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a b s t r a c t

We present a framework that couples a high-fidelity compositional reservoir simulator with Bayesian
optimization (BO) for injection well scheduling optimization in geological carbon sequestration. This
work represents one of the first at tempts to apply BO and high-fidelity physics models to geological
carbon storage. The implicit parallel accurate reservoir simulator (IPARS) is utilized to accurately
capture the underlying physical processes during CO2 sequestration. IPARS provides a framework
for several flow and mechanics models and thus supports both stand-alone and coupled simulations.
In this work, we use the compositional flow module to simulate the geological carbon storage process.
The compositional flow model, which includes a hysteretic three-phase relative permeability model,
accounts for three major CO2 trapping mechanisms: structural trapping, residual gas trapping, and sol-
ubility trapping. Furthermore, IPARS is coupled to the International Business Machines (IBM)
Corporation Bayesian Optimization Accelerator (BOA) for parallel optimizations of CO2 injection
strategies during field-scale CO2 sequestration. BO builds a probabilistic surrogate for the objective
function using a Bayesian machine learning algorithm—the Gaussian process regression, and then uses
an acquisition function that leverages the uncertainty in the surrogate to decide where to sample. The
IBM BOA addresses the three weaknesses of standard BO that limits its scalability in that IBM BOA
supports parallel (batch) executions, scales better for high-dimensional problems, and is more robust
to initializations. We demonstrate these merits by applying the algorithm in the optimization of the
CO2 injection schedule in the Cranfield site in Mississippi, USA, using field data. The optimized injec-
tion schedule achieves 16% more gas storage volume and 56% less water/surfactant usage compared
with the baseline. The performance of BO is compared with that of a genetic algorithm (GA) and a
covariance matrix adaptation (CMA)-evolution strategy (ES). The results demonstrate the superior
performance of BO, in that it achieves a competitive objective function value with over 60% fewer
forward model evaluations.

� 2022 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
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1. Introduction

Under the framework of the Paris Agreement, achieving carbon
neutrality by the middle of the century is the fundamental solution
to cope with the climate crisis. Along with electrification, hydro-
gen, and sustainable bioenergy, carbon capture, utilization, and
storage (CCUS) is key in achieving a net-zero energy system. CCUS
is the only group of technology that contributes both to removing
hard-to-abate CO2 emissions and directly reducing emissions in
the key sectors [1]. In geological sequestration, CO2 is captured
from a power plant or industrial facility and compressed; it is then

transported to and injected as a supercritical fluid into depleted oil
and gas reservoirs and deep saline aquifers for long-term storage.
The basis for CCUS’s potential is the huge global storage capacity
that exists in geological formations and the availability and proxi-
mity of potential injection sites to power generation plants. How-
ever, such injections present significant technical challenges in
regard to ensuring the safety of injection operations and minimiz-
ing the probability of leakage through geological faults and natu-
rally connected cracks on a time scale of hundreds or even
thousands of years, with controllable costs. In addressing these
challenges, accurate prediction of the behavior of injected CO2 is
important to the long-term success of carbon sequestration,
because even small leakage rates over long time periods can
unravel the positive outcomes of net sequestered CO2 [2–5].
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Furthermore, reservoirs’ geomechanical responses associated with
the impact of high rates of injection of CO2 on natural fractures are
crucial in determining earthquake effects [6,7]. Here, accurate pre-
diction of the fate of injected CO2 and the related responses of geo-
logical formations must encompass physical models governed by
multiphase flow, multicomponent transport, rock mechanics, ther-
modynamic phase behavior, chemical reactions within both fluid
and rock, and the coupling of all these phenomena over multiple
temporal and spatial scales. This effort requires high accuracy in
the physical models used and in their corresponding numerical
approximations. Aside from geological carbon storage, CO2

enhanced oil recovery (EOR), in which oil recovery is improved
by injecting CO2 into oil reservoirs, is another key method in CCUS.
Recent work [8] has demonstrated that the amount of sequestrated
CO2 in storage-driven CO2 EOR can exceed the amount of emissions
from burning the produced oil, resulting in net-zero or even nega-
tive CO2 emissions.

In this work, we use the implicit parallel accurate reservoir
simulator (IPARS) developed at the Center for Subsurface
Modeling at the University of Texas at Austin to simulate the
geological carbon sequestration processes. IPARS provides a
framework that supports both stand-alone and coupled simula-
tions of several physical models. The models include single and
two-phase flow, a black oil model, an equation-of-state (EOS)
compositional flow model, a thermal and geomechanics model,
and so forth [9–13]. IPARS has been used extensively for
field-scale benchmark and experimental studies related to CO2

storage in geological formulations [13–16]. More specifically,
the EOS compositional flow model is adopted to simulate the
CO2 storage process in a deep saline aquifer. Both CO2 and
brine are modeled as hydrocarbon components in the composi-
tional model to account for the effect of CO2 dissolution into
brine. The Peng–Robinson EOS [17] is used for CO2-brine phase
behavior and property calculations. A flash calculation follows
to determine the mole fractions of CO2 and water in two equi-
librium phases. In particular, this module is enhanced to model
CO2-brine phase behavior for CO2 geological sequestration appli-
cations [18,19]. The compositional flow module contains
advanced petrophysical models, including a novel three-phase,
hysteretic relative permeability model and an implicit texture
foam model for the accurate characterization of cyclic injection
processes and foam-assisted recovery processes [5,20,21]. These
models account for the residual gas-trapping effect during geo-
logical carbon storage processes. IPARS has also been used for
coupled flow and mechanics simulations to study poro-elastic
and poro-plastic effects during geological carbon storage
[5,22]. The flow modules in IPARS are formulated on general
hexahedral grids using the mass-conservative multipoint flux
mixed finite-element (MFMFE) method [10]. Moreover, IPARS
supports multiple preconditioners and nonlinear solvers, such
as Bi-conjugate gradient stabilized (BCGS) method, algebraic
multigrid (AMG), and generalized minimal residual (GMRES)
method. The simulator can handle millions of grid blocks with
a message passing interface (MPI) library for parallel distributed
memory computations in a high-performance computing envi-
ronment [11].

Design and control problems in reservoir well management
are challenging, as the forward problem involves coupled multi-
physics simulations, which are highly nonlinear, multiscale, com-
putationally expensive, and under geological uncertainties. From
an optimization point of view, derivative-free optimizations are
popular. These methods include particle swarm, simulated
annealing (SA), genetic algorithms (GAs), and evolution strategy
(ES), to name a few [23–25]. These global optimization methods
enjoy the flexibility of using existing reservoir simulation
software; hence, they have been extensively utilized for case

studies. Another group of methods utilize stochastic approxima-
tions of the gradients, such as simultaneous perturbation
stochastic approximation (SPSA) [26] and the stochastic simplex
approximate gradient (StoSAG) [27], to name a few. Adjoint
methods have also been applied to reservoir well optimizations
[28,29]. Nevertheless, large-scale applications are still computa-
tionally demanding.

Recently, machine learning, reduced-order modeling, and other
types of surrogate models have also been extensively integrated
into subsurface simulations for speedups [30–32]. Bayesian opti-
mization (BO) has emerged as a powerful solution for control
and optimization problems when the objective functions are
expensive to evaluate or potentially intractable. BO has been
shown to be successful in machine learning for hyperparameter
tuning [33], as well as in several scientific domains such as mate-
rial design, robotics, and environmental monitoring [34–36], espe-
cially for low-dimensional problems [37]. Compared with other
derivative-free methods, BO leverages a machine learning tech-
nique, Gaussian process regression, which permits analytical
tractability when performing Bayesian inference. The combination
of an acquisition function to statistical inference allows an
exploration–exploitation trade-off in searching the surrogate solu-
tion space. BO has been used for uncertainty quantification for a
benchmark reservoir model [38]. In this work, we adopt the BO
framework to optimize the injection well scheduling in geological
carbon sequestration with data from the Cranfield reservoir in Mis-
sissippi, USA.

This paper is organized as follows: Section 2 introduces the
mathematical modeling of carbon sequestration processes, Sec-
tion 3 introduces BO and its coupling with the reservoir simulation,
the experiments and results are discussed in Section 4, and Sec-
tion 5 presents the conclusions.

2. Mathematical modeling of the carbon sequestration process

2.1. Compositional flow model

In this work, we adopt the parallel, EOS, and compositional flow
module in IPARS to model the process of geological carbon storage
in a depleted reservoir or a deep saline aquifer. We assume that
isothermal flow, water, and Nc hydrocarbon components form a
three-phase flow system—namely, an aqueous phase, a non-
aqueous liquid phase, and a gaseous phase. Let / denote the cur-
rent fluid fraction (i.e., porosity), Sa the saturation of phase a, qa
the mass density of phase a, qia the injection/production rate of
component i in phase a, nia the mole fraction of component i in
phase a, ua the volumetric velocity of phase a, and Dia the diffu-
sion–dispersion tensor of component i in phase a. The mass con-
servation equation of component i for a multiphase flow system
is then given as follows:

o
ot

X

a
/Saqania

 !
þr �

X

a
qaniaua � /SaDia � r qaniað Þð Þ

¼
X

a
qia; i ¼ 1; :::; Nc; a ¼ o; w; gð Þ

ð1Þ

where t is the time variable; o is oil phase; w is water phase; g is gas
phase.

Let j denote the absolute permeability tensor of the porous
rock matrix, kra the relative permeability, la the viscosity, and pa
the reference phase pressure; g is the magnitude of the gravita-
tional acceleration and z is the depth. The volumetric velocity of
phase a, ua, is described by Darcy’s law:

ua ¼ � kra
la

j rpa � qagrzð Þ; a ¼ o; w; gð Þ ð2Þ
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The capillary pressure equations, auxiliary equations, and initial
and boundary conditions are supplemented to close the system
[39,40]. The primary variables chosen to solve the system are a
reference phase pressure pa and the Nc component concentrations
S1; S2; :::; SNc . A slightly compressible and a cubic Peng–Robinson
EOS [17] are used for the water and hydrocarbon phases, respec-
tively. The phase equilibrium is calculated using the Rachford–Rice
equation and the isofugacity criteria.

2.2. Hysteretic relative permeability and foam models

One of the lessons learned from gas injection in oil reservoirs is
that the gas volumetric swept efficiency is inherently low due to
gravity override caused by low gas viscosity, density, and forma-
tion heterogeneity. Therefore, methods to improve the volumetric
sweep efficiency are valuable. Gas mobility can be reduced by the
alternative injection of gas and water (WAG). During the injection
of a water slug, gas is trapped by capillary forces in high gas satu-
ration regions, so that gas flow is diverted into regions with lower
gas saturation in the subsequent gas slug [41]. However, WAG
effectiveness is limited, and WAG is not very efficient in highly
heterogeneous or thick reservoirs. Hence, surfactant-alternating-
gas (SAG) can be introduced as a second remedy to reduce gas
mobility. The in situ generated foam increases the gas apparent vis-
cosity and blocks high permeability streaks, thereby diverting the
flow from high permeability to low permeability and unswept
regions [42].

The UTHYST model [20] offers a simple approach to calculate
the cycle-dependent irreversible hysteresis behavior of the relative
permeability for any phase. It models the monotonically increasing
trapped saturation including caplillary-desaturation effect at high
trapping numbers, also uses a dynamic Land coefficient in three-
phase porous media flow. More details on the model and valida-
tions can be found in Ref. [20].

An improved foam model based on the implicit texture foam
model in Computer Modelling Group (CMG) STARS has recently
been developed and implemented in IPARS [21]. The model pro-
posed a new foam generation function that captures ① the tran-
sition of coarse foam to strong foam, ② the foam shear-thinning
rheology, and ③ the foam generation hysteresis observed
through experiments. The model has been calibrated and vali-
dated with experimental data. More details can be found in
Ref. [21].

3. Bayesian optimization

Consider a general optimization problem:

maxx2Af xð Þ ð3Þ
where x 2 Rd represents the d-dimensional control variables, A is
the feasible set. BO utilizes a Gaussian process to represent the
objective function f xð Þ. A Gaussian process is a distribution over
functions, defined by its mean function m0 xð Þ and covariance func-
tion k x1; x2ð Þ:

f xð Þ � GP m0 xð Þ; k x1; x2ð Þð Þ: ð4Þ

It posts a prior belief over the possible objective function and,
during training, iteratively refines the model by updating the Baye-
sian posterior conditioned on observed data. The covariance func-
tion k x1; x2ð Þ can take many forms; here, we use the Matérn kernel
[43,44]:

k x1; x2ð Þ ¼ 21�m

C mð Þ 2
ffiffiffi
m
p� �m

Hm 2
ffiffiffi
m
p kx1 � x2k

� � ð5Þ

where C �ð Þ and Hm �ð Þ are the Gamma function and the Bessel func-
tion of order m, respectively.

With the Gaussian process representing the belief about the
objective function f , an acquisition function, denoted by
a : X ! Rþ, is used to select what point in X will be evaluated next
via a proxy optimization:

xnþ1 ¼ argmaxxa x;Dnð Þ ð6Þ
where Dn ¼ xi; yið Þf gni¼1 denotes the set of observations at the nth
iteration with yi :¼ f xið Þ.

Expected improvement (EI) is one of the widely used acquisi-
tion functions [45,46]:

aEI x;Dnð Þ :¼ mn xð Þ � f xbestð Þ � eð ÞU mn xð Þ � f xbestð Þ � e
rn xð Þ

� �

þ rn xð Þ/ mn xð Þ � f xbestð Þ � e
rn xð Þ

� � ð7Þ

where xbest is the best candidate among x1; x2; :::; xn; rn xð Þ is the
posterior standard deviation of the Gaussian process at n iterations;
/ �ð Þ is the probability density function of the standard normal dis-
tribution; U �ð Þ is the cumulative distribution function of the stan-
dard normal distribution. EI encourages both exploration and
exploitation—intuitively, it takes higher values when the surrogate
mean is high (exploitation) and the surrogate variance is high (ex-
ploration). The hyperparameter e > 0 allows more flexibility in
the exploration–exploitation trade-off [46].

Contextual improvement (CI) is proposed in Ref. [47] as a sim-
ple yet effective heuristic that replaces the hyperparameter e in EI

with cv :¼ rn
�

xð Þ
f xbestð Þ:

aCI x;Dnð Þ ¼ mn xð Þ � f xbestð Þ � cvð ÞU mn xð Þ � f xbestð Þ � cv
rn xð Þ

� �

þ rn xð Þ/ mn xð Þ � f xbestð Þ � cv
rn xð Þ

� � ð8Þ

It is shown in Ref. [47] that CI is much more robust to poor
priors.

In summary, the pseudo-code of the BO is given in Algorithm 1
[48].

Algorithm 1. BO template [48].

1: Initialize the probabilistic surrogate with n0 points,
D0 ¼ x1; y1ð Þ; x2; y2ð Þ; :::; xn0 ; yn0

� �� �
;

2: for n ¼ 0 to N do
3: Select new query point xnþ1 by optimizing acquisition

function a, xnþ1 ¼ argmaxxa x;Dnð Þ;
4: Evaluate ynþ1 ¼ f xnþ1ð Þ;
5: Augment data Dnþ1 ¼ Dn [ xnþ1; ynþ1

� �� �
;

6: Update the probabilistic mode.

3.1. Parallel and distributed BO

In this work, we adopt a batch implementation of BO based on
parallel Thompson sampling (TS) [49]. The acquisition function of
TS can be formulated as follows [50]:

aTS x;Dnð Þ :¼ f nð Þ xð Þ ð9Þ
where f is parametrized by h and f nð Þ � GP hjDnð Þ.

This algorithm is described as Algorithm 2 [49], below. It can be
implemented in a fully parallel and distributed manner; therefore,
it can take full advantage of multiple processors on a supercom-
puter [49].
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Algorithm 2. Parallel and distributed BO with TS [49].

1: Initialize the probabilistic surrogate with n0 points,
D0 ¼ x1; y1ð Þ; x2; y2ð Þ; :::; xn0 ; yn0

� �� �
. Batch size B.

2: for n ¼ 0 to N do
3: Compute current posterior p hjDnð Þ:
4: for b ¼ 1 to B do
5: Sample a random realization of the objective function

from its posterior by sampling h from p hjDnð Þ
6: Select new query point xnþ1;b  argmaxxRDn f h xð Þ
7: Evaluate ynþ1;b ¼ f xnþ1; bð Þ
8: Augment data Dnþ1 ¼ Dn [ xnþ1; ynþ1

� �� �B
b¼1

3.2. Coupling with the reservoir simulator

The International Business Machines (IBM) Corporation
Bayesian Optimization Accelerator (BOA) is hosted on the IBM ser-
ver. It is coupled to the reservoir simulator IPARS, which runs on an
in-house cluster, via an interface function. Fig. 1 illustrates the
schematic of the BOA-IPARS coupling. For each batch, the reservoir
simulations are run on a local computer cluster in parallel, concur-
rently; when the simulations finish, results are post-processed to
calculate the objective function values. The objective function val-
ues are then passed to the IBM cloud for the BOA computations;
next, new evaluation points suggested by BOA are returned to
the cluster, and simulations are initiated for the next batch.

4. Numerical experiments

4.1. The Cranfield reservoir model

The Cranfield site, which is located in Mississippi, USA, is a
depleted reservoir with a salt-cored dome geological structure.
The Bureau of Economic Geology (BEG) research team at the
University of Texas initiated a field-scale CO2 sequestration pilot
project at the depleted Cranfield site in December 2009 [15]. By
2015, around 0.5 million metric tons of CO2 had been injected into

the Cranfield field. The reservoir model contains an 80 ft � 7200
ft � 7200 ft (1 ft = 0.3048 m) domain at a depth of 9901 ft, which
is discretized into a distorted hexahedral mesh of
20 � 144 � 144 elements with block dimensions of 4 ft � 50
ft � 50 ft. Five injection wells are simulated. Since the flow model
entails no-flow boundary conditions, eight pseudo-production
wells are assigned to the boundaries of the reservoir to mimic
open-boundary conditions (Fig. 2). The pseudo-production wells
are constrained at a constant bottom-hole pressure equal to the
initial reservoir pressure, which is 4650 psi (1 psi = 6.894757
kPa); the initial reservoir temperature is 125 �C. The reservoir is
assumed to be initially saturated with brine. Both CO2 and brine
are modeled as hydrocarbon components in the compositional
model to account for the effect of CO2 dissolution into the brine.
The Peng–Robinson EOS [17] is used for the CO2-brine phase
behavior and the property calculations. A flash calculation follows
to determine the mole fractions of CO2 and water in the two equi-
librium phases.

Table 1 [15] provides a summary of the pressure, volume, and
temperature (PVT) data. The binary interaction coefficients and
volume shift parameters used in the EOS are modified according
to published correlations that were fitted on experimental data
for the solubility of CO2 in brine and the density of brine
[18,19,51]. The history-matched full-tensor permeability, porosity,
relative permeability, and capillary pressure curves are used [15]
(Figs. 3–5). The Cranfield reservoir data has been used for many
numerical simulation studies on geological carbon storage
[5,13,15,22].

4.2. Baseline simulations

The effect of gas mobility control techniques, including WAG
and SAG [25], is demonstrated by simulating the four injection
schemes summarized in Table 2: continuous CO2 injection, WAG
without relative permeability hysteresis modeling, WAG with
relative permeability hysteresis modeling, and SAG with relative
permeability hysteresis modeling. In the four simulation studies,
the gas injections are rate-controlled, such that the total amount
of CO2 injected in the four cases is equal. The design allows an
unbiased comparison of CO2 storage volume for each injection

Fig. 1. Schematic of the BOA-IPARS coupling.
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and simulation strategy. The simulation results for the CO2 distri-
bution at the end of the injections—both views from the top and
the bottom—are presented in Fig. 6 for each of the four cases. As
expected, during the continuous CO2 injection (Fig. 6(a)), the gas
plume migrates upwards due to low gas density and viscosity until
it reaches the sealing caprock; it then migrates horizontally, result-
ing in poor sweep efficiency at the bottom part of the reservoir.
This scenario is unfavorable from a sequestration standpoint: After
16 years of injection, most of the injected gas is produced through
the boundary wells. The significant effect of relative permeability
hysteresis modeling is illustrated by comparing the performances
of case (Fig. 6(b)) and case (Fig. 6(c)). Both cases simulate a 20-
year WAG process; case (Fig. 6(c)) enables relative permeability
hysteresis modeling, while case (Fig. 6(b)) does not. The prediction
in case (Fig. 6(c)) shows a broader CO2 swept area at the bottom of
the reservoir in comparison with case (Fig. 6(b)). The relative per-
meability hysteresis accounts for the capillary trapping of the gas
phase, leading to the prediction of more CO2 storage volume. As
summarized in Table 3, without including the relative permeability
effect, the WAG process results in 9% less cumulative CO2 storage
volume compared with continuous CO2 injection; when the rela-
tive permeability effect is considered, the WAG process can result
in a 55% increase in the cumulative CO2 storage volume.

The prominent effect of SAG in gas mobility control is shown in
Fig. 6(d). As the liquid/gas mobility ratio is reduced by the in situ
generation of foam, the gas phase can invade the low-
permeability area and overcome gravity segregation. The vertical
gas sweep efficiency is significantly improved in comparison with
both the continuous CO2 injection and WAG. The amount of CO2

storage volume in each of the injection cases is summarized in

Fig. 2. Distribution of the wells in the reservoir model, the five injectors are
modeled from real injection wells in the field, the pseudo boundary wells mimic the
open flow boundary conditions on three boundaries of the reservoir model.

Table 1
EOS data for CO2 sequestration in Cranfield [15].

Component Critical
temperature
(K)

Critical
pressure
(psia)

Compressibility
factor

Acentric
factor

Molecular
weight
(mol�1)

Volume
shift
parameter

Binary
interaction
coefficient

Density
(kg�m�3)

Viscosity
(�10�3 Pa�s)

CO2 mole
fraction in
brine

CO2 304.13 1070.4 0.255 0.224 44.01 �0.2000 0.09 576.22 0.044 0.013
Brine 647.09 3540.9 0.200 0.224 18.01 0.2960 0.09 1033.29 0.440 —

Fig. 3. Reservoir initial porosity.

Fig. 4. Reservoir vertical permeability in logarithmic scale (logpermx). md:
millidarcy.

Fig. 5. Relative permeability and capillary pressure curves. krg: gas phase relative
permeability; krw: water phase relative permeability; Pc: capillary pressure.
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Table 2
Summary of CO2 injection schemes.

Description Injection scheme

Gas (year) Water (year) Gas (year) Water (year) Gas (year) Water (year) Gas (year) Water (year) Gas (year)

CO2 injection 16 — — — — — — — —
WAG without hysteresis 4 1 3 1 3 1 3 1 3
WAG with hysteresis 4 1 3 1 3 1 3 1 3
SAG with hysteresis 4 1 3 1 3 1 3 1 3

Fig. 6. Simulation results of CO2 distribution as gas saturation (Sgas) at the end of injection for each of the injection cases. (a) Continuous CO2 injection; (b) WAG without
relative permeability hysteresis; (c) WAG with relative permeability hysteresis; (d) SAG with relative permeability hysteresis.
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Table 3, showing that SAG significantly improves the CO2 storage
volume by 77% compared with continuous CO2 injection. The
SAG simulation with the injection schedule in Table 2 is set as
the baseline for the injection cycle optimization in the next
subsection.

4.2. BO for gas/surfactant injection scheduling

The objective is to optimize the gas/surfactant injection cycles
in order to maximize the cumulative carbon storage volume in
the reservoir model described above within a specific injection per-
iod. Let T denote the total injection time, rinj;i the CO2 injection rate
of the injection well i, Ninj the total number of the injection wells,
rprod;i the CO2 production rate of the production well i, and Nprod the
total number of production wells. The optimization problem is
then formulated as follows:

argmax
C1;C2; :::;CN

S1; S2; :::; SN

XK

k¼0

XNinj

i¼1

Z Ckþ1

Sk

rinj;idt �
XNprod

i¼1

Z T

0
rprod;idt

ð10Þ

s:t:0 � C1 � S1 � C2 � S2 � ::: � CN � SN � T

where the control variables C1; C2; :::; CNþ1 are the injection stop
times for each of the CO2 injection cycles (with CNþ1 ¼ T) (K is the
number of cycles), and S0; S1; S2; :::; SN are the injection terminat-
ing times for each of the surfactant injection cycles (with S0 ¼ 0).
A maximum of four injection cycles Ninj ¼ 4

�
) and a total injection

time of 20 years T ¼ 20ð Þ are predetermined.
In the BO experiments, we used the Matérn 52 covariance ker-

nel for the Gaussian process and the CI acquisition function. A
number of 15 function evaluations were assigned to initialize the
Gaussian process. Aside from the initialization, the computing bud-
get was set to a maximum number of 200 function evaluations. For
the batch BO, we used a batch size of five. We also experimented
with GAs and the covariance matrix adaptation (CMA)-evolution
strategy (ES) [25] on the same optimization problem; for the
implementation of these algorithms, we used the open-source ES
package Distributed Evolutionary Algorithms in Python (DEAP)
[52].

The results from the best experiment of BO are summarized in
Table 4. It is noticeable that the baseline SAG scheme is targeted at
five injection cycles, starting with a gas injection cycle. The opti-
mized SAG scheme only has two injection cycles, starting with a

surfactant injection cycle. The results are consistent with the phys-
ical mechanism of in situ foam generation—an initial cycle with
surfactant injection will facilitate foam generation at an early stage
of the entire injection scheme. Compared with the baseline SAG
schedule, the optimized schedule achieves 16% more CO2 storage
volume within a 20-year injection plan and reduces 56% of the
water and surfactant usage.

We test the robustness of the BO algorithm by comparing its
performance with the other two algorithms in repeated experi-
ments. The experiments with each algorithm are repeated three
times. Fig. 7 compares the performance of the best runs among
the repeated experiments for each of the three algorithms. The
experiments show that BO finds a better solution than the GA
and CMA-ES, with a smaller number of function evaluations. More
specifically, BO reaches its best observation, 1.31 � 108 Mscf (1
Mscf = 28.317 m3), after 73 function evaluations, whereas CMA-
ES reaches 1.28 � 108 Mscf after 183 function evaluations. BO
achieves competitive objective function values with 60% fewer
function evaluations. These results demonstrate the efficiency of
BO. Fig. 8 plots the overall performance of the three algorithms
through repeated experiments. The solid line represents the mean
of the function values, and the shaded area represents one

Table 3
Summary of CO2 storage volumes for different injection schemes.

Description CO2 storage volume
(Mscf)

Percentage of change
(%)

CO2 injection 0.64 � 108 —
WAG without

hysteresis
0.58 � 108 �9

WAG with hysteresis 0.99 � 108 +55
SAG with hysteresis 1.13 � 108 +77

1 Mscf = 28.317 m3.

Table 4
Optimized gas/surfactant schemes via BO compared with continuous gas injection and the baseline injection scheme.

Description Injection scheme CO2 storage volume
(Mscf)

Gas
(year)

Surfactant
(year)

Gas
(year)

Surfactant
(year)

Gas
(year)

Surfactant
(year)

Gas
(year)

Surfactant
(year)

Gas
(year)

Fig. 7. Comparison of the performance of the best runs by BO, GA, and CMA-ES.

Fig. 8. Comparison of the overall performance of BO, GA, and CMA-ES.
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standard deviation. These repeated experiments demonstrate the
robustness of the algorithmic advantages of the batch BO.

5. Conclusions and discussion

The proposed framework represents a first attempt to incorpo-
rate high-fidelity physical models and machine learning tech-
niques that scale up to field-scale applications of geological
carbon sequestration. We coupled a high-fidelity compositional
reservoir simulator, IPARS, with the IBM BOA to optimize injection
well scheduling in order to maximize the cumulative CO2 storage
volume with in situ generated foam as a gas mobility control tech-
nique. In this framework, the forward simulations using IPARS
strictly honor the complicated physics during geological carbon
sequestration. The compositional flow model, which includes a
hysteretic, relative permeability model and a foam model, can
simulate the three major trapping mechanisms of CO2 storage—
namely, structural trapping, residual trapping, and solubility trap-
ping. BO was demonstrated to be successful in the design and to
control where the objective functions are expensive to evaluate.
Here, the BO consists of two components: a Gaussian process
machine learning model that builds a Bayesian surrogate for the
objective function, and an acquisition function that decides the
sequence of sampling points. The Gaussian process allows the
usage of Bayesian statistics for analysis and grants tractability
regarding the uncertainties in the unknown objective function val-
ues where evaluations are not available, which is used by the
acquisition function to balance the exploration–exploitation
trade-off. The combination of these two components enables an
efficient search of the surrogate solution space.

We applied this framework to field-scale carbon storage with
field data from the Cranfield reservoir site to design injection
cycles for foam-assisted carbon storage. Our numerical experi-
ments showed that the optimized injection scheme achieves 16%
more gas storage volume and 56% less water/surfactant usage
compared with the baseline case. We further conducted a compar-
ison study to examine the performance and robustness of BO and
compare them with those of other commonly used algorithms,
including a GA and CMA-ES. The results demonstrate the superior
efficiency and robustness of the BO algorithm, in that it achieves
competitive objective function values with a much smaller number
of function evaluations. The results show the promise of further
applications of BO for other control and well management applica-
tions in CCUS projects, such as optimization with economic con-
straints, optimization for well placements, and so forth. Since
IPARS includes geomechanics modules that are efficiently coupled
with the compositional flow model, the framework can be easily
extended to include geomechanics effects during carbonō storage.
Furthermore, the framework can be extended to consider BO under
geological uncertainties.
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