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The use of artificial intelligence (AI) is escalating rapidly in most
applications nowadays, thanks to breakthroughs in biology and
mathematics. Novel hardware systems are greatly needed to meet
the requirements of AI, which include computing capacity and
energy efficiency. One of the major aims of AI is to mimic the func-
tions of the human brain, which are enabled by the massive inter-
connection of neurons. For example, the visual cortex is the region
of the brain that processes visual information. The human vision
system, which includes the visual cortex, is highly compact and
energy efficient. The retina contains hundreds of millions of
light-sensitive neurons interconnected by preprocessing and con-
trol neurons to enhance image quality, extract features, and recog-
nize objects. Once light-sensitive neurons have detected trivial
signals, they are disabled thereafter, and only the critical informa-
tion is transferred to the cortex for deep processing.

The artificial imaging hardware systems that are commonly used
at present, however, do not function like the human visual system.
Sensors such as charge-coupled device (CCD) arrays and comple-
mentary metal oxide semiconductor (CMOS) arrays are intercon-
nected serially with memory and processing units, through bus
lines (i.e, Von Neumann architecture). Although current imaging
hardware systems have an advantage over human brains in sensing
unit density, response time, and sensitive wavelength range, their
power consumption and processing latency are becoming problem-
atic when a complex AImission is being conducted. Inmost imaging
processing applications, more than 90% of the data generated by
sensors is redundant and useless [1]. As the number of pixels
increases rapidly, the volume of unnecessary data multiplies,
imposing a severe burden on analog-to-digital conversion (ADC)
and data movement, and limiting the development of real-time
image processing technology [2]. As a result, AI rapidly uses up
hardware resources. Thus, there is strong demand for a break-
through in hardware systems, which will surely emerge shortly.

Inspired by the human vision system, researchers have
attempted to shift some processing tasks to sensors, thereby allow-
ing in situ computing and reducing data movement. For example,
Mead and Mahowald [3] at the California Institute of Technology
proposed the AI vision chip in the 1990s. They envisioned a semi-
conductor chip that could capture images, directly carry out the
parallel processing of visual information, and eventually output
the processing results. Early vision chips aimed to imitate the
retina’s preprocessing function but could only achieve low-level
processing, such as image filtering and edge detection [2]. Gradu-
ally, low-level processing was found to be insufficient, and high-
level processing, including recognition and classification, became
the goal for AI vision chips. Moreover, researchers proposed the
development of programmable vision chips around 2006, with
the goal of flexibly dealing with various processing scenes through
software control [4]. In 2021, Liao et al. [5] summarized the princi-
ple of the biological retina and discussed developments in neuro-
morphic vision sensors in emerging devices. Wan et al. [6]
provided an overview of the technology of electronic, optical, and
hybrid optoelectronic computing for neuromorphic sensory
computing.

There are currently two significant types of vision chip architec-
ture [2,4,7].

(1) Architectures with computing inside sensing units. In this
type of architecture, the photodetector is placed directly into the
analog memory and computing unit to form a processing element
(PE) [4,8,9]. The PEs are then developed to possess in situ sensing
and to deal with the analog signals obtained by the sensors. This
type of architecture, which is illustrated in Fig. 1(a) [10], has the
advantage of highly parallel processing speed. However, the analog
memory and computing unit takes up a large volume, which makes
the PEs much larger than the sensor; this results in a low pixel fill
factor and limits the image resolution.

(2) Architectures with computing near the sensing units.
Most vision chips cannot incorporate in situ sensing and computing
architecture due to the low fill factor issue. Instead, the pixel array
and processing circuits are separated physically while still being
connected in parallel on a chip [4,7], which makes independent
design possible according to the system’s requirements. This type
of architecture is illustrated in Fig. 1(b) [10]. The sensing data (ana-
log) is first extracted from the sensor array through the bus line
and converted into a digital signal, which is then dealt with in
the nearby processing unit. This architecture has the specific
capabilities of wide-area image processing, high resolution, and
large-scale parallel processing. In addition, AI algorithms, including
artificial neural networks, can be conducted in this architecture in
the digital process circuits.
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Fig. 1. Vision chip architecture. (a) Computing inside the sensing unit; (b) computing near the sensing unit. CDS: correlation double sampling. Reproduced from Ref. [10] with
permission of IEEE, �2014.
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The current vision chip only has a neuron scale of 102–103,
which is much smaller than those of the retina and cortex (1010).
Therefore, larger scale integration technology is needed to achieve
a greater neuron scale for in-sensor computing. One such method
is implemented by convolutional neural networks (CNNs) and
spiking neuron networks (SNNs) to significantly improve the pro-
cessing efficiency. The other method is to adopt three-dimensional
(3D) integration technology to vertically integrate the functional
layers (sensor, memory, computing, communication, etc.) in space
using through-silicon vias (TSVs) [11]. In 2017, Sony proposed a 3D
integrated vision chip with a pixel resolution of 1296 � 976 and a
processing speed reaching 1000 frames per second (fps) [12]. Some
researchers believe that the 3D integrated chip has become an
inevitable trend. However, further development of 3D integration
technology is still necessary in areas such as architecture design
and interconnections. It has been demonstrated that, although
short interconnects could lower power consumption and latency,
they could introduce thermal problems due to the short distance
between layers [13,14]. Thus, it is crucial for the reliability issues
of 3D integration to be solved and for the performance to be
improved.

Driven by the need for AI development, technologies involving
novel material systems and advanced devices have recently been
emerging.

(1) Detect-and-memorize (DAM) materials. Photonic synaptic
devices [15–20] have been proposed as a means of constructing in-
sensor computing systems and are expected to facilitate the evolu-
tion of retina-mimicking technologies. It has been found that some
metal oxides (oxide semiconductors, binary oxides, etc.), oxide
heterojunctions, and two-dimensional (2D) materials [15] hold
great potential as DAM materials for the realization of photonic
synaptic devices. Photonic synapses possess temporary memory
and synaptic plasticities, such as short-term plasticity (STP) and
long-term plasticity (LTP), which can be modulated by light signals
to implement real-time image processing. These devices have the
advantages of ultrahigh propagation speed and high bandwidth;
they also provide a noncontact writing method. However, some
issues remain to be addressed, including nonlinear writing and
high energy consumption due to the relatively large illumination
intensity. Potentiation is achieved under optical stimuli during
the writing process, while electric stimuli are utilized for habitua-
tion [21]. To be specific, the conductance of devices increases grad-
ually upon a series of photonic pulses due to the photogenerated
electrons and holes, and decreases gradually under negative elec-
tric pulses, which is similar to the potentiation and depression in
a biological synapse. Hence, it is expected to obtain a negative pho-
20
toresponse and achieve habituation under optical stimulation
[15,22]. Most studies focus on mimicking synaptic behaviors (exci-
tatory postsynaptic current (EPSC), paired-pulse facilitation (PPF),
STP, LTP, etc.) in devices, as imitating the retinal neurons in the
human eye remains a major challenge. In order to imitate the
retina, the scaling-up of photonic synaptic devices requires further
study. Among DAM materials, devices based on binary oxides (e.g.,
ZnO, HfO2, AlOx, etc.) have the advantages of a simple device struc-
ture and CMOS compatibility, which are the decisive factors for
scaling-up. In contrast, materials that are incompatible with an
integrated circuit (IC) infrastructure can be used by adopting tech-
nologies such as heterogeneous integration [23], heteroepitaxy
[24], bonding [25], and 3D heterogeneous integration [14].

(2) Device structures that combine sensor and memory.
Researchers have proposed that PEs be replaced by advanced
devices, such as storage elements (i.e., resistive random-access
memory (RRAM) and other memristors) [26–28]. For example,
combining these device-intrinsic features in a serial connection
of both elements [26] makes the sensor array programmable and
converts the light image into information that can be easily recog-
nized. This structure significantly reduces the footprint of a single
pixel down to the theoretical limit of 4F2 (F is the feature size of the
process), allowing integration with a high fill factor. Unlike CCD,
however, this array does not show a destructive read-out and does
not exhibit any integrating behavior. In this array, multiply-and-
accumulation (MAC) operations can be directly implemented
through Kirchhoff’s law in the analog domain [2,29]; however,
crosstalk caused by large-scale integration is an urgent problem
that remains to be solved. Researchers have also proposed a system
comprised of single-photon avalanche diodes (SPADs) and memris-
tors [30,31] to process information in the form of spike events,
which would allow real-time imaging recognition.

New architectures or even algorithms must be introduced to
accommodate the emerging materials and device technologies.
For example, applying deep learning algorithms (deep neural net-
works (DNNs), CNNs, SNNs, etc.) to in-sensor computing is an
urgent issue. SNNs provide a promising solution to enhance effi-
ciency by encoding and processing time-encoded neural signals
in parallel [2].

This paper presented a summary of two different kinds of archi-
tecture (i.e., with computing inside or near the sensing units) uti-
lized in in-sensor computing and then discussed future
development directions (including architecture matching with
algorithms, 3D integration technology, novel material systems,
and advanced devices). In sum, the ultimate goal for in-sensor
computing is to achieve efficient AI hardware that has low power
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consumption, high speed, high resolution, high accuracy
recognition, and large-scale integration, while being pro-
grammable. To commercialize in-sensor computing technology,
further research is needed in physics, materials, computer science,
electronics, and biology.
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