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The Qi Tai Telescope (QTT), which has a 110 m aperture, is planned to be the largest scale steerable tele-
scope in the world. Ideally, the telescope’s repeated pointing accuracy error should be less than 2.5 arc
seconds (arcsec); thus, the telescope structure must satisfy ultra-high precision requirements. In this pur-
suit, the present research envisages a reverse-design method for the track surface to reduce the difficulty
of the telescope’s design and manufacture. First, the distribution characteristics of the test data for the
track error were verified using the skewness coefficient and kurtosis coefficient methods. According to
the distribution characteristics, the azimuth track error was simulated by a two-scale model. The error
of the long period and short amplitude was characterized as large-scale and described by a trigonometric
function, while the short period and high amplitude error was characterized as small-scale and simulated
by a fractal function. Based on the two-scale model, effect of the error on the pointing accuracy was
deduced. Subsequently, the relationship between the root mean square (RMS) of the track error and
the RMS of the pointing accuracy error of the telescope was deduced. Finally, the allowable RMS value
of the track error was derived from the allowable pointing accuracy errors. To validate the effectiveness
of the new design method, two typical radio telescopes (the Green Bank Telescope (GBT) and the
Large Millimeter Telescope (LMT)) were selected as experimental examples. Through comparison, the
theoretical calculated values of the pointing accuracy of the telescope were consistent with the measured
values, with a maximum error of less than 10%.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The five-hundred-meter aperture spherical radio telescope
(FAST) was completed in 2016 in Guizhou Province, China, and is
the world’s largest and most powerful single-dish radio telescope.
Construction of the 110 m fully steerable Qi Tai Telescope (QTT)
has now been proposed as part of the Xinjiang Astronomical Obser-
vatory in Urumqi, Xinjiang Uygur Autonomous Region, China, and
the QTT will be the largest steerable telescope in the world [1,2].
While FAST is much more sensitive than the QTT at frequencies
below 3 GHz, it has a limited sky coverage; in contrast, the QTT will
operate from 150 MHz to 115 GHz with full sky coverage.

The sky coverage and frequency coverage of the QTT will make
it a very versatile instrument that can observe many molecular line
emissions, observe the Galactic Center, and greatly improve pulsar
gravitational wave measurements. The required pointing accuracy
for the QTT is 2.5 arc seconds (arcsec), which is extremely difficult
to achieve for a telescope structure with a mass of 6000 t, height of
100 m, and reflection surface area of 110 m [3,4]. Taking the distri-
bution of the pointing errors of the Large Millimeter Telescope
(LMT), located on top of the Sierra Negra mountain in the province
of Puebla, Mexico, as an example [5], before the error compensa-
tion, the pointing errors induced by the service environment,
mechanical calibration, and servo control of the LMT are 10.76, 5,
and 7.74 arcsec, respectively [6,7]. However, the traditional design
idea considers multiple error sources equally; therefore, the final
pointing accuracy of the telescope is quite limited [8]. To satisfy
the extremely high pointing accuracy requirements in the design
of the QTT, the key error source should be identified; then, priority
control should be conducted on the key error source.

The structural error of a telescope is the key factor that affects
its pointing accuracy. Sources of error mainly involve deformation
of the bases, reflectors, or tracks [9]. Welded tracks are the rela-
tively smooth rail joint between single rails made by welding,
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which makes the overall rail durable. At the cost of a highly diffi-
cult welding process, welded tracks are suitable for high-
precision and high-load telescopes [10]. However, the processing
and welding process of the guide track introduces a random error,
the random error mainly includes the micro surface error and the
macro track irregularity [8,11,12]. Errors on these two scales can
induce error into the azimuth axis and elevation axis of the tele-
scope, which affects the pointing accuracy [13].

In early research on the influence of track error on telescopes,
the measured track error data was obtained by means of measur-
ing instruments. Unevenness was directly converted into errors
of the azimuth and elevation angles of the telescope by means of
the geometric conversion formula [14]. In addition, Pisanu et al.
[15] considered the influence of the azimuth frame deformation
caused by track error and temperature drift on the pointing accu-
racy. Kong et al. [16] studied track error test data and performed
an experiment to determine the pointing accuracy. The relation
between track error and pointing accuracy was then analyzed
according to the test data. The influence of nonlinear track error
on the pointing performance of the telescope has also been studied
[17]. Previous research has shown that the track error is a key error
source that must be constantly considered in the design, construc-
tion, and operating stages of a telescope. The structural error of the
track is obviously multiscale, which is not considered in the error
modeling. Therefore, an accurate relationship between pointing
error and track error has not yet been established. This shortfall
is the basis of the reverse-design strategy proposed herein.

Advanced iterative calculations with finite-element modeling
(FEM) or a finite difference time domain (FDTD) are often used
for surface performance prediction. However, this traditional
design process is affected by the inherent error of human guidance.
Based on a two-scale error model and the influence mechanism of
this error on the telescope pointing, a reverse-design method for
designing the track surface is proposed in this study, which can
effectively search and optimize the core parameters of the surface
structure to achieve the surface characteristics required by users.
The model is an effective reverse-design technology for large
wheel/rail surfaces, which helps to reduce the amount of calcula-
tion and human resources in the traditional surface design, avoid
complex professional iterative simulation and parametric scanning
research, and serve users who lack mechanical knowledge.

2. Influence of track error on the pointing accuracy of the
telescope

2.1. Analysis and verification of the test data attributes of track error

From the results of a numerical analysis of the test data for cer-
tain large radioastronomy telescopes, such as the LMT and the
Robert C. Byrd Green Bank Telescope (GBT), it can be preliminarily
assumed that the track error data of these large telescopes follow a
Gaussian distribution [18]. In practical engineering applications,
this conclusion should also be verified by test methods, such as
the skewness coefficient method and kurtosis coefficient method
[19,20]. These two methods are described in detail as follows:

Sk ¼
Pn

i¼1 xi � �xð Þ3=n
s3

ð1Þ

Uu ¼
Pn

i¼1ðxi � �xÞ4=n
s4

� 3 ð2Þ

where Sk is the skewness coefficient; Uu is the kurtosis coefficient;
xi is the track error test data, i is the ith track error test data; n is the

number of test points; �x ¼ 1
n

Pn
i¼1xi and s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1 xi � �xð Þ2

q
are the

mean value and standard deviation of the test data, respectively.
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If both the skewness and kurtosis of the uneven test data
approach zero, then it can be confirmed that the dataset follows
a Gaussian distribution on the whole. For a set of test data samples,
if the calculated skewness is positive, the kurtosis presents a bias
toward the smaller-value side, as compared with the condition of
the dataset following a standard Gaussian distribution. In contrast,
if the calculated skewness is negative, the kurtosis presents a bias
toward the larger-value side, as compared with the condition of
the dataset following a standard Gaussian distribution. If the kur-
tosis is calculated to be positive, the distribution is relatively shar-
per than a standard Gaussian distribution. However, if the kurtosis
is calculated to be negative, the distribution is relatively flatter
than a standard Gaussian distribution. If the test data follow a
Gaussian distribution, then the skewness and kurtosis also corre-
spondingly follow a Gaussian distribution, and the mathematical
expectation is equal to zero. The root mean square (RMS) values
of the skewness and kurtosis can be expressed as follows:

rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6ðn� 2Þ
ðnþ 1Þðnþ 3Þ

s
ð3Þ

ru ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24nðn� 2Þðn� 3Þ

ðnþ 1Þ2ðnþ 3Þðnþ 5Þ

s
ð4Þ

where rs and ru denote the RMS values of the skewness and the
kurtosis methods, respectively.

Assuming that the test data of the track error follow a Gaussian
distribution, the confidence coefficient a can be set as 0.05
(a = 0.05). When the skewness coefficient Sk > 1.96rs and the kur-
tosis coefficient Uu > 1.96ru, the assumption is invalid and the test
dataset does not follow a Gaussian distribution. Otherwise, the
assumption holds; that is, the test dataset follows a Gaussian
distribution.

2.2. Two-scale model of track error

The structural error of the track involves two main aspects: ran-
dom error from single-track processing and deformation caused by
gravity during track service. These two types of errors have differ-
ent sources and distribution characteristics [21,22]. The processing
error is random and exhibits a high frequency and low amplitude.
As a result, it was identified as a small-scale error, and was calcu-
lated by means of the periodic function. On the other hand, the
self-weight deformation is systematic, exhibiting a low frequency
and large amplitude; thus, it was characterized as a large-scale
error. Based on the two scale distribution characteristics, the
large-scale portion of the track error was simulated using the
Fourier series [23], and the small-scale track error, as the fitting
residual error, was modeled by means of a fractal function [24].
Finally, a two-scale error model of track unevenness was estab-
lished, as shown in Eq. (5).

FðxÞ ¼ f 1ðxÞ þ
Pg
i¼1

f i2ðAi;Di; Li; xi0; y
i
0Þ

¼ a0 þ
Pq
n¼1

ancosðnx0xÞ þ bnsinðnx0xÞ½ � þPg
i¼1

f i2ðAi;Di; Li; xi0; y
i
0Þ

f i2ðAi;Di; Li; xi0; y
i
0Þ ¼ AðDi�1Þ

i

PQi

j¼n1i

1
cð2�DiÞj cos½2pc

jðxþ xi0Þ� þ yi0

n1i ¼ lgð1=LiÞ=lgðcÞ
Qi ¼ lgðNcn1i=2Þ=lgðcÞ

ð5Þ

where f 1ðxÞ is the Fourier series function; f i2ðAi;Di; Li; xi0; y
i
0Þ is the

Weierstrass–Mandelbrot (W–M) fractal function of the ith segment;
g is segment number; a0 is the constant coefficient; a1, . . ., an, b1, . . .,



Fig. 1. Illustration of the coordinate system of the telescope. B: the azimuth angle of
the reflector.
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bn are different amplitude components; m is the expansion order of
the Fourier series; x0 is the angular frequency of f 1ðxÞ; Ai is the
amplitude height coefficient of W–M fractal function f 2ðxÞ; Li is
the sampling length of f 2ðxÞ; N is the number of sampling points;
Di is the fractal dimension of f 2ðxÞ; c is the frequency of the track
surface harmonics; and yi0 and xi0 denote the longitudinal and lateral
displacements of f 2ðxÞ, respectively.

As shown in Eq. (5), the fitting precision of the track error is
codetermined by f 1ðxÞ and f 2ðxÞ. A higher expansion series (m) cor-
responds to a shorter sampling length (L) and a higher fitting accu-
racy of the function. Therefore, determining the values ofm and L is
the key to establishing the two-scale error model. The optimization
model can be expressed as follows, where T is the transpose
symbol.

FðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

j¼1

ðf i2ðxj; yÞ � yðxjÞÞ
2

" #,
N

vuut ð6Þ

f 2ðxÞ ¼ AðD�1Þ XQ
n¼n1

1
cð2�DÞn cos½2pcnðxþ DxÞ� þ Dy ð7Þ

find y ¼ ðAi;Di; Li; xi0; y
i
0Þ

T

min FðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"PN

j¼1
ðf i2ðxj; yÞ � yðxjÞÞ

2
#.

N

vuut
s:t: 0 < xi0 < xmax

Lmin < Li < Lmax

ymin < yi0 < ymax

Amin < Ai < Amax

Dmin < Di < Dmax

ð8Þ
Fig. 2. Inclined deformations in the azimuth frame caused by track error.
3. Allowable values of track error based on pointing error

3.1. Influence of track error on pointing accuracy error

To study the influence of track error on the overall structure and
pointing accuracy of the telescope, four coordinate systems were
established, as shown in Fig. 1.

(1) Geodetic coordinate system OXYZð Þ. The origin of this sys-
tem is located at the positive center of the azimuth track of the
telescope. The Z-axis is perpendicular to the earth, and the positive
direction of the Y-axis points to the south.

(2) Azimuth coordinate system ðOaXaYaZaÞ. Its origin is located
at the center of the track, while its Z-axis is coincident with the azi-
muth axis and deflects with the rotation of the azimuth axis. When
the telescope has no errors along the azimuth axis and the azimuth
angle is equal to zero, OaXaYaZa is identical to OXYZ.

(3) Elevation coordinate system ðOeXeYeZeÞ. Its origin is
located at the center of the azimuth axis, while its Z-axis is coinci-
dent with the elevation axis and deflects with the rotation of the
elevation axis. When the telescope has no axis error, the elevation
angle is equal to 90�, and the azimuth angle is equal to 0�, there is
only a height difference of h in the Z direction between the coordi-
nate and the geodetic coordinate.

(4) Reflector coordinate system ðOrXrYrZrÞ. If the elevation
angle is equal to 90�, then the height difference between it and
the elevation coordinate system in the Z direction is h1.

As shown in Fig. 2, the black line is the initial position of the azi-
muth frame in the azimuth coordinate system. Points 1, 2, 3, and 4
represent the four rollers, and their height values are Z Bþ p

4

� �
,

Z B� p
4

� �
, Z B� 3p

4

� �
, and Z Bþ 3p

4

� �
, where Z(x) is the orbital descrip-
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tion function and B is the azimuth angle of the reflector. The red
line represents the deformed azimuth frame. Dx1 and Dy1 are the
rotations of the azimuth axis along the X-axis and Y-axis, respec-
tively, which are caused by the height difference between wheels
1 and 3. Similarly, Dx2 and Dy2 are the rotations caused by the
height difference between wheels 2 and 4.

Dx1 ¼
Z Bþ p

4

� �
� Z B� 3p

4

� �
2r

2
664

3
775cos p=4ð Þ

Dx2 ¼
Z Bþ 3p

4

� �
� Z B� p

4

� �
2r

2
664

3
775cos p=4ð Þ

ð9Þ
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4

� �
� Z B� p

4

� �
2r

2
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3
775cos p=4ð Þ
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where r is the radius of the track.
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In addition, the track error causes a deformation of the azimuth
frame; this can cause torsion of the azimuth frame itself, making
the elevation axis rotate around the Z-axis, as shown in Fig. 3.
The elevation axis translation caused by the height difference
between rollers 1 and 2 is d12, and the displacement caused by roll-
ers 3 and 4 is denoted as d34.

d12 ¼ he

�ZðBþ p
4
Þ þ ZðB� p

4
Þ

2rcosðp=4Þ

2
64

3
75

d34 ¼ he

ZðB� 3p
4
Þ � ZðBþ 3p

4
Þ

2rcosðp=4Þ

2
64

3
75

ð11Þ

where he is the length of the elevation axis.
The perturbation matrix of the azimuth coordinate system

caused by wheel–track unevenness is as follows:

Rt ¼
1 /tz �/ty

�/tz 1 /tx

/ty �/tx 1

2
64

3
75

where /tx, /ty, and /tz are the errors of the azimuth frame in the
coordinate system and can be calculated based on the two-scale
model.

The overall inclination of the track can cause inclination of the
azimuth axis and there will be an initial offset of zero when the azi-
muth axis is installed. Considering the track error, the coordinate
transformation can be expressed as follows:

x0r
y0r
z0r

2
64

3
75 ¼ Rr

eR
e
aRtR

a
b

x

y

z

2
64
3
75 ¼

�/tzcosE� /tysinE
/tx

1

2
64

3
75

¼
0
0
1

2
64

3
75þ

�/tzcosE� /tysinE
/tx

0

2
64

3
75

ð12Þ

where Rr
e, R

e
a, and Ra

b are the coordinate conversion matrixes from
pitch axis coordinate system to reflector coordinate system, from
azimuth frame coordinate system to pitch axis coordinate system,
and from geodetic coordinate system to azimuth frame coordinate
system, respectively; E is the elevation angle of the reflector.

The pointing error induced by the track error can be described
as follows:

Dt ¼
x0r
y0r
z0r

2
64

3
75�

xr
yr
zr

2
64

3
75 ¼

�/tzcosE� /tysinE
/tx

0

2
64

3
75 ð13Þ

Subsequently, the pointing error in the reflector coordinate sys-
tem can be converted into the azimuth and elevation error in the
geodetic coordinate system. The error of the azimuth is
g ¼ Dhr=cosE and the elevation angles error is b ¼ D/r. hr and /r

are the direction and pitch angles in the reflector coordinate sys-
Fig. 3. Distortion of the azimuth frame caused by track error.
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tem, so Dhr and D/r are the components of the direction and pitch
angle of the pointing error in the reflector coordinate system.

g
b

	 

¼

�ð/tz þ /ez þ /azÞ � ð/ty þ /eyÞtanE� /aycosBtanE
þ/axsinBtanE� /oysecE

�/tx � /axcosB� /aysinB� /ex � /ox

2
64

3
75
¼ 0 tanE �1 sinBtanE �cosBtanE �1 0 tanE �1 0 �secE
�1 0 0 �cosB �sinB 0 �1 0 0 �1 0
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ð14Þ

where /ax, /ay, and /az are the errors of the azimuth frame coordi-
nate system and are caused by the global inclination of the track
and the installation error of the azimuth axis; /ex, /ey, and /ez are
the errors of the elevation axis coordinate system, which are mainly
caused by deformation of the azimuth frame and the installation
error of the elevation axis; /ox and /oy are the errors of the electric
axis, which are primarily induced by the position deviation of the
auxiliary surface, feed, and main surface.

If only the influence of track error on the pointing accuracy is
considered, then /ax ¼ /ay ¼ /az ¼ 0, /ex ¼ /ey ¼ 0, and
/ez ¼ /ox ¼ /oy ¼ 0. By substituting these into Eq. (14), the point-
ing accuracy can be obtained, as follows:
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ZðB� 3p
4 Þ

ZðBþ 3p
4 Þ
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6664

3
7775

ð15Þ
3.2. Deduction of the allowable value of track error

Currently, the error distribution of the pointing accuracy of a
telescope is a complex engineering problem that requires compre-
hensive considerations involving multiple factors during the
design stage [25]. The distributed pointing errors induced by vari-
ous error sources can be determined by combining multiple tech-
nological means, such as engineering experiences, finite-element
structural analysis, control model simulation, measured data, and
engineering estimation [26]. Since each error source can affect
the pointing accuracy of the telescope, it can be assumed that
the pointing errors caused by these error sources can be denoted
as D1; :::; Di; :::; Dn. Furthermore, since the distributed pointing
errors are scalar and RMS values, the overall pointing error of the
antenna DPE can be expressed as follows [27]:

DPE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

D2
i

vuut ð16Þ

Based on the verification results in Section 2, if the test data of
the track error follow a Gaussian distribution, then the relational
model between track error and pointing accuracy can be further
derived from the perspective of probability statistics. Accordingly,
after the RMS of the track error (r) has been determined, the RMS
values of the pointing errors of the azimuth angle and elevation
angle of the antenna—which are caused by the track error—can
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be calculated. Subsequently, the allowable track error values can
be derived based on the obtained error distribution. A simplifica-
tion of the telescope is shown in Fig. 4.

As shown in Fig. 5, four points are used to support the alidade
and track of the telescope, which are denoted as points 1, 2, 3,
and 4. The bottom structure of the alidade is a square consisting
of these four points. If only the track error is considered, then the
pointing errors can be described as follows:

g
b

	 

¼ k

0 tanE �1
�1 0 0
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where k is the conversion coefficient (k ¼ 180

p � 3600
1000 ¼ 206:2648); h2

is the distance between the elevation axis and the track.
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Then Eq. (17) can be simplified into the following expression:
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¼ k � l1Z1 þ l2Z2 þ l3Z3 þ l4Z4

h1Z1 þ h2Z2 þ h3Z3 þ h4Z4

	 

ð18Þ

Assuming that Z1 and Z2 are two independent random variables,

Z1 obeys the normal distribution N 0; a2
� �

, Z2 obeys N 0; b2
� �

,

W ¼ k1Z1 þ k2Z2, k1Z1 obeys the normal distribution N 0; k21a
2

� �
and k2Z2 obeys N 0; k22b

2
� �

. Let the random variable M ¼ kZ and Z
Fig. 4. Simplification of the telescope.

Fig. 5. Position of the supporting points of the alidade and track of the telescope.
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obeys the normal distribution N 0;r2
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, then z ¼ m=k and
z mð Þ ¼ 1=k. The probability density of M is
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Therefore, M ¼ kZ obeys N 0; k22b
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. Let X ¼ k1Z1 and Y ¼ k2Z2.

Hence, W ¼ X þ Y .

f XðxÞ¼
1ffiffiffiffiffiffi
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1
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f YðyÞ¼
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�y2

2k2
2
r2 ; �1< y<1

ð20Þ

Using the convolution theorem, Eq. (21) can be obtained as
follows:

f WðwÞ ¼
Z þ1

�1
f XðxÞf Yðw� xÞdx

fWðwÞ ¼
Z þ1

�1
f XðyÞf Y ðw� yÞdy

ð21Þ

Eq. (21) can be expressed as follows:

f W wð Þ¼
Z þ/

�/
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Let g1 ¼ 1
2pk1ak2b

, g2 ¼ k22b
2 þ k21a

2

2k21a2k22b
2 , and g3 ¼ w2k21a

2
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Then Eq. (22) becomes

f W wð Þ¼ g1e�g3
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We substitute g1, g2, and g3 into Eq. (19) to obtain the following
equation:

f WðwÞ ¼ 1
2pk1rk2r

� e
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Fig. 6. Distribution histogram of the test data for the track error of the GBT.
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We assume that Z1; Z2; Z3, and Z4 are mutually dependent and
follow a Gaussian distribution Nð0;r2Þ. Moreover, the probability

density function can be written as f Zi Zð Þ ¼ 1ffiffiffiffiffiffiffi
2p

p
r
e
�z2

2r2 . Then, the

probability densities of X ¼ l1Z1 þ l2Z2 þ l3Z3 þ l4Z4 and
Y ¼ h1Z1 þ h2Z2 þ h3Z3 þ h4Z4 can be written as follows:

f X xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p l21 þ l22 þ l23 þ l24
� �r

r
e

�x2

2 l2
1
þl2

2
þl2

3
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f Y yð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p h2
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2 þ h2

3 þ h2
4

� �r
r
e
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4ð Þr2 ð26Þ

Thus, X and Y also follow a Gaussian distribution with the vari-

ances of l21 þ l22 þ l23 þ l24
� �

r2 and h2
1 þ h2

2 þ h2
3 þ h2

4

� �
r2, respec-

tively. According to these derivations, the relationships between
the RMS of the track error data with Gaussian distribution charac-
teristics and the RMS values of the pointing errors of the telescope
can be written as follows:

rA ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2r2

tanEð Þ2 þ 1
r4

� �s
r

rE ¼ kffiffiffi
2

p
r
r

rPE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

A þ r2
E

q
ð27Þ

where rA, rE, and rPE are the RMS of the azimuth angle error, the
elevation angle error, and antenna’s pointing angle error when the
RMS of the track error is equal to r in arcsec, respectively.

We denote the part of the total pointing error of the telescope
that is caused by the track error as h (RMS). Then, the unevenness
requirements for track processing and installation can be reversely
derived using Eq. (28), which is the probability statistical model
between the track error and pointing error. The detailed derivation
process is described as follows:

rPE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

A þ r2
E

q
< h ¼ kr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanEð Þ2 þ 1

2r2
þ 1
r4

s
< h ð28Þ

Therefore,

r <
hr2

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

rtanEð Þ2
þ 2
r2

þ 1

s
ð29Þ
Fig. 7. Comparative study on the track error of the GBT.
4. Experimental verification

4.1. Experimental verification for the GBT

The GBT is a radio telescope at the US National Radio Astronomy
Observatory (NRAO) in Green Bank, West Virginia, USA, with one of
the largest single-dish reflector antennas in the world. At present,
the telescope is operated by the Green Bank Observatory. It is
146 m high and weighs 7700 t. The dish antenna is
100m� 110m in size; after accuracy compensation, the maximum
accuracy is 2 arcsec. TheGBT is a typical offset radio telescopewith a
working frequency range of 0.1–116 GHz. The track of the GBT is
composed of 48 tracks, with a diameter of 64 m and a total length
of 201 m. The RMS of the track error is 0.0568 mm.

The test scheme for the track error is described below [28,29]. A
plate of known thickness and hardness is placed on the track to cal-
ibrate the inclinometer. Subsequently, the alidade was rotated to
measure the track. The specific measurement process is as follows.
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The inclinometer was first installed on the four roller devices at the
bottom of the alidade, and a steel disk was placed under the roller.
When the roller of the alidade passed, the inclinometer would
incline. If the alidade rotated at a constant speed, the relationship
between the inclinometer reading and the track error was acquired
by ratio enlarging or shrinking of the thickness of the steel disc to
the inclinometer reading. Thus, the overall outline of the track was
investigated. Using this verification scheme based on the distribu-
tion characteristics of the data, a distribution histogram of the
track error test data for the GBT was plotted, as shown in Fig. 6.

Analyzed by the correlation coefficient test method, the GBT
scale-free interval range is [0.116, 0.901], the fractal dimension is
solved by the fractal dimension method based on wavelet trans-
form, and the fractal dimension of GBT is DGBT ¼ 1:602, and the
track irregularity function is used for modeling, e1 = 2%, e2 = 25%,
and e3 = 20%, the local description of GBT antenna track irregularity
is shown in Fig. 7.

To measure the pointing accuracy, a list of radio sources was
first determined; then, a cross-scanning observation was made
by the telescope. In the observation process, the pointing accuracy
and radiant power of the telescope in the associated time were
recorded. After the scan observation of the radio point source in
the elevation or azimuth direction, a power-change curve with



Fig. 9. Comparative study on the track error of the LMT.

Table 2
Comparisons between the calculated pointing errors and the measured values of the
LMT. The caliber of the LMT is 39.6 m and the RMS of the track is 0.1679 m.

RMS Pointing error
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the elevation or azimuth direction was obtained. The presence of
the pointing accuracy error resulted in a location deviation of the
power maximum and the radio point source. Therefore, the point-
ing accuracy error of the telescope in the elevation direction was
obtained by scanning the radio point source in the elevation direc-
tion, and the error in the azimuth direction was obtained by scan-
ning in the azimuth direction.

Taking the GBT as an example and based on the test data, a
pointing error model was constructed according to Eq. (17). Then,
the corresponding allowable values of track error were reversely
derived from the RMS values of the pointing errors, in accordance
with Eq. (27). Given the allowable values of track error, the point-
ing errors were calculated again and compared with the measured
value, as listed in Table 1 (E = 45�).

4.2. Experimental verification for the LMT

The LMT, which has an aperture of 50 m and a sub-reflector
diameter of 2.5 m, is located in the state of Puebla, Mexico, and
is the largest millimeter-wave radio telescope in the world
[30,31]. The observation waveband is 0.85–4 mm (75–350 GHz),
the surface accuracy is 0.07 mm, and the pointing accuracy is 1
arcsec. The track, which has a diameter of 39.6 m, consists of 20
tracks and has an overall length of 124.4 m. The RMS of the track
error is 0.1697mm. The test scheme used for the LMT was identical
to that used for the GBT. Using the verification scheme based on
the distribution characteristics of the data, a distribution his-
togram of the test data for the track error of LMT was also plotted
and is presented in Figs. 8 and 9.

Table 2 provides a comparison between the calculated pointing
errors of the LMT and the measured values, which shows that the
maximum error is 6.5%.

4.3. Experimental verification for Miyun telescope

The Miyun 50 m telescope in Beijing has an aperture of 32.5 m
and is composed of 21 tracks, with a total length of 102.1 m and an
Table 1
Comparisons between the calculated pointing errors and the measured values of the
GBT. The caliber of the GBT is 64 m and the RMS of the track is 0.0568 m (E = 45�).

RMS Pointing error

Calculated
value (arcsec)

Measured
value (arcsec)

Relative
error (%)

rA 0.2591 0.2382 8.77
rE 0.2589 0.2407 7.56
rPE 0.3663 0.3386 8.18

Fig. 8. Distribution histogram of the test data for the track error of the LMT.
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error RMS of 0.3136 mm. According to the correlation coefficient
test method, the scale-free interval of the Miyun telescope was
determined to be [0.263, 1.156], and the fractal dimension of the
50 m antenna was calculated to be D = 1.1521 by using the fractal
dimension method based on wavelet transform, and the track
irregularity function is used for modeling, e1 = 2%, e2 = 25%, and
e3 = 20%, the local description of Miyun antenna track irregularity
is shown in Fig. 10.
Calculated
value (arcsec)

Measured
value (arcsec)

Relative
error (%)

rA 1.2399 1.3022 4.78
rE 1.2368 1.3228 6.50
rPE 1.7513 1.8562 5.65

Fig. 10. Comparative study of the track error of the Miyun telescope.
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5. Conclusions

A traditional design scheme cannot sufficiently satisfy the
extremely high accuracy requirements of large ratio telescopes
such as the QTT. To reduce the difficulty of designing and manufac-
turing the QTT, this study developed a reverse-design method for
the track surface. Based on the error characteristics of the track
surface, a two-scale description model was proposed to describe
the track error. Subsequently, the effect of the track error on the
pointing accuracy was established. Finally, using this strategy,
the allowable values of track error were reversely derived from
the pointing errors induced by track error. An experimental verifi-
cation of the design method was performed on the GBT and LMT.
The results of the comparative analysis of the proposed method
and the measured data indicate that the proposed design method
is highly effective and feasible.
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