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Existing biomimetic robots can perform some basic rat-like movement primitives (MPs) and simple
behavior with stiff combinations of these MPs. To mimic typical rat behavior with high similarity, we pro-
pose parameterizing the behavior using a probabilistic model and movement characteristics. First, an
analysis of fifteen 10 min video sequences revealed that an actual rat has six typical behaviors in the open
field, and each kind of behavior contains different bio-inspired combinations of eight MPs. We used the
softmax classifier to obtain the behavior-movement hierarchical probability model. Secondly, we speci-
fied the MPs using movement parameters that are static and dynamic. We obtained the predominant val-
ues of the static and dynamic movement parameters using hierarchical clustering and fuzzy C-means
clustering, respectively. These predominant parameters were used for fitting the rat spinal joint trajec-
tory using a second-order Fourier series, and the joint trajectory was generalized using a back propaga-
tion neural network with two hidden layers. Finally, the hierarchical probability model and the
generalized joint trajectory were mapped to the robot as control policy and commands, respectively.
We implemented the six typical behaviors on the robot, and the results show high similarity when com-
pared with the behaviors of actual rats.

� 2022 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In recent years, the use of biomimetic robots has successfully
promoted the understanding of a wide range of animal behaviors
[1,2]. Using effective control methods and active guidance, biomi-
metic robots can interact with animals to observe and record their
responses [3–7]. Sometimes, biomimetic robots are placed in a
group of animals to explore their behavior patterns or verify scien-
tific hypotheses in the process of interaction [8–11]. For biomi-
metic robots, lifelike behaviors can improve the effectiveness of
their interactions with animals. For example, when robots simulate
body movements related to foraging behavior, finches will spend
more time on foraging [12]. The tail swinging behavior of a robotic
fish will have a substantial impact on the movement of fish [3].
Moreover, biomimetic robots with similar behaviors can greatly
improve the modeling of complex animal behaviors [13,14].

The social activities of rats have aroused the interest of many
researchers, and these studies have led to remarkable achieve-
ments [15,16]. Because of the advantages of biomimetic robots in
animal interaction, various kinds of robots have been designed
for the behavioral study of rats [17–21]. However, these robots
have fewer degrees of freedom (DOFs) and lack flexibility in local
movements, whichmakes it difficult to realize a natural interaction
process. In our latest work, we simplified the DOFs of rats,
extracted four DOFs in the pitch direction and three DOFs in the
yaw direction, and used them to design the bionic spine mecha-
nism of a robotic rat [22]. Although the robot can perform some
basic rat-like movement primitives (MPs) with high flexibility, it
is difficult for them to simulate the behavior characteristics of rats.
Moreover, it is difficult for the robot to adapt to a variety of rat
movement parameters and it does not have the ability to general-
ize movement. Therefore, we hope to both build a behavior model
for rats and learn and generalize the spinal joint trajectory to con-
trol the robot so that it produces rat-like behaviors.

Many modeling methods for animal behaviors have been pro-
posed. Ding et al. [23] used a central pattern generator (CPG)-
based method to model the behavior of amphibians and realize a
multi-modal behavior design. Ren et al. [24] used a general internal
model (GIM)-based biomimetic learning method to model the
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behavior of fish and achieved similar swimming patterns on a
multi-joint robotic fish. These modeling methods are suitable for
animals with rhythmic movement, whereas the movements of rats,
especially the trajectory of spinal joints, are diverse and not rhyth-
mic; hence, the above modeling methods are unsuitable.
Leos-Barajas et al. [25] used hidden Markov models (HMMs) with
hierarchical structures to model the behaviors of harbor porpoises
and garter snakes. Cullen et al. [26] used non-parametric Bayesian
methods to estimate the behavior of rostrhamus sociabilis more
accurately than an HMM. HMM and Bayesian methods are based
on probability distributions and transitions, which are more suit-
able for the analysis of rat behavior. However, the observed data
in an open-field test revealed that the movement of rats is usually
generated by a combination of MPs. It is challenging to deal with
the combination and timing of these MPs using the above-
mentioned modeling methods. If the probability statistics of MPs
are analyzed directly, it is difficult to capture the behavior charac-
teristics of rats and will disrupt the inherent combinations of MPs.

To better reflect the behavior characteristics of rats, we first
combined the MPs in a time sequence, and the features of these
combinations are reflected by a set of attributes. Each combination
represents a rat movement. Using these attributes, we associated
different combinations with different behaviors using the softmax
classifier to learn the relationship between them. Using the classi-
fication results, we established the behavior–movement hierarchi-
cal probability model. In the hierarchical model, we not only
represent the corresponding relationship between behaviors and
movements and the transitions between different behaviors, but
also the introduced states. This is because we hope to use states
to further distinguish different behaviors and deepen our under-
standing of animal behaviors. Moreover, these different states
may reflect different emotions in rats, which is an important con-
sideration in future interaction experiments. The convergence and
control of the model ensures its accuracy.

In addition to behaviormodeling,weneed to learn the rules of rat
movements. TheMPs of rats can be described by static and dynamic
parameters. The static parameters determine the movement ampli-
tudes, average speeds, frequencies, or durations, whereas the
dynamic parameters determine the angle and angular velocity of
each spinal jointwith respect to time. TheMPsof rats usually consist
of a variety of static parameters. Even for the same set of static
parameters, different dynamic parameters may be present. To
reduce computational complexity, we carried out cluster analysis
on these parameters. We used hierarchical clustering and fuzzy C-
means (FCM)clustering to extract thepredominantvaluesof the sta-
tic and dynamic parameters, respectively [27,28]. The predominant
parameters were then used to fit the spinal joint trajectory of rats.
Obviously, the fitting accuracy of joint trajectory depends on the
results of cluster analysis. However, each clustering method has its
ownshortcomings.Hierarchical clusteringdoesnotneedapredeter-
mined number of clusters, but once a merge has been executed, it
cannot be modified, and the quality of clustering is limited; the
FCM clustering needs a predetermined number of clusters, and it
often falls into locally optimal solutions [29,30].

Additionally, we hope that learning rat movements will not
remain at the level of copying, but lead to the ability to generalize.
That is, we can infer a rat’s spinal joint trajectory for certain move-
ment parameters through the supervised learning of the test sam-
ples. To improve the accuracy of movement generalization, we
need a variety of movement parameters as the input of a neural
network. This runs counter to our aim to reduce computation. To
solve the uncertainty in clustering quality and balance the amount
of computation with generalization accuracy, we used the Pearson
correlation coefficient to measure the similarity between the
robotic rat and rats. The results of clustering were modified to con-
trol the extraction of movement parameters.
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Although we have developed a similar quadruped robotic rat, it
moves slowly and finds it difficult to achieve a high body pitch angle,
which is not conducive to interaction with actual rats. Therefore, the
hind limb of the robotic rat was transformed into a base that includes
a hip servomotor and four wheels (two front driving wheels and two
rearuniversalwheels).Whentheratmoves inastraight line, theangu-
lar speed of the driving wheel is determined by the average forward
speedand radiusof thewheel.Whenthe rat turns, because thedriving
wheel only rotates around the axis and lacks a DOF for lateral move-
ment, this will inevitably cause differences between the robotic rat
and actual rats. To maximize the similarity of the robotic rat when
turning, we used the learned rat spinal joint trajectory to drive the
yaw joints of the robotic rat and control the difference in the rotation
speed of the two driving wheels to generate the turningmovement.

The main contributions of this paper are as follows:
(1) We regarded a rat movement as a temporal combination of

MPs and defined the attributes of these combinations. Rat behavior
is classified by different combinations of attributes. The hierarchi-
cal probability model better reflects the behavior characteristics of
rats. This lays a foundation for future robot–rat interactions.

(2) By training a neural network, we can predict the trajectory
of each joint of the robot using only a set of static parameters,
which greatly simplifies the movement planning process and facili-
tates the real-time planning of the robot.

(3) We controlled the extraction process of the rat movement
parameters by modifying the results of cluster analysis. This allows
us to reduce the amount of calculation and ensure a high similarity
between the robot and rats.

2. Material and methods

Our approach is summarized in Fig. 1. In the process of behavior
modeling, we first obtained the time series of MPs by tracking the
coordinates of marked points. Then, we formed the movement of
rats using MPs and combination attributes. A softmax classifier
was used to classify the behaviors and states of the rats. Through
the sequence of MPs and the results of classification, we estab-
lished a hierarchical model of rat state, behavior, and movement
in a probabilistic way.

In the process of movement generalization, we extracted the
static and dynamic movement parameters of each combination
of MPs. These parameters were used to fit the trajectory parame-
ters of the rat spinal joints (in the form of a Fourier series). To
realize the generalization of movement, we established the map-
ping relationship between the static movement parameters and
joint parameters using a back propagation (BP) neural network.

In the deployment on the robot, we deduced the relationship
between the static movement parameters and angular velocity of
the driving wheel using the wheel model of the robot. The hierar-
chical model was provided to the robot as a control policy, so that
the robot understood what kind of behavior and movement should
be planned in a more natural and biomimetic way. Through the
movement planning, we identified the probability distribution of
the static movement parameters under each movement and
obtained the trajectory of each joint, so that the robot can perform
these behaviors and movements. The correlation coefficient was
used to measure the similarity between the robot and rats and con-
trol the process of behavior classification and extraction of move-
ment parameters in an iterative manner. In the following text,
we describe each component in detail.

2.1. Behavior modeling

2.1.1. MPs, behaviors, and states of rats
An open-field test is used to study the spontaneous activity of

animals in a new environment. It allows experimental animals to



Fig. 1. Generation process of rat-like behavior for the robotic rat. In the process of behavior modeling (light red box), we proposed a classification method for rat behaviors
(B1, B2, . . ., B6) and states (S1 and S2), and obtained the hierarchical model of the states, behaviors, and movements. In the process of movement generalization (light blue box),
we extracted the movement parameters of the rats and realized the mapping from static movement parameters to joint trajectory parameters. In the deployment on the robot
(light green box), we controlled the robot by the policy and commands. The hierarchical model was used as the policy, and the generalized spinal joint angular displacement
(h1, h2, . . ., h7) and wheel angular velocity (x1, x2) were used as the commands for the simulation model. The correlation coefficient between the robotic rat and rats
(qrat–robot) was used to measure the similarity and to regulate the process of behavior classification and movement parameter extraction. ui(xi, yi, zi): coordinates of the
movement joints; k: initial and transition probabilities between different states and behaviors as well as the observation probability of each combination in each kind of
behavior; C1, C2, and C3: combination attributes of MPs; tanh: hyperbolic tangent.
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move freely in a certain space with few restrictions and has
become an important method for studying the behavior and move-
ment of animals [31,32]. Biologists usually divide the MPs of rats
into motions such as going straight, turning, standing up, and stay-
ing in one place. Correspondingly, the behaviors of rats are divided
into behaviors such as exploring, grooming, and resting to reflect
the different activity characteristics of rats [33,34]. In this paper,
we observed the activities of individual rats (Rattus norvegicus) in
a 1 m � 1 m � 1 m open field, recorded 10 min daily, and obtained
a dataset of the motions of three rats over five days. The rats
involved in this study were from the same litter and were seven
weeks old. The dataset (150 min) contains 3537 rat movements.

Here, we marked the nose tip, tail, and key movement joints of
the rats, and tracked the coordinates of these points through mul-
tiple cameras. We defined the MPs based on the coordinate
changes of the marked points. The pitch and yaw of the head joint
are defined as MP1 and MP2, respectively; the pitch and yaw of
body joints are defined as MP3 and MP4, respectively; the linear
motion of all marked points is defined as MP5; the rotational
motion of all marked points is defined as MP6; almost no motion
in the coordinates of all marked points is defined as MP7; and
the swing of the forelimb joint is defined as MP8. The MPs, behav-
iors, and states of the rats are presented in Table 1.
2.1.2. Combinations of MPs and classification of behaviors and states
An observed sequence of MPs is shown in Fig. 2. The sequence of

MPs reflects the activity sequence of the rats, and themovements of
the rats can be represented by a temporal combination of the above
MPs. We extracted the combinations of MPs using the following
method: First, we calculate the distance between MPs. A value of 0
indicates that the MPs occur simultaneously. We further extract all
MPs that occur simultaneously and form candidate combinations
(including the combination that contains only one MP). Secondly,
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each combination is combinedwith the subsequentMP or combina-
tion (with a distance value of 1) to form a new combination and the
frequency of the new combination is calculated. If the frequency of
the new combination is very high, the new combination replaces
the original combination; if the frequency of the new combination
is high, both combinations are retained; if the frequency of the
new combination is low, the new combination is discarded. The sec-
ond step is repeated until no new combination appears.

We use combination attributes to reflect the features of the com-
binations of theseMPs. Here, C1 represents the repeatability of MPs,
where 1 represents repetition and 0 represents non-repetition; C2

represents the number of MPs generated simultaneously; and C3

represents the number of MPs in the combination (juxtaposed MPs
count as only one). Then, we classified the behaviors and states on
the basis of different combinations of MPs (Fig. 2).

We used supervised learning to obtain the relationship between
the combination of MPs and behaviors/states. A labeled dataset
was collected to train the softmax classifier. The inputs of the net-
work are MPs (1 indicates that the MPs are activated, whereas 0
indicates that they are not activated) and combination attributes,
and the outputs are the corresponding behaviors and states. The
number of nodes in the hidden layer is eight. Here, we assumed
that different behaviors and states are mutually exclusive, which
is conducive to robotic rat control.
2.1.3. Hierarchical model of states, behaviors, and movements
The results of the softmax classifier were used to obtain the

hierarchical model of states, behaviors, and movements (Sec-
tion 3.1). Here, k denotes the initial and transition probabilities
between different states and behaviors as well as the observation
probability of each combination in each kind of behavior. This
hierarchical model effectively reflects the activity characteristics
of the rats in the observation. The state layer of the structure is a



Table 1
MPs, behaviors, and states of rats.

MP Symbol Behavior Symbol State Symbol

Head pitching MP1 Sniffing B1 Stressful S1
Head yawing MP2 Exploring B2 Comfortable S2
Body pitching MP3 Walking B3 — —
Body yawing MP4 Trotting B4 — —
Going straight MP5 Resting B5 — —
Turning MP6 Grooming B6 — —
Staying MP7 — — — —
Forelimb swing MP8 — — — —

Fig. 2. Observed MP sequence. C1, C2, and C3 correspond to different behaviors and states.
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Markov model and includes an initial probability, a probability for
transition to its own state, and a probability for transition to other
states; for the behavior layer, because a continuous behavior is
represented by a specific combination of MPs, it only has an initial
probability and a probability for transition to other behaviors; for
the movement layer, because there is not necessarily a connection
between the combinations of MPs corresponding to different
behaviors, which is extremely random and dominated by the
probability of transition between different behaviors, only an the
initial probability (the observation probability) is given. The hierar-
chical model becomes gradually more refined from top to bottom
as the probability system becomes simpler. In the following work,
we analyze the convergence of the model. We also adjust the
model using the correlation between the robot and rats.
Fig. 3. Information entropy of states and behaviors.
2.1.4. Model convergence
Information entropy solves the problemof the quantitativemea-

surement of information [35]. In this study, we calculated the infor-
mation entropy of the states and behaviors in the hierarchical
model to determine whether the model tends to be stable with
respect to probability. We first counted 1700 rat movements,
mapped these movements to different states and behaviors, and
then calculated the number of occurrences and probability of each
state and behavior. Next, the probability distribution of each state
and behavior was recalculated for each additional 200 rat move-
ments.When the probability distribution of each state and behavior
hardly changed, the information entropy of the states (H(S)) and
behaviors (H(B)) also become stable, indicating that the model
had converged. The calculation of information entropy is as follows:

H Sð Þ ¼ �PnS
i¼1
pSi log2 pSi

� �
H Bð Þ ¼ �PnB

i¼1
pBi

log2 pBi

� �
8>>><
>>>:

ð1Þ
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where nS and nB represent the number of states and behaviors in the
model, respectively; pSi and pBi

are probability of each state and
behavior in the model, respectively.

The calculation results are shown in Fig. 3. The information
entropy of states and behaviors in the model is stable at around
3500 rat movements. The increase in information entropy indi-
cates that the difference in probability between different states
and behaviors is decreasing. This may reflect the adaptability of
rats to a new environment. In the early data, the probabilities of
stressed states and exploratory behavior are much higher than
the other states; as the amount of data increases, the probability
of relaxed states, resting, grooming, and other rat behaviors gradu-
ally increased. After the model converged, we stopped collecting
data from the rats.

2.1.5. Model regulation
The Pearson correlation coefficient reflects the linear correla-

tion between two sets of data, and it has been successfully used
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to measure the movement similarity between biomimetic robots
and animals [36,37]. Here, for a particular combination of MPs,
we used ui,rat to represent the coordinates of the movement joints
of rats, and ui,robot to represent the coordinates of the movement
joints of the robotic rat. The movement correlation coefficient
(qM

rat�robot) between the robotic rat and rats can be expressed as
follows:

qM
rat�robot ¼

1
N

X
i

Pðui;rat � �ui;ratÞðui;robot � �ui;robotÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðui;rat � �ui;ratÞ2
P ðui;robot � �ui;robotÞ2

q ð2Þ

where N represents the number of movement joints. Furthermore,
for a certain kind of behavior, assuming that it includes K different
combinations and the observation probability of each combination
is pMj

, the behavior correlation coefficient (qB
rat�robot) between the

robotic rat and rats can be formulated as follows:

qB
rat�robot ¼

1
K

X
j

pMj
qMj

rat�robot ð3Þ

To achieve rat-like behavior in the robotic rat, we required that
the behavior correlation coefficients be greater than 0.8. When the
correlation coefficient of a certain kind of behavior is below this
threshold, we first adjust the extraction process of the movement
parameters (Section 2.2); if it still fails to meet the threshold, the
combinations to which the behavior belongs are split so that they
corresponding to different new behaviors, and then the behaviors
are reclassified. A realistic example is described in Section 4.

2.2. Movement generalization

Our parametric modeling of rats is shown in Fig. 4. The red
markers indicate the main DOFs in the pitch direction, the blue
markers indicate the main DOFs in the yaw direction, and the black
markers indicate the nose tip, tail end, and center of mass (CoM) of
the rats. A coordinate system was set up with respect to the tail of
the rats, and the Kinovea software was used to track the location
information of the marked points.

We define the static movement parameters, and all angles refer
to the movement amplitudes of rats. The pitch angle is zero in the
horizontal position, positive upward, and negative downward. The
yaw angle is zero at the symmetrical position (where the angles of
the rat head and body are in a straight line), the direction is ran-
dom, and the value is positive (it was observed in the data that
the probabilities of rat left and right yaw are roughly equal).
Parameters head pitch angle uhp and head yaw angle uhy represent
the angle between the x-axis and the line from the nose tip to
joints J7 and J6, respectively. Parameters body pitch angle ubp and
body yaw angle uby represent the angle between the x-axis and
the line from the CoM to the tail end. Parameter turing angle a rep-
resent the rotation angle of the x-axis before and after the turning
movement. Parameter ufs represents the rat forelimb swing angle,
v represents the average forward speed of the rat CoM, f represents
Fig. 4. Parametric modeling of rats. The red markers (J1, J2, J5, and J7) and blue
markers (J3, J4, and J6) indicate the main DOFs in the pitch and yaw directions of the
rats, respectively, and the black markers are used as the reference points to define
the static movement parameters.
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the movement frequency (only for combinations with repetitive
MPs), and T represents the movement duration.

To extract the predominant values of the static parameters,
because of the small sample size and the difficulty in determining
the number of clusters in advance, we used hierarchical clustering
to classify these static parameters. First, we treated the different
values of each static parameter as a class, and calculated the dis-
tances between classes. The two closest classes (i � 1, j � 1) were
merged into one, and the average value of the original two classes
was taken as the value of the new class. Afterwards, the distances
Di,j between the new class (j) and other classes (i) were calculated,
until the distance between the two classes met the following
condition:

Di;j � s Amaxj j
Di;j ¼ 1

2D
2
i�1;i þ 1

2D
2
j�1;j � 1

4D
2
i�1;j�1

� �1=2

8<
: ð4Þ

where Amax denotes the maximum value of each static parameter
and s determines the density of classification. Finally, the static
parameter value corresponding to each class in the clustering
results is the extracted dominant value. When the probability cor-
responding to the predominant values of a static parameter is calcu-
lated, it is often affected by other parameters. Therefore, it is
necessary to calculate the independence between the two parame-
ters and determine the joint statistics of two non-independent
parameters to form the joint probability distribution of the pre-
dominant values; otherwise, separate statistics for each parameter
are obtained to form the independent probability distributions of
the predominant values.

To extract the predominant values of the dynamic parameters,
because of the large amount of data and accurate classification
requirements, we used FCM clustering to classify the dynamic
parameters. In this paper, the dynamic parameters (hi,j) mainly
reflect the position characteristics of the main DOFs over time.
For a joint in a certain kind of movement, we can calculate its
angular displacement and angular velocity at a discrete time by
the marked coordinate values. Because this kind of movement
occurs many times, we obtained the data group xj0 = (hj0, h0 j0) (j0 =
1, 2, . . ., n) of the joint under a specific set of static parameters.
Here, hj0 and h0j0 are the angular displacement and velocity of joint
Ji at time tj, respectively. The process of cluster analysis is
expressed as follows:

O ¼
Xc

i0

Xn

j0¼1

um
i0 j0 kxj0 � ci0 k2 ð5Þ

where ci0 ¼
Pn

j0¼1
um
i0 j0 xj0Pn

j0¼1
um
i0 j0

;ui0 j0 ¼ 1Pc

k¼1

kxj0 �ci0 k
kxj0 �ckk

� � 2
m�1

and O denotes the objec-

tive function, ui0j0 denotes the membership degree of sample xj0
belonging to class i0, m is the factor of membership degree, which
affects the degree of classification, and ci0 denotes the clustering
center of class i0. The number of clusters c is determined by the
average value of the contour coefficient of each sample point. When
the average value of the contour coefficient is closer to 1, this indi-
cates the clustering is better. Parameters ci0 and ui0j0 iterate continu-
ously, until the objective function O is less than a certain threshold.
To better reflect the movement characteristics of rats, we used the
weighted method for each sample instead of the average method
for the predominant dynamic parameters. The weight of each sam-
ple was determined by the proportion of the number of samples of
each class as follows:

hi;j ¼
Xc

i0¼1

X
hj0 2Ci0

hj0
Ni0Pc
i0¼1N

2
i0

ð6Þ

where parameter Ci0 denotes the set of all samples of class i0 and Ni0

denotes the number of samples contained in class i0.
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Because functions satisfying Dirichlet’s condition can be
approximately expressed by a finite Fourier series, we used a Fourier
series to simulate the angular displacement curve of each joint in
rats [38]. After experiments, we found that a second-order Fourier
series is sufficiently accurate (R-square > 0.9). Taking the pitching
movement (MP1MP3) under exploring behavior (B2) as an example,
the input and output are normalized and the following formula is
obtained:

hi;j
ubp

¼ ki1 þ ki2sin
witj
T

� �
þ ki3cos

witj
T

� �
þ ki4sin

2witj
T

� �

þ ki5cos
2witj
T

� � ð7Þ

where, wi and ki1–ki5 are fitted joint trajectory parameters (i = 1, 2,
5, and 7). For a repetitive movement such as MP�

1, wi are repre-
sented by frequency f.

A neural network is usually used to generalize joint movements
[39–41]. In this study, we adopted the BP neural network with two
hidden layers. The inputs of the network are static parameters, and
the outputs are joint trajectory parameters. The hyperbolic tangent
(tanh) activation function is used to accelerate the convergence of
the network. According to previous studies [42,43], the number of
nodes in the hidden layer should be between the number of input
nodes and output nodes, and the same number of neurons is used
for all hidden layers. In this study, for each combination of MPs, a
corresponding neural network was used to participate in the train-
ing process. We adjusted the number of nodes in the hidden layer
to avoid the phenomena of underfitting or overfitting. Still taking
the pitching movement (MP1MP3) under exploring behavior (B2)
as an example, the number of input nodes of the network was
two (ubp, T), the number of output nodes was six (wi, ki1–ki5),
and the number of nodes in the hidden layer was four (as shown
in Fig. 5). The cost function was the mean squared error loss func-
tion and the network was trained by a batch sample parallel gradi-
ent algorithm. The clustering results were modified to adjust the
static and dynamic parameters. In the initial setting, to reduce
the complexity and computation of the model, we used a larger
value s and a smaller value c. When the correlation coefficient of
a certain kind of behavior is below a threshold, the clustering
results of movements are modified in descending order of observa-
tion probability while reducing the s value and increasing the c
value.

2.3. Deployment on the robotic rat

2.3.1. Robotic rat platform
The prototype of our recently developed robotic rat is shown in

Fig. 6(a). The robotic rat mainly consists of a head, forelimb, waist,
and hip. The head and hip joints are driven by a servo motor, the
Fig. 5. BP neural network used in the pitching movement (MP1MP3) under
exploring behavior (B2).

237
waist joints and wheels are driven by a direct current (DC) motor,
and the forelimb is driven by a micro deceleration stepper motor.
Its shape and size are similar to those of actual rats, and the total
mass is approximately 400 g. The spinal joints of the robot corre-
spond to the main DOFs of the rats. Fig. 6(b) and Table 2 show
the distribution of each joint of the robotic rat and the correspond-
ing relationship between the MPs and joints.

The movement parameters of the robot are mainly affected by
the movement parameters of rats and the structural constraints
of the robot. The task space constraints on the MP mean that by
analyzing the workspace of the robot and the interference between
joints, we can obtain the amplitude of the movement parameters
of the robot, such as the maximum body pitch angle and body
yaw angle. We described this analysis in detail in Ref. [22]. Con-
cerning the constraints on the control, the robot needs to maintain
dynamic balance in movements without vibration or sideslip.
Therefore, the robot usually has a minimum movement duration
under various conditions. We analyzed this in detail in Ref. [44].
When determining the movement parameters of the robot, we
depend on whether the extracted parameters of rats exceed the
limits of the robot itself. If the limit is not exceeded, the movement
parameters of the robot are equal to those of the rat; if the limit is
exceeded, the movement parameters of the robot are equal to the
maximum or minimum value of the limit. Hence, we defined the
parameters of the robot movements as

ubp ¼ ubp;uby ¼ uby; ubp;uby

� �
2 U

ubp ¼ ubp

� �
max

; and=or uby ¼ uby

� �
max

; else

8><
>: ð8Þ

T ¼ T; s:t: Ceq

T ¼ Tmin; else

	
ð9Þ

where U and Ceq represent the task space and dynamic balance con-
straints, respectively; (ubp)max and (uby)max represent the maximum
body pitch angle and body yaw angle satisfying the task space con-
straints, respectively; and Tmin represents the minimum movement
duration satisfying the dynamic balance constraints. Using the pro-
totype, we built a rigid-body simulation model in the robot operat-
ing system (ROS) environment (Gazebo simulator) and used it in the
training process.

2.3.2. Wheel model of the robotic rat
The turning model of the robotic rat is shown in Fig. 7, where p

is the instantaneous CoM of the robotic rat, q is its instantaneous
rotation center, Ft and Fn are the tangential and normal static fric-
tions, respectively. Parameters f 0a, f

0
b, f

0
c, and f 0d are the rolling fric-

tion on each wheel, which can respectively be expressed as
f 0a ¼ l0

aNa, f 0b ¼ l0
bNb, f 0c ¼ l0

cNc, and f 0d ¼ l0
dNd; l0

a ¼ l0
d and

l0
b ¼ l0

c are the rolling friction coefficients. Parameters Na, Nb, Nc,
and Nd are the support forces on each wheel, which can be
expressed by the angular displacement hi of each yaw joint through
the balance equations (RMx = 0, RMy = 0, RMz = 0, and RFz = 0) for
the robot turning model. Each link i is not only affected by moment
of inertia, but also by the centrifugal and Coriolis forces in the non-
inertial frame. Force FCi

is the resultant force of the centrifugal force
and Coriolis force applied to link i. Moreover, Fco is the composition
of forces acting on all links, that is, Fco = RFCi

, and c denotes the
angle between Fco and x-axis. Parameter x is the instantaneous
turning angular velocity, R is the turning radius, and L is the track
width. Based on Newton’s second law, for the turning movement of
the robotic rat, the dynamic equations in the tangential and normal
directions are written in Eq. (10):

Ft þ Fcocos c� f 0a � f 0b � f 0c � f 0d ¼ mR _x
Fn þ Fcosin c ¼ mRx2

(
ð10Þ



Fig. 6. (a) Robotic rat and (b) motion coordinate system of the robotic rat. JF: forelimb swing joint; JWL, JWR: left and right drive wheel joint, respectively.

Table 2
Joints of robotic rat used to perform the MPs.

MP Joints of robotic rat

MP1 J7
MP2 J6
MP3 J1, J2, and J5
MP4 J3 and J4
MP5 JWL and JWR

MP6 J3, J4, J6, JWL, and JWR

MP7 Non
MP8 JF

Fig. 7. Turning model of the robotic rat. Ii€hi is the moment applied to link i.
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The static friction and driving force of the wheels are the reac-
tion forces, which are equal in value and not more than the sum of
the maximum static friction on each wheel. The angular velocity of
the CoM caused by the difference in rotation speed of the driving
wheels is generated by the normal static friction. Based on the
statistics of the static parameters of rats, the robotic rat must reach
turning angle a within duration T. Assuming that the rotational
speeds of the driving wheels a and d are x1 and x2, respectively;
s1 and s2 are the actual output torques of the two driving wheels;
and P1 and P2 are the actual output power of the two driving
wheels. We then obtain the set of equations in Eq. (11):

Ft þ Fnj jrd ¼ s1 þ s2
k1s1x1 ¼ P1; k2s2x2 ¼ P2

Fn ¼ mR x2�x1ð Þrd
L

h i2
a ¼ R T

0 xdt

8>>>>><
>>>>>:

ð11Þ

where rd is the radius of the driving wheel, k1 and k2 are power
factors.

Because Fco and c can be expressed by the angular displacement
hi of each yaw joint, which depends on parameters a and T, the
relationship between the driving wheel rotational speeds x1 and
x2 and the parameters a and T can be obtained using Eqs. (10)
and (11).
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3. Results

3.1. Probability distribution and transition in hierarchical model

On the basis of behavior and state classification, we determined
the probabilities of the states, behaviors, and movements by the
number of occurrences, as shown in Fig. 8(a). Among them, the
dotted lines represent the initial probability, the solid lines repre-
sent the transition probability, and different colors represent dif-
ferent probability intervals. For walking behavior, which includes
going straight, turning, and staying MPs, because the behavior
can include various combinations with different numbers of MPs,
we created separate probability statistics. Fig. 8(b) shows the ini-
tial probability (black dotted line) and transition probability (black
solid line) of each MP in walking behavior; Fig. 8(c) shows the
probability distribution of the number of MPs in the combinations
included in walking behavior.

3.2. Distribution of static parameters

Table 3 shows the relevant static parameters used to describe
the MPs and combinations of MPs. The parameters in brackets
are not independent of each other. For different behaviors, the
same MPs and static parameters often appear. Fig. 9 presents
the distribution of the static parameters in different behaviors. Fig.
9(a) compares average forward speed during walking and trotting.
In both cases, the average forward speed has a similar range
(0.125–0.250 m�s�1), but a high speed when trotting is more likely.
Fig. 9(b) compares the staying times of walking and resting. The
staying time in walking is short, approximately 0.5–1.5 s, whereas
the staying time is longer in resting, approximately 3–7 s. Fig. 9(c)
shows the distribution of the turning angle and movement dura-
tion in walking and trotting. The upper-right ‘‘*” indicates that
the data has a high probability of occurrence (the sum of the occur-
rence probability of all data with ‘‘*” is greater than 0.7). It can be
seen that the turning movement when trotting has a faster average
angular velocity than that when walking. The distributions of these
parameters support the rationality of the behavior classification.

3.3. Generalizable movement planning of the robotic rat

Fig. 10 presents the main joint trajectory curves of the pitching,
yawing, and turning movements. The light red areas represent the
envelope of the test sample trajectory, and the black solid lines
represent the mean predicted value of the test sample trajectory
given by the neural network based on the training samples. For
each movement, the number of training samples is approximately
twice that of the test samples. For pitching and yawing move-
ments, because the lifting/yawing time accounts for approximately
half of the total time, and the lifting/yawing trajectory is basically
symmetrical to that of the other half (falling/returning); we hence



Fig. 8. Probability distributions and transitions in the hierarchical model. (a) The different colors correspond to different probability intervals, the juxtaposition of MPs
indicates that these MPs are generated simultaneously, the symbol ‘‘–” indicates the time sequence of MPs and ‘‘*” indicates that the MPs occur repeatedly in the
combination; (b) initial probability (black dotted line) and transition probability (black solid line) of each MP in walking behavior; (c) probability distribution of the number
of MPs in the combinations included in walking behavior.

Table 3
Static parameters used to describe the MPs/combination of MPs.

MPs/combination of MPs Static parameters

MP�1 uhp, f, T
MP1MP2 (uhp, uhy), T
MP1MP3 (ubp, T)
MP2MP4 (uby, T)
MP1MP2MP3MP4 (ubp, uby, T)
MP5 v, T
MP6 (a, T)
MP7 T
MP1MP�

8 uhp, ufs, f, T
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only give the trajectory of each joint of the robotic rat from t = 0 to
T/2. It can be seen that the black solid line is almost always within
the red area, which indicates that the neural network can realize
the generalization of rat movement. In the pitching movement,
the trajectory distribution of each joint is relatively concentrated,
which indicates that the movement of the pitching joints of rats
under different static parameters is relatively similar, and the
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displacement mainly occurs in the hip and front waist. In the yaw-
ing and turning movements, the distribution of the head joint tra-
jectory is relatively loose, which indicates that the head movement
is complex and diverse. However, the trajectory distributions of
other joints are more concentrated; moreover, the head accounts
for a small proportion of body length, and hence the head joint
error is acceptable. The displacement mainly occurs in the head
and front waist.

Fig. 11 shows the angular velocity of the driving wheel in the
turning movement of the robotic rat. The red dotted lines represent
the theoretical calculation results, and the black dots represent the
value obtained in the simulation environment (x1 = 0). The simu-
lation value is close to the theoretical value. Moreover, x2 is posi-
tively correlated with a and negatively correlated with T.

3.4. Similarity between the robotic rat and actual rats

In the simulation and experiment, we first determined the robot
the corresponding behavior and combination of MPs based on the
obtained behavior-movement hierarchical model. Furthermore, for
each combination of MPs, we set its static movement parameters



Fig. 9. Distributions of the static parameters in different behaviors. (a) Comparison of average forward speed in walking and trotting; (b) comparison of the staying time in
walking and resting; (c) distribution of the turning angle and movement duration in walking and trotting. The label ‘‘*” indicates that the data has a high probability of
occurrence.

Fig. 10. Joint trajectory curves of the robotic rat. (a) Trajectory curves of pitching joints for B2, MP1MP3, the horizontal axis is the proportion of pitching cycle T and the vertical
axis is the proportion of body pitch angle ubp; (b) trajectory curves of yawing joints for B2, MP2MP4, the horizontal axis is the proportion of yawing cycle T and the vertical axis
is the proportion of body yaw angle uby; (c) the trajectory curves of turning joints for B3, MP6. The horizontal axis is the proportion of turning cycle T and the vertical axis is the
proportion of turning angle a.

Fig. 11. Angular velocity of the driving wheel.

Z. Gao, G. Jia, H. Xie et al. Engineering 17 (2022) 232–243
according to the results of clustering analysis. From these static
movement parameters, we obtained the generalized trajectory of
each joint using the BP neural network. In fact, we have established
240
a robot joint motion library. Once the static movement parameters
have been determined, we can obtain the trajectories of each joint
using a look-up table. Thus, we obtained the joint state (position,
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velocity, and acceleration) planned by the robot in advance. In the
actual control, we calculated the joint state of the robot in real time
and compared it with the preplanned joint state. According to the
difference between them, the joint torque was calculated through
impedance control, and then each joint of the robot was driven to
produce a new joint state. We controlled the robot to produce 50
movements in each group, recorded a total of ten groups, and then
calculated the correlation coefficients of various behaviors and
movements.

Fig. 12 shows behaviors and movements of the robot over 10 s
and the comparison results with the behaviors and movements of
actual rats. The results show that the robot has movements that
are often relatively similar to those of actual rats. Fig. 13 shows
the relationship between correlation coefficient qrat–robot and s,
and c in cluster analysis (taking B2, MP1MP3 as an example). Coef-
ficient s represents the scale coefficient in hierarchical clustering,
which is used to control the density of classification; c represents
the number of clusters in FCM clustering. As s increases, the corre-
Fig. 12. Behaviors and moveme

Fig. 13. Relationship between qrat–r
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lation coefficient first decreases slowly, and then decreases shar-
ply. Here, s = 0 indicates that each data point is a class, whereas
s = 1 means that all data points are only in one class. When
s = 0, although it has a higher correlation coefficient, the number
of samples of the neural network also increases, which increases
the training cost of the model. Therefore, we believe that s = 0.1
is a better choice to reduce the training cost of the model while
maintaining a high correlation coefficient. For c, c = 1 and c = n
(n = 15, the number of data points) mean that all data points are
averaged to obtain the dynamic parameters, which will reduce
the correlation coefficient. When c is exactly between 1 to n, the
correlation coefficient is higher, indicating that the weighted
method is better than the average method. For B2, MP1MP3; c = 3
is a better choice.

The correlation coefficients of different behaviors and move-
ments between the robot and rats are shown in Fig. 14. Because
the joints of MP7 and B5 do not produce displacement, their
correlation coefficient was not calculated. Fig. 14(a) shows the
nts of the robot over 10 s.

obot, s, and c in cluster analysis.



Fig. 14. Correlation coefficients of different behaviors and movements. (a) Movement correlation coefficients in exploration, the sizes of the sectors reflect the observation
probability of movements during exploration and the data in every sector are expressed as mean plus or minus SD; (b) correlation coefficients of behaviors, error bars show
one SD. SD: standard deviation.
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movement correlation coefficients during exploration. The sizes of
the sectors reflect the observation probability of movements dur-
ing exploration. The data in every sector are expressed as mean
plus or minus standard deviation (SD). Because of the complexity
and diversity of head yaw movement in rats, the correlation coef-
ficient of pitching movement (MP1MP3) is higher than that of the
yawing movement (MP1MP2, MP2MP4), with a small SD. Fig. 14(b)
shows the correlation coefficients of different behaviors. Strongly
regular behaviors, such as B1 and B6, which only include one
repetitive movement, have a higher correlation coefficient and
smaller deviation. In contrast, because of the complexity and
diversity of combinations in B3, the correlation coefficient is lower
with larger deviation. For more complex and diverse behaviors and
movements, more rat data need to be collected and used for train-
ing to further improve the correlation coefficients between the
behaviors of the robotic rat and rats.

4. Discussion

In the process of behavior classification, we initially divided the
behaviors into sniffing, exploring, walking, resting, and grooming.
Because of the low correlation coefficient, we subdivided the walk-
ing behavior. We made a distinction between continuous straight
walking or turning and stop-and-go movement in rats, and
matched the four combinations of MPs (MP5, MP6, MP5MP6, and
MP6MP5) to the trotting behavior. The above combinations
did not include staying (MP7) and had a relatively quick velocity
(Figs. 9(a) and (c)). Next, the behaviors were reclassified, and the
movement parameters in walking and trotting were extracted
separately. After reclassification, we obtained higher correlation
coefficients for the walking and trotting behaviors. Because we only
changed part of the original walking behavior into trotting behavior
without changing the order of the rat observations, the transition
probability between the walking and trotting behaviors is zero
when counting the transition probabilities between behaviors.

Different behaviors and states in the hierarchical model have
obvious characteristics. Sniffing is mainly manifested in the move-
ment of repeatedly touching the ground with the tip of the rat’s
nose. Exploring is mainly manifested in the pitching and yawing
movements of the head and body. Walking is mainly characterized
by slower straight and turning speeds, accompanied by short stay-
ing periods. In addition, the number of MPs in a combination cor-
responding to this behavior is usually more than three. Trotting is
mainly characterized by faster straight and turning speeds. The
number of MPs in a combination corresponding to this behavior
is generally no more than two. Resting is mainly manifested by
the long staying of rats. Grooming is mainly manifested in the
slight head and forelimb movements of rats. The stressed state is
mainly indicated by obvious displacement or frequent sniffing
and exploring behaviors. The relaxed state is mainly indicated by
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no obvious displacement, with no movement or only partial, small
movements of the head and forelimbs.

Because the limbs of rats rarely move in the reverse direction
during the turning movement, we did not drive the robotic rat
model in reverse when designing the rotation speeds of the driving
wheels to avoid reducing the biomimicry of the robotic rat. At the
same time, because of the difference between the wheeled base of
the robotic rat and the limbs of rats, the turning radius of the robotic
rat is larger than that of actual rats. Under the same driving wheel
speed differences, the turning radius of the robotic rat increases sub-
stantially as the driving wheel speeds increase. Hence, fixing x1 = 0
and only controllingx2 to coordinate themotion of the yaw joints in
the turning movement is a more reasonable design.

5. Conclusions

For biomimetic robots, similar behavior models are more con-
ducive to effective interaction between robots and animals. The
main focus of this study was to establish the behavior–movement
law of rats by extracting different combinations of MPs and corre-
sponding them to different behaviors. The predominant parame-
ters of the MPs were extracted, and the trajectory of each joint
was learned and generalized. The correlation coefficient between
the robot and rats was used to measure the similarity and control
the process of behavior classification and the extraction of move-
ment parameters. A robotic rat model in the ROS environment
was used to learn the data and train the robot. The simulation
results show that the robot can achieve six typical rat-like behav-
iors. For each behavior, the robot presents high similarity (the
behavior correlation coefficient is greater than 0.8).

In future work, we will implement two modes in the robot: indi-
vidual mode and interaction mode. In the individual mode, the robot
moves based on the law given by the behavior–movement hierarchi-
cal model in this paper; in the interaction mode, the robot recog-
nizes the current behavior of the interactive target, and then
performs interactive behaviors such as tracking, imitating and
contacting. Whether the robot operates in the individual mode or
interaction mode will be determined by the interaction probability,
that is, the observed probability of interaction between two rats over
a series of activities. The behavior and movement of the robot in
interaction mode can be further defined on the basis of the approach
in this paper. Through interactive control between the robot and
rats, we can explore the social behavior mechanism of rats.
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