computation

The cognitive and collaborative features of UnIC require
context-aware knowledge sharing, cognitive computation, and
ubiquitous computation. This section briefly surveys the computa-
tion technologies supporting UnIC that concerns data, algorithms,
and computational power. The purpose of computing (e.g., specific
planning, decision-making, and control algorithms), is omitted
here, as we focus only on knowledge representations, computa-
tional architectures, and social computation.

4.3.1. Knowledge generation and computational architecture
Data, algorithms, and computational power are core elements

of the current AI. For UnIC, high-volume, heterogenous, and multi-
modal data from networked systems might lead to data manage-
ment problems. To solve these problems, UnIC can adopt the
semantic knowledge approach to refine the data. This approach
not only allows reusing old data, adding new data, transferring
unambiguous knowledge, but also facilitates better user visibility
during data acquisition, processing, and representation. Such
transparency provides a prerequisite for human engagement
[170]. The outcomes of knowledge generation can be represented
as maps showing both cognitive and social landscape: a geometric
map representing spatial, temporal, and thematic features in the
physical space; a semantic map representing concepts that human
can interpret in the information space; a social affordance map
representing networked relationships and social acceptance con-
siderations [171,172]. In practice, ontology-based semantic tech-
nologies have supported interpretable knowledge representation
in health care [173] and agile reconfiguration in flexible manufac-
turing [174]. The semantic knowledge representations can be
domain-specific, emphasizing reliability, safety, and usability. They
bring benefits like standardized situational information [175], tem-
poral and spatial context update [176], and collaborative platform
behavior [177], which increase the platform’s interoperability
[178].

Computation algorithms can produce cognition, which
enhances the capability of UnIC in interactions with machines,
objects, environments, and humans. Cognition is not a module of
mind but a process that entails robust and anticipatory behavior.
While cognitive characteristics can be embodied in perception,
computation (reasoning, inference, decision-making, intent inter-
pretation), communication, action, and goal adjustment [179], cog-
nitive systems need to be aware of the implications of perceptions
and anticipate the consequences of actions. The concept of affor-
dances, which describe the action possibilities that an environment
can offer (or afford) a machine, fits into this scheme. Affordances
associate the perceived objects with applicable actions, mapping
understanding in perceptions to consequence aware behaviors. It
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has been suggested that such mapping can be obtained via end-
to-end learning without internal models [180]. As humans prefer
to interact with systems with a certain degree of cognition, the
cognitive features can help UnIC to maintain autonomy in interac-
tions with humans by understanding human needs and goals
[149].

Recent advances in ‘‘computational power” involve computa-
tion methods and computation architectures. The new computa-
tion methods range from quantum, DNA and biochemical
computing to neuromorphic computing [181]. As mobile computa-
tion becomes more and more prevalent, ubiquitous computing is
dispersed into the environment, devices, and unmanned systems.
Regarding computation architectures, three main different types
are available: cloud architectures, fog architectures, and edge
architectures [182–187], with the latter two being especially
important for UnIC’s role as the mobile infrastructure. UnIC can
serve as computing centers using fog architectures. For example,
slow-moving and parked vehicles can be used as mobile computa-
tion infrastructure [188]. Fog architectures also enjoy greater tem-
poral–spatial advantages in the case of unmanned aerial systems,
due to high mobility and fast geo-distribution, latency-sensitive
knowledge handling in the information space, and possibly
behavior-sensitive awareness in the social space. Recent advances
in edge computing architectures promote data-centric computing
at the edge, which is close to the data source (e.g., in sensors or
memory) [189,190]. In UnIC, the three types of computation archi-
tectures can be jointly used and smoothly self-switched, depend-
ing on the connectivity and safety constraints, as well as mission
objectives [191].

4.3.2. Social computation
From an evolutionary perspective, it has been considered that

social learning plays a pivotal role in the evolution of intelligence
in primates [192]. Likewise, computation approaches that imple-
ment social learning are critical for acquiring the expected capabil-
ities of intelligent unmanned systems. Unmanned systems can
learn from the information used by humans (e.g., the world wide
web or from the demonstrations performed by humans/peer sys-
tems) [193,194]. In this regard, the platform Sensorpedia can con-
nect incompatible sensor systems and share information across
them [195]. For the same purpose, the platforms Roboearth and
Robobrain can share knowledge between unmanned systems
[183,196]. In fact, sharing information or knowledge, either from
humans to machines or from machines to machines, can provide
opportunities for skill transformation [197], which ultimately
brings improvement in the success rate of solving problems
[194,198]. An example of using social computation in accomplish-
ing complex tasks is demonstrated in the Million Objects Challenge
[199].

4.4. Layer of service

UnIC provides services for humans based on the fusion of the
three spaces. This section introduces some essential aspects in pro-
viding human-centric services.

4.4.1. Human behavior patterns
Providing personalized, precise, and innovative services

requires knowledge of human behavior patterns [200]. Computa-
tional models can be employed to build comprehensive pictures
of these behavior patterns. For example, human behavior patterns
can be characterized in the physical space as motion/crowd
dynamics [201], in the information space as opinion dynamics
and communication patterns, and in the social space as friendship
networks and social preferences. Some studies further show that
① in the physical space, human mobility shows a high degree of
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regularity and reproducible patterns in migration, commuting
between cities, and moving in crowds [202,203];② in the informa-
tion and social space, human beliefs and decisions are coupled with
their social networks, resulting in interdependent dynamics in the
two spaces [204–206]. UnIC, which perceives, thinks, and works
socially, can take advantage of these behavior patterns when
scheduling services.

4.4.2. Service virtualization and management
UnIC is expected to deliver rich, personalized, and on-demand

services with the support of the IoT network in missions like disas-
ter response [207], smart home [208], urban service [209], smart
manufacture [210], and smart agriculture [211]. These services
can be provided by using a service-oriented paradigm, in which
the functions of unmanned systems are virtualized at three levels.
At the subsystem level, for instance, the virtualization of sensing
results in sensing as a service [212]. At the individual system level,
virtualized subsystem services can be packed into system-level
services. For example, UAV can provide multiple services like data
management, distributed computing, interaction with humans,
security, and privacy [213]. Furthermore, the unmanned system
can be virtualized as unmanned systems autonomy services
(UxAS), and based on this, a software framework has been pro-
posed for mission-level autonomy [214]. At the system of systems
level, using task scheduling as service management is feasible even
for individual agents with low levels of autonomy. Services virtual-
ized at various levels can be efficiently managed via dynamic ser-
vice matchmaking (e.g., clustering based on similarity) [215],
discovery, replacement, and synthesis [216]. Altogether, service
virtualization and management enable the reuse of functionalities
and support the openness of the UnIC.
5. Social integration of machines

Even though the capabilities of unmanned systems advance to
the point of matching or even surpassing those of humans in some
cases, integrating multiple unmanned systems with AI in the soci-
ety remains as one of the grand challenges in achieving the full
social and economic benefits of UnIC [151]. This section briefly
introduces some research addressing how machines influence the
collaboration with human involvement and social acceptance of
machines in general. The promising approaches of promoting
acceptance by building trust in machines are highlighted. Such
studies provide a path for social integration of UnIC.

5.1. The impact of machines on collaboration

Collaborating with machines has been shown to significantly
reduce human workload both mechanically and cognitively. Schol-
ars from different fields such as human–machine interaction (HMI)
and social robots have devoted their efforts to identifying the influ-
encing factors of human–machine collaboration. As reported in
Refs. [217–219], the question of ‘‘how the task type, operating con-
text, and machine behavior influence human–machine team col-
laboration” has been intensively investigated in the field of
human–robot interaction [220]. Compared to human–machine col-
laboration, human collaboration via machine is much less
explored. There is evidence that using machine as human delegate
can enhance human collaboration. For instance, a common use of
preprogrammed autonomous vehicles among people can promote
cooperation relative to direct human–human interaction. In other
words, human cooperation is enhanced when their interactions
take place through autonomous machines [221]. Additionally,
machine involvement has been found to improve human collabo-
ration in terms of conversation participation and conflict media-
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tion [222]. For example, having a machine in the team that
expresses vulnerability can induce higher levels of participation
in team conversations and improved perceptions of the team inter-
action experience [220].

5.2. Social acceptance of machines

The benefits that machines bring for collaborations would not
be achieved if machines are not properly accepted and applied.
The literature on social acceptance mainly involves three dimen-
sions: ① positive evaluation and belief, as an attitudinal accep-
tance dimension; ② willingness or planned actions, as an
intentional acceptance dimension; and ③ actions of using, as a
behavioral acceptance dimension. Although the distinctions
between the three dimensions are important, in this section we
discuss social acceptance of machines in a general sense.

Existing research on acceptance of machines has addressed
drones [223], personal robots [224], robots at work [225], robots
in domestic environments [226], autonomous vehicles [227,228],
connected vehicles [229], and so forth. Methodologies to investi-
gate acceptance include surveys, questionnaires, acceptance
models, field experiments, or controlled lab experiments. In gen-
eral, barriers exist in accepting intelligent machines. For
instance, in a survey conducted in Germany, the majority of peo-
ple being questioned disagreed about the drone usage for tasks
like advertising and parcel delivery. Typical concerns include
safety and privacy. Those who have dealt with unmanned sys-
tems value safety more than privacy, whereas those who do
not care more about privacy. However, both seem to care about
privacy as long as their own privacy is considered [223,230]. One
another important reason for the insufficient acceptance of
machines is the perception of machines’ low level of emotions
[231]. Also, even if no barriers exist for accepting the concept
of living with unmanned systems, there is a risk of not taking
the corresponding actions. For example, for people who agree
that the self-driving vehicle in a crash should kill a passenger
instead of a pedestrian, they would rarely buy such a vehicle
for themselves [232].

5.3. Trust as indicator of acceptance

Obviously, the proper acceptance and social integration of
machines are far less sufficient. One crucial factor is insufficient
human trust in machines. Trust is considered to be a key determin-
ing factor in the acceptance of machines, both technically (e.g., reli-
ability and dependency of functionalities) and socially (e.g.,
emotions, satisfactions, and preferences) [233,234]. Trust in
machines can be influenced by many factors, including task char-
acteristics, demographics, experience, and so forth. In this section
we would briefly emphasize three important factors that have
the potential to increase people’s trust in machines and could be
taken into account in machine designing.

The first factor is identity building, which has always been an
important tool to promote trust and cooperation within the human
society. In fact, humans also show considerable in group favoritism
towards machines with similar identities [235,236]. Hence, having
machines build the same identity or group membership with the
people interacted could help to increase human trust in machines
[237]. Manipulating team structure to recognize machines as part-
ners rather than tools can also improve subjective satisfaction and
team performance [238].

The second factor is interpretability. Interpretability of machine
behaviors, such as explanations from the machine, has been found
to increase trust towards machines [239,240]. However, the limita-
tions of human reasoning also raise the question of the content and
level of explanations [240], since a mindless choice of information
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about what to communicate with people might risk causing infor-
mation overload. To cope with this challenge, researchers have
proposed to check the effectiveness of interpretability using
designed experiments [238].

The third factor is human-like behavior. One important
underlying reason that humans do not have much trust in
machines or have emotionally different trust in machines vs
humans lies in the fact that machines have been perceived as
having no or little human-like emotions and social behavior.
There is some evidence that humans prefer to interact with
machines with a higher level of human-like behavior. For exam-
ple, people have the tendency to prefer proactive machines to
reactive machines [241], and people show higher trust in adap-
tively automated machines than in stable machines who always
provide assistance irrespective of whether people need or not
[242]. In fact, machine responsiveness and active listening are
also found to lower people’s cognitive load and increase people’s
willingness to be accompanied by the machine during stressful
events [243,244].
6. Open questions and trends

This section lists the urging and unanswered questions which
are important for applying UnIC in our society.
6.1. Process from design to verification and validation (V&V)

UnIC defines itself as an open, complex, and giant system [245],
which requires system science to integrate both social and techno-
logical knowledge [246]. However, the systematic top–down
development of such complex systems is to a large extent unma-
tured [247]. First, the fundamental mechanism of multi-agent
interactions for desirable behavior is still not widely available
[34]. Second, compared to other disciplines (e.g., automation),
the methodologies of design, modelling, evaluation, implementa-
tion, operation, maintenance, and V&V in UnIC are still missing.
The consequence is that the system development might risk in
not knowing the potential adverse effects.
6.2. Behavior driven by general and social intelligence

The question of embodying general intelligence into unmanned
systems for various tasks is still open. It might be beneficial to revi-
sit the question of what accounts as AI and how AI takes a physical
form and coevolves with its body. These perspectives might help to
advance the current definition of unmanned systems and the
understanding of AI itself [153,248–250]. As indicated above,
unmanned systems equipped with AI still lack common sense,
social intelligence, and skills that allow them to transfer capabili-
ties [97,251]; such characteristics are in fact essential features of
well-rounded AI [252].

Social aspects of unmanned systems have been considered
mainly in the interactions between humans and service robots
on a ‘‘build once, apply once” basis. Either these were loosely cou-
pled designs, or social factors were only partially considered.
Besides, although the functionality of autonomous levels has been
investigated, social interactions at higher autonomous levels have
been less explored. In fact, in domains like education and health-
care, having unmanned systems obtain skills to socially engaged
and serve in a context is at the core of the design, since in such
areas, the interactions involve highly personal attributes. A recent
encouraging example is that educational robots have been shown
to achieve similar cognitive and affective outcomes compared to
human tutors or peer learners [218].
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6.3. Safety

UnIC is a safety-critical system that makes real-time online
decisions. However, many AI-based enabling technologies result
in less predictable behaviors. For instance, it is still unclear how
the dynamics of the emergent behavior of unmanned systems
develop; it is also difficult to predict the behavior of learning-
based adaptive systems or to have a clear idea of the conditions
under which such systems work or fail [239]. Besides, human
involvement in the networked unmanned system would bring
the challenge of privacy concerns due to the cyber–physical nature
of UnIC [253,254]. These unsolved issues hinder the application of
these systems in safety-critical sectors.
6.4. Standards, guidelines, and regulations

The robot operating system (ROS) is designed by using practi-
cally common standards and has been shown to accelerate the
autonomy of unmanned systems successfully [255]. It has recently
been updated to the next generation ROS 2, which can support
multiple-robot applications in nearly real time. Standardization is
especially important for UnIC, as UnIC requires interactions across
multiple platforms and many domains. Efforts in standardization
have been observed in IEEE committees, for example, the IEEE
Ontologies for Robotics and Automation Working Group aims to
create standard knowledge representations and reasonings to
allow for knowledge transmission among agents (e.g., autonomous
robots and humans). The group provides a standard ontology for
creating autonomous behavior [256]. There are also standards on
semantic sensing networks [257] and joint communication archi-
tectures for unmanned systems [258]. However, standards, guide-
lines, and regulations that are highly desirable for the four layers of
UnIC are yet to be established.
6.5. Bias, ethical, and moral concerns

The lack of a framework that enables the ethical and moral
design of multiple unmanned autonomous systems hinders the
social acceptance of UnIC. For instance, controversial discussions
arise when unmanned systems decide who should live and die
on their own [259]. Moral principles may not be universal and
may vary across cultures, as suggested by Ref. [259]. Currently,
results are mixed concerning whether social norms can be applied
to cognitive agents [260]. Also, how machine bias can be avoided is
an open question [261–263].
7. Conclusions

Despite the fact that networked unmanned systems have
made remarkable achievements, they are primarily designed for
and applicable to a narrow range of domain-specific missions,
and have neither sufficient human-level intelligence nor adequate
human needs fulfillment. To solve these problems, we propose in
this paper a vision of human-centric networked unmanned sys-
tems: UnIC. UnIC is envisioned to provide superior power in func-
tionality, adaptability, autonomy, efficiency, reliability, safety,
usability, and user experience, which could empower intelligent
transportation systems, fast disaster response, environment
monitoring, smart manufacture, smart agriculture, health care,
and daily assistance. In this paper we emphasize some enabling
technologies and factors that can support this vision and its inte-
gration into society. More collaborative research and engineering
practice from multiple disciplines are needed to promote the
realization of this vision.
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