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In mixed and dynamic traffic environments, accurate long-term trajectory forecasting of surrounding
vehicles is one of the indispensable preconditions for autonomous vehicles to accomplish reasonable
behavioral decisions and guarantee driving safety. In this paper, we propose an integrated probabilistic
architecture for long-term vehicle trajectory prediction, which consists of a driving inference model
(DIM) and a trajectory prediction model (TPM). The DIM is designed and employed to accurately infer
the potential driving intention based on a dynamic Bayesian network. The proposed DIM incorporates
the basic traffic rules and multivariate vehicle motion information. To further improve the prediction
accuracy and realize uncertainty estimation, we develop a Gaussian process-based TPM, considering both
the short-term prediction results of the vehicle model and the driving motion characteristics. Afterward,
the effectiveness of our novel approach is demonstrated by conducting experiments on a public naturali-
stic driving dataset under lane-changing scenarios. The superior performance on the task of long-term
trajectory prediction is presented and verified by comparing with other advanced methods.

� 2022 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Over the past few years, there has been widespread and exten-
sive investigation about autonomous driving in different areas,
particularly in the field of intelligent transportation. One major
challenge to fully realize autonomous driving is achieving favor-
able situational awareness and a comprehensive understanding
of the stochastic environment. To address part of this problem,
one feasible solution is to forecast the trajectory of the surrounding
vehicles, which can provide an anticipatory assessment of the driv-
ing situation around the ego vehicle, thereby avoiding imminent or
potential threats to safe driving [1,2].

Although interaction-aware trajectory prediction considering
the influence of multiple vehicles has been an advanced research
focus [3,4], while a majority of autonomous vehicles (AVs) cannot
perceive the motion state of vehicles over a distance in a mixed
traffic environment without communication technology. Thus,
our work concentrates on the trajectory prediction of the preced-
ing or adjacent vehicle from the ego vehicle perspective.
To date, some researchers have dedicated themselves to vehicle
trajectory prediction. In terms of approaches primarily applied in
this research area, the current methods can be classified into three
categories [5–7]: vehicle model-based prediction, maneuver-based
prediction, and deep learning-based prediction. Vehicle model-
based prediction is a straightforward and simple method [8]. It
only uses basic motion models, including kinematic vehicle models
such as the constant velocity (CV) model, constant acceleration
(CA) model, and constant turn rate and acceleration (CTRA) model
[9], as well as dynamic vehicle models such as the two-wheeled
‘‘bicycle” model [10]. Considering the effect of model uncertainty,
a variety of filtering algorithms can be applied to these linear or
nonlinear models, such as Kalman filtering (KF), extensive KF
(EKF) [11], unscented KF (UKF) [12], and particle filtering (PF)
[13]. Generally, this method can achieve good performance in
short-term (less than one second [5]) prediction since it utilizes
the laws of physics. However, it is inadequate for long-term predic-
tion due to the lack of consideration of high-level vehicle informa-
tion. It should be noted that we define a short-term prediction if
the prediction duration is less than one second, and a long-term
prediction if the prediction duration is more than two seconds.

As to the maneuver-based prediction, it assumes that the future
vehicle trajectory is consistent with the recognized intention that
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the vehicle tends to execute [5,14]. Therefore, many state-of-the-
art studies need to estimate driving behavior or intention first
and subsequently make trajectory predictions [15,16]. Specifically,
discriminative classifiers such as support vector machines [17] and
generative models such as hidden Markov models (HMMs) [18] are
frequently exploited for intention estimation. A full-scale descrip-
tion and advanced research about this can be found in Refs.
[6,19,20]. For trajectory prediction based on the recognized inten-
tion, motion pattern-based methods such as Gaussian processes
(GPs) [21,22] and other intention-based methods [23] are
predominantly used. Li et al. [24] divided the vehicle trajectories
into several typical patterns using a Gaussian mixture model.
According to these patterns, the traffic modeling and motion
uncertainties were derived from GP. Schreier et al. [23] established
a Bayesian network to infer the driving maneuvers of each vehicle.
Then, a probabilistic trajectory prediction model (TPM) was built
through motion planning approaches integrating stochastic
elements. In general, while maneuver-based prediction is prone
to have an initial low accuracy, it is relatively suitable for long-
term prediction with uncertainties due to a high-level reasoning
of vehicles.

Furthermore, there are a few methods combining the vehicle
model and maneuver model for trajectory prediction [25–27].
Houenou et al. [25] forecasted the trajectory considering both vehi-
cle kinematics and maneuver recognition to take advantage of the
prediction accuracy in the short and long term. In Ref. [26], Xie
et al. used an interactive multiple model for trajectory prediction,
which combined physics- and maneuver-based approaches and
achieved a more accurate trajectory within a long prediction hori-
zon. However, there still exist some limitations. Most of the model
parameters are defined manually, and the driving motion charac-
teristics (Fig. 1) are not taken into account.

For deep learning-based prediction, numerous trajectory pre-
diction frameworks are based on deep neural networks such as
convolutional neural networks (CNNs), recurrent neural networks
(RNNs), long short-term memory (LSTM) networks, or a combina-
tion of them [28–33]. An LSTM encoder–decoder model employing
convolutional social pooling, which can generate a multimodal
predictive distribution over prospective trajectories, was built in
Ref. [28]. In Ref. [29], an encoder–decoder architecture based on
relational RNNs was introduced. The encoder explored the patterns
of previous trajectories, while the decoder created the potential
trajectory sequence. Yan et al. [30] developed an LSTM encoder–
decoder framework with two spatial-attention mechanisms to
improve the prediction accuracy. Mo et al. [31] used CNN–LSTMs
to predict interaction-aware trajectories of connected vehicles
and LSTMs to make personalized prediction of vehicle states
[32,33]. Although these methods are rather appropriate to deal
with interactions and perform well in long-term prediction, it is
Fig. 1. The illustration of motion characteristics. The yellow ego vehicle is an AV, and th
particular driving intention, the predicted vehicle may have various motion movements
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challenging to introduce traffic rules or vehicle models to improve
the prediction accuracy.

However, the scope of our paper focuses on the mixed and non-
connected traffic environments under which the intelligent vehi-
cles will drive in the recent and future years, it is difficult to
provide sufficient information for these deep learning-based mod-
els. Regardless of whether the behavior of the predicted vehicle is
influenced by other factors, the historical motion trajectory of it
always exists objectively, and we can judge the tendency of the
predicted vehicle based on its actual historical information.

Motivated by the aforementioned research gaps, a comprehen-
sive scheme of long-term vehicle trajectory prediction under
uncertainty is proposed. The main contributions of this study are
briefly summarized as follows:

(1) We propose an integrated architecture for long-term vehicle
trajectory prediction driven by both the vehicle model and
naturalistic driving data. The overall probabilistic framework is
interpretable and can reduce data dependencies and deal with
prediction uncertainties in a dynamic environment.

(2) A driving inference model (DIM) is designed to reveal and
extrapolate high-level vehicle information concerning driving
intention and motion characteristics, incorporating the basic road
rules and low-level vehicle motion elements in longitudinal and
lateral directions.

(3) Considering the vehicle motion characteristics and integrat-
ing the short-term prediction results of the kinematic vehicle
model, a TPM is developed to ensure the precision of the entire
prediction process.

The remainder of this paper is organized as follows. Section 2
presents an overview of the system architecture. Section 3 and
Section 4 introduce the details of the method development, con-
sisting of the driving inference module and trajectory prediction
module. Comprehensive experiments are compared and analyzed
using the naturalistic driving dataset in Section 5, and concluding
remarks are drawn in Section 6.
2. System architecture

This paper is motivated by the problem of allowing AVs to
have better situational awareness in a complex traffic environ-
ment. For example, AVs need to automatically decide the next
maneuver and perform trajectory planning after predicting the
future trajectories of adjacent vehicles. Existing approaches to
forecasting vehicle trajectories are various but short of consider-
ing the comprehensive factors that highly affect the final predic-
tion accuracy. In this paper, under a nonconnected environment,
we conclude that the significant factors can be divided into two
categories: high-level information, including driving intention
e blue vehicle is one of the surrounding vehicles that will be predicted. Under one
. In this paper, we identify these features as motion characteristics.
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and motion characteristics, and low-level information, including
physical movement and traffic rules.

Our study presents a probabilistic architecture integrating these
elements, through which AVs can predict the long-term trajectory
of a surrounding vehicle to fulfill superior decision-making in the
traffic environment. The architecture overview, shown in Fig. 2,
is mainly composed of a driving inference module, vehicle
model-based prediction, and long-term trajectory prediction mod-
ule. Note that the naturalistic driving data are used to provide the
necessary information, which can be obtained through driving
intention calibration and driving characteristic classification based
on a sequence clustering algorithm.

The primary objective of the driving inference module is to
generate the probability of the driving intention and motion
characteristics via the DIM. We first define the structure of the
DIM based on a dynamic Bayesian network. Then, the parameters
of the DIM can be learned through the data training process. Finally,
given the historical and environmental information of the predicted
vehicle, the probabilistic inference of the DIM will be output. Based
on the vehicle motion information in the past, we can make accu-
rate trajectory predictions in the short term through a kinematic
vehicle model. First, a nonlinear vehicle model is established. After
that, we implement the PF to filter the historical trajectory points of
the vehicle. In addition, future short-term prediction position
points can be generated by the PF. We call both the filtered
historical points and the future short-term points ‘‘support points.”

For the long-term trajectory prediction module, we build the
TPM based on the GP according to the inference results of the
DIM. Afterward, the model parameters are acquired using a data
learning method. Eventually, the long-term future trajectory with
a certainty description can be predicted by fusing the short-term
Fig. 2. Probabilistic architecture diagram for long-term vehicle trajectory prediction.
prediction, and the long-term trajectory prediction module, are presented in detail, and
found in corresponding sections.
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support points. In this paper, the TPM is our final model for long-
term vehicle trajectory prediction and DIM is an indispensable part
for driving intention inference.
3. Driving inference module

This driving inference module aims to recognize the driving
intention and motion characteristic probabilities, which will be
used as inputs to the trajectory prediction module. This section
has three parts: DIM construction, model data training, and model
probabilistic inference. Moreover, we will illustrate the details of
these aspects in the following.
3.1. DIM construction

Here, we first define the DIM structure based on the theory of a
dynamic Bayesian network [34]. With the assumption of the first-
order Markov chain, the DIM is constructed as a directed acyclic
graphical model. To determine the structure of a dynamic Bayesian
network, we need to first define the prior network and the transi-
tion network. The prior network defines the connection between
the nodes at the initial time t = 1, and the transition network
defines the connection between time t and t + 1.

In Fig. 3, we present the transition network of the DIM, which
contains two types of nodes, hidden nodes H1;H2;M1;M2f g and
observable nodes O1;O2;O3;O4f g. Specifically, nodes H1;H2f g
denote the high-level abstract information, the driving intention
and motion characteristic, separately; M1;M2f g denote mixture
parameters with fixed values. Nodes O1;O3;O4f g represent the
observed motion variables containing the longitudinal or lateral
The three main blocks, the driving inference module, the vehicle model-based
the information flow among them is explained. The definition of parameters can be



Fig. 3. The designed structure of the DIM based on a dynamic Bayesian network.
The squares and circles denote discrete and continuous nodes, respectively; the
clear and shaded nodes denote hidden and observed nodes, respectively. The nodes
in the network represent the predefined variables, and the connections between
nodes in the form of arrows represent the conditional probability distributions
(CPDs).
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position, velocity, or acceleration; node O2f gwill be represented by
a four-dimensional vector o2, which is composed of Boolean values,
representing whether it is the leftmost or rightmost lane and
whether there is an adjacent vehicle on the left or right. If the value
of O2f g is 0;0;1;1½ �, it means that the vehicle is located in a lane
that is not the leftmost or rightmost lane, but there are adjacent
vehicles both on the left and right sides. As shown in Fig. 1, the lane
where the predicted blue vehicle is located is not the leftmost or
rightmost one. However, there exist white vehicles alongside the
predicted vehicle both on the left and right sides. In a real driving
environment, the historical trajectory of a vehicle sometimes devi-
ates from the centerline of the lane, causing the misrecognition of
driving intentions. Therefore, we introduce the information about
basic road or driving rules into the DIM to restrict the driving
intention and improve the accuracy rate of the DIM for driving
intention recognition.

After defining the structure of the DIM, we can set up the joint
and conditional probability distributions (CPDs) of the DIM. The
DIM can be modeled as a stochastic process over a set of random
variables Zt ¼ Ht

1;H
t
2;M

t
1;M

t
2;O

t
1;O

t
2;O

t
3;O

t
4

� �
at time t. The joint

probability distribution of the variables within time T can be
defined as follows:

PðZ1:TÞ ¼
YT
t¼1

YN
i¼1

P Zt
i jPaðZt

i Þ
� � ð1Þ

where the symbol Pmeans the probability; Zt
i is the ith node at time

t; Pa Zt
i

� �
are the parents of Zt

i in the network; and the symbol N

means the number of nodes contained in the variables Zt .
As to the CPDs in the DIM, they can be categorized into three

types of matrices: a prior distribution matrix p of hidden variables,
a transfer matrix A of hidden variables, and an observation matrix
B. The first two matrices are expressed as follows:

p ¼ pif g;pi ¼ P H1
i

� �
; i ¼ 1;2

A ¼ aif g; ai ¼ P Htþ1
i jHt

i

� �
; i ¼ 1;2

ð2Þ

where p1;p2f g represent the prior probabilities of nodes H1;H2f g at
time t = 1 and a1; a2f g denote the transition probabilities of nodes
H1;H2f g between time t and t + 1;
The last matrix B can be expressed as:

B ¼ bif g; bi ¼ P Mt
i jHt

i

� �
; i ¼ 1;2

b3 ¼ P Ot
2jHt

1

� �
; b4 ¼ P Ot

1jHt
1;M

t
1

� �
b5 ¼ P Ot

3jHt
1;H

t
2

� �
; b6 ¼ P Ot

4jHt
2;M

t
2

� � ð3Þ
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where b1; b2f g represent the conditional probabilities of nodes
H1;M1f g; H2;M2f g at time t. Similarly, b3; b4; b5; b6f g refer to the
conditional probabilities between the observable nodes
O1;O2;O3;O4f g and the hidden nodes H1;H2;M1;M2f g at time t.
For the conditional probabilities of b3 in Eq. (3), we will need to

introduce the constraints of traffic rules according to the current
driving environment. Take the scene of highway as an example,
the probability of b3 that a vehicle is in the leftmost or rightmost
lane with the intention of left or right lane change is zero, and
the probability that there is an adjacent vehicle in the left or right
lane with the intention of left or right lane change is zero. For the
predicted blue vehicle in Fig. 1, the probability of b3 that there are
adjacent vehicles in the left and right with the intention of left or
right lane change is zero. These conditional probabilities will affect
the subsequent probabilistic inferences.

It is noted that the DIM is time-homogeneous, assuming the
parameters in CPDs are time-invariant. In addition, b4; b5; b6f g
can be expressed using Gaussian distributions since nodes
O1;O3;O4f g are continuous variables.
3.2. Data training of the model

After specifying the CPDs in the DIM, the parameters in p;A;Bf g
are defined as the model parameter k. The task of model data train-
ing is to learn the model parameter k, given the observation
sequence O ¼ ot ¼ oti

� �ðt ¼ 1 : T; i ¼ 1;2;3;4Þ of the observed
nodes O1;O2;O3;O4f g. Since there may exist missing data in O,
we can utilize the maximum likelihood estimation (MLE) method
with the expectation–maximization (EM) algorithm [35] to opti-
mize and obtain the k, consisting of two steps—the expectation
and maximization steps.

First, we define the likelihood function F(k) as:

F kð Þ ¼ P Ojkð Þ ¼
X
S

P O; Sjkð Þ ð4Þ

where S is the state sequence S ¼ st ¼ sti
� �ðt ¼ 1 : T; i ¼ 1;2Þ of the

hidden nodes H1;H2f g.
Then, using the initialized parameter �k, R kj�k� �

, the expectation
of the complete likelihood function logP S;Ojkð Þ under the condi-
tional distribution P Sj�k;O� �

, can be expressed as:

R kj�k� � ¼ E logPðS;OjkÞj�k;O� 	 ¼X
S

P Sj�k;O� �
logP O; Sjkð Þ ð5Þ

where E �½ � represents the expectation function.
In order to calculate R kj�k� �

, we use the forward and backward
algorithm [35,36]. The related forward variable at(st) and back-
ward variable bt(st) can be expressed as:

at stð Þ ¼ P O1:t; St ¼ st jk
� �

bt stð Þ ¼ P Otþ1:T jSt ¼ st ; k
� � ð6Þ

The specific computational procedure for at(st) and bt(st) can be
found in Ref. [35], which has a derivation of the forward–backward
algorithm for HMMs. Based on R kj�k� �

, which can be expressed by
Eq. (6), the model parameter k can be obtained by maximizing
R kj�k� �

over k using Jensen’s inequality theory [35,37]. By treating
the model training task as an optimization problem with con-
straints on the likelihood function F(k), which is subject to some
normalization restrictions, a standard Lagrange optimization can
be constructed by using Lagrange multipliers to find new esti-
mated parameter k. The whole iterative procedures are shown in
Algorithm 1.
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3.3. Probabilistic inference of the model

With the model parameter k derived from model training, we
can make the probability inference of the DIM, including the infer-
ence of the driving intention and the motion characteristics. This
part aims to find the most likely state sequence S, given the obser-
vation sequence O within the time T.

In the beginning, we define an interim variable rt(st) using the
Bayesian formula:

rt st
� � ¼ P St ¼ st jO1:T ; k

� �
¼

P O1:T jSt ¼ st ; k
� �

P St ¼ st
� �

P O1:T jk
� � ð7Þ

where P St ¼ st jO1:T ; k
� �

means the probability of St being in state st

at time t, given O1:T and the model parameter k.
Then, using the variables at stð Þ; bt stð Þ� �

in Eq. (6), the rt(st) can
be expressed as:

rt st
� � ¼ at stð Þbt stð ÞX

st
at stð Þbt stð Þ ð8Þ

Finally, the most likely state St at time t can be calculated by
solving the following optimization problem. And the entire process
is described in Algorithm 1.

St ¼ argmax
st

rt st
� �� � ð9Þ
Algorithm 1. Data training and probabilistic inference of the
DIM.

Data training:
1
 Initialize k0, convergence threshold e and the observation sequence

O ¼ ot ¼ oti
� �ðt ¼ 1 : T; i ¼ 1;2;3;4Þ
2
 for j = 1:n do � � h i

3
 Calculate the expectation:R kj jkj�1 ¼ E logPðS;OjkjÞjkj�1;O� �

4
 Maximize R kjjkj�1 using Jensen’s inequality theory
5
 Output the model parameter kj� � � �
 


6
 if logP Ojkj � logP Ojkj�1

 

 < e then
7
 k kj
8
 end if
9
 end for
Probabilistic inference:
10
 Initialize k and the observation sequence

O ¼ ot ¼ oti
� �ðt ¼ 1 : T; i ¼ 1;2;3;4Þ
11
 for t = 1:T do � �

12
 Calculate the forward variable:at stð Þ ¼ P O1:t ; St ¼ st kj� �

13
 Calculate the backward variable:bt stð Þ ¼ P Otþ1:T St ¼ st ; k





14
 Calculate the interim variable:rt stð Þ ¼ at stð Þbt stð ÞX

st
at stð Þbt stð Þ
15
 Calculate the most likely state:St ¼ argmax
st

rt stð Þð Þ
16
 end for
17
 Output the most likely state St
4. Trajectory prediction module

The purpose of this module is to make probabilistic trajectory
predictions of the predicted vehicle, depending on the recognized
probabilities of the driving intention and the motion characteris-
tics from the DIM. This section will mainly focus on three aspects:
vehicle model-based prediction, TPM building, and probabilistic
model prediction. Next, we will introduce them in detail.
232
4.1. Vehicle model-based prediction

As mentioned before, the vehicle model-based method has
advantages in short-term predictions. Here, we will use the CTRA
kinematic vehicle model [9] to obtain the support points as the
inputs to the trajectory prediction module, including the filtered
historical and future trajectory points.

First, the state space sðtÞ and state transition expression can be
expressed as follows:

s tð Þ ¼ x; y;v ; a; h;xð ÞT
s t þ Dtð Þ ¼ s tð Þ þ Ds tð Þ ð10Þ

where (x, y) mean the longitudinal and lateral positions of the vehi-
cle, respectively; (v, a) represent the velocity and acceleration of the
vehicle, respectively, in the driving direction; and (h, x) denote the
rotation angle and yaw rate of the vehicle, respectively. Besides, Dt
refers to the running period, which is consistent with the data sam-
ple frequency, and Ds(t) can be obtained by Eq. (11):
v þ aDt

x
sin hþxDtð Þ � v

x
sinhþ a

x2 cos hþxDtð Þ � coshð Þ
v
x

cosh� v þ aDt
x

cos hþxDtð Þ þ a
x2 sin hþxDtð Þ � sinhð Þ

aDt
0

xDt
0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
ð11Þ

To address the model uncertainty, the UKF algorithm is used
[38]. The state and observation equations with uncertainty can
be described as follows:

s t þ Dtð Þ ¼ w tð Þ þ q tð Þ
g tð Þ ¼ h tð Þ þ r tð Þ ð12Þ

wherew ð�Þ is the motion function; qð�Þ is the system noise function,
which is defined here as Gaussian noise; g is the observation space;
hð�Þ is the observation function; and rð�Þ is the observation noise.

Then, the filtered historical points xhf ¼ x1:t ; yhf ¼ y1:t
� �

and the
predicted future points xsf ¼ xt:tþDt ; ysf ¼ yt:tþDt

� �
can be calculated

by iterating the state equation. Note that t is the current time;Dt is
the duration time of a short-term prediction; lower case hf means
historical points sequence; and sf means future short-term points
sequence. Besides, the above method is suitable for lateral move-
ment prediction, such as lane changing. Since the prediction of lon-
gitudinal movement is simple, we choose the CA model with KF to
generate the points xhf ; yhff g and xsf ; ysff g. Sometimes, the rotation
angle and angular velocity of the predicted vehicle are difficult to
obtain, and we can use xhf ; yhff g to calculate them indirectly.

4.2. TPM building

Here, we will build the TPM for each kind of driving intention
and motion characteristic. For example, given the vehicle trajec-

tory dataset D ¼ xi ¼ x1:Tii ; yi ¼ y1:Tii

� �
; i ¼ 1 : N

n o
under one partic-

ular intention and characteristic (where N means the number of
trajectories and Ti denotes the length of the ith trajectory), we
can express a distribution P f ¼ f x; f y

� �
Dj� �

with the assumption

of x ¼ f x tð Þ; y ¼ f y tð Þ� �
. Then, based on a GP [39], the TPM can be

built with the distribution defined over parameters at a finite time,
which consists of the mean vector u and the covariance matrix K:

f �N u;Kð Þ; u ¼ m tð Þ; t ¼ 1 : Tf g
K ¼ j ti; tj

� �
; i; j ¼ 1 : N

� � ð13Þ

where the symbol f and N denote the function of vehicle trajectory
and Gaussian distribution separately; m �ð Þ is the mean function and
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j is a definite positive kernel representing the dependency between
function values at times ti and tj.

Since the observed data may have noise, we denote the covari-
ance matrix with noise as K 0 ¼ K þ r2

nIN , where rn is the standard
noise deviation and IN is a unit matrix. For the trajectories derived
from lane change scenarios in the highway, the mean and covari-
ance functions can be expressed as follows:

m tð Þ ¼ a0 þ a1t þ a2t2 þ a3t3 þ a4t4 þ a5t5

j t; t0ð Þ ¼ r2
f exp � 1

2l2
t � t0ð Þ2

� �
þ r2

ndt;t0
ð14Þ

where a ¼ a0; a1; a2; a3; a4; a5f g are the parameters of the mean
function represented as a quintic polynomial, whose optimized
curve can continuously smoothen the vehicle trajectory, and the
speed and acceleration of vehicle motion are continuous;
k ¼ ‘;rf ;rn

� �
are the parameters of the covariance function where

the squared exponential kernel is employed for its good smoothing
performance; and dt;t0 is the Kronecker delta.

Similarly, for the trajectories derived from lane-keeping scenar-
ios, the mean function can be changed to linear. After establishing
the TPM, we need to determine the model parameter h ¼ a;kf g. It
is crucial to learn suitable values of h because the final prediction
accuracy depends on the properness of the TPM parameters
directly. To make the prediction results more reliable and reason-
able, we learn the parameters from the training data D instead of
defining h manually.

Next, we will introduce the process of parameter learning. Tak-
ing the lateral movement as an example, first, the corresponding
log marginal likelihood L(h) can be expressed as follows:

L hð Þ ¼ � 1
2
log K þ r2

nIN


 

� N

2
log 2pð Þ

� 1
2

y� uð ÞT K þ r2
nIN

� ��1
y� uð Þ

ð15Þ

Then, ha; hkf g, the parameters of a;kf g, can be obtained by opti-
mizing L hð Þ using the partial derivatives of Eq. (14):

oL hð Þ
oha

¼ �1
2

y� uð ÞT K þ r2
nIN

� ��1 ou
ohk

oL hð Þ
ohk

¼ 1
2
trace K þ r2

nIN
� ��1 ou

ohk

� �
þ

1
2

y� uð ÞT oK
ohk

K þ r2
nIN

� ��1 oK
ohk

y� uð Þ

ð16Þ

Finally, we can apply an optimization method using conjugate
gradients to effectively figure out the optimal model parameters.
As for the longitudinal movement, the model selection is similar
to the lateral case.

4.3. Probabilistic prediction of the model

Here, we will first introduce the typical prediction based on the
TPM. Considering the lateral trajectory prediction case, we denote
y as the known observation points and y* as the unknown future
points. The joint probability density can be expressed as:

y
y�

� �
�N

uy

u�y

 !
;

Ky K�y
K�Ty K��y

 ! !
ð17Þ

where uy;Ky
� �

refer to the mean and variance of y; u�y;K
��
y

� �
repre-

sent the mean and variance of y*; and K�y means the covariance
between y and y*.

Then, we incorporate the support points of the vehicle based on
prediction. The new observation points will be replaced by y0 =
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yhf + ysf. Moreover, for the longitudinal prediction, the new
observation points will be replaced by x0 = xhf + xsf. Afterward,
the conditional prediction probability of y* given y0 can be pre-
sented by:

p y�jy0� � ¼N u�y þ K�Ty K�1y y
0 � uy

� �
; K��y � K�Ty K�1y K�y

� �
ð18Þ

Finally, the future predicted points in the long term can be
obtained from the mean function u�y þ K�Ty K�1y y0 � uy

� �
in Eq. (18),

and the corresponding prediction uncertainty K��y � K�Ty K�1y K�y can
be described by the covariance function in Eq. (18). Since the pre-
dicted point at each moment obeys a Gaussian distribution. The
lateral uncertainty of the point can be represented by the values
of the related variance. Similarly, when calculating the longitudinal
trajectory prediction, we can use the same method to obtain the
conditional prediction probability p x�jx0� �

. Finally, by calculating
p x�jx0� �

and p y�jy0� �
, we can obtain the trajectory prediction points

(xt:T, yt:T). The entire vehicle trajectory prediction process is shown
in Algorithm 2.
Algorithm 2. Probabilistic vehicle trajectory prediction.

Input: x; y;v ; að Þ1:t , driving intention probability Pt
Intent, and motion

characteristic probability Pt
Mcharact

Output: prediction points xt:T ; yt:T
� �
1
 if the probability of lane keeping Pt
Lk ¼ maxfPt

Intentg then

2
 Calculate the points based on CV and KF: xhf ; yhff g, xsf ; ysff g

3
 else
4
 Calculate the points based on CTRA and PF: xhf ; yhff g, xsf ; ysff g

5
 end if
6
 Output the input of TPM: y0 = yhf + ysf, x0 = xhf + xsf
7
 Calculate the most likely characteristic:Pt
max Charact ¼ max fPt

Mcharactg

8
 Calculate the most likely intention:Pt

max Intent ¼ max fPt
Intentg
9
 Select h to match Pt
max Intent and Pt

max Charact
10
 Calculate trajectory prediction points (xt:T, yt:T) using p x�jx0� �
and

p y�jy0� �
5. Experiments

Since the straight driving and lane change are the situations we
encounter most frequently in the process of naturalistic driving, in
this section, we will validate the developed DIM and TPM in the
widely applicable highway scenario. According to the contribu-
tions proposed in this paper, we will validate the superiorities of
our developed DIM. Then, the overall performance of our final
TPM will be shown from different aspects.

First, the data processing method will be introduced, including
the driving intention calibration and motion characteristic classifi-
cation. Then, the inference probability of the DIM and the evalua-
tion of the DIM will be presented. Finally, the trajectory
prediction results of the TPM will be shown and analyzed. Besides,
a comprehensive evaluation and comparison will be made to fur-
ther demonstrate the effectiveness of our proposed method.

5.1. Data processing

Here, we use a large-scale naturalistic vehicle trajectory dataset
from German highways called the highD dataset [40] to verify our
proposed method for long-term trajectory prediction. The highD
dataset contains 16.5 hours of measurements from six locations
with 110 000 vehicles. Moreover, it records 5600 complete lane-
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changing scenarios. Compared to the commonly used Next
Generation SIMulation (NGSIM) dataset, the vehicles in highD
dataset have a more reasonable speed distribution, which is more
close to our real driving environment. Thus, it is appropriate to
perform model training or learning for our built DIM and TPM.
The training and test sets are mainly including three parts: the
calibration of driving intentions; the calibration of motion
characteristics calibration; and the determination of observation
variables. For the test sets, they only include observation variables.

First, according to the scene of highway, driving intentions will
be divided into three categories: left lane change, lane keeping, and
right lane change. The start time identification of the lane-change
intention is defined when the lateral offset of the vehicle exceeds
0.1 m relative to the average lateral position of the vehicle. For
the calibration of driving intention, we define the trajectory before
the start time as the straight driving phase, and the trajectory
afterwards as the lane change phase.

Then, we will make a calibration of the motion characteristics.
Since it is difficult to directly calibrate this abstract variable, we
employ a sequence clustering algorithm, which is based on the
k-means cluster method, to classify the motion characteristics
[41]. Generally, the cluster number C is hard to determine since
it is not a probabilistic model and there is no likelihood. Hence,
we use the following mean square error (MSE) to solve this
problem:

MSE Q ;Cð Þ ¼ 1
Qj j
X
ci2Q
k ci � ci

^ k
2

ð19Þ

where Q represents the trajectory samples; ci is the ith trajectory

sample in Q; and the centroids ci
^
can be derived from:

ci
^ ¼ udi ; di ¼ argmin

c
k ci � uc k2 ð20Þ

where uc means the cth cluster center, udi denotes the optimal clus-
ter (i.e., the dith cluster center).

Subsequently, we use the lateral acceleration sequences to carry
out the clustering of the motion characteristics, and the results of
the left lane change case are shown below. With the illustrated
sequence data of lateral acceleration in Fig. 4(a), we can try differ-
ent values of K using the clustering algorithm and calculate the
MSE separately. According to Fig. 4(b), the number of clusters
can be set to 3, which corresponds to the knee point in the error
curve. Therefore, the motion characteristic can be identified by
three clustering centroids, as shown in Fig. 4(c). A difference can
be seen in the drop between the peaks and troughs of these curves.
The blue curve represents motion characteristic 1; the yellow
curve represents motion characteristic 2; and the orange curve
represents motion characteristic 3. Similarly, we can obtain the
clustering centroids in the case of right lane change, which is
shown in Fig. 4(d).

Finally, we will make the determination of observation vari-
ables according to the different requirements of models. We can
obtain the corresponding training and test sets for the TPM, which
contains the position sequences (x,y) under different kinds of driv-
ing intentions and motion characteristics. However, to prepare the
training and test sets for the DIM, we need to define the motion
variables of nodes O1;O3;O4f g in the DIM. Since the motion charac-
teristic is mainly determined by lateral and longitudinal accelera-
tion (ax,ay) and the driving intention is primarily characterized by
lateral position y, lateral velocity vy, and lateral acceleration ay,
the related nodes are set to O1 ¼ ax; ay

� �
;O3 ¼ vy;O4 ¼ y; ay

� �� �
.

Note that this assignment is the empirical result of trying a few dif-
ferent combinations. Finally, we can obtain the state and observa-
tion sequences (S,O) for the DIM training.
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5.2. Results analysis and evaluation of the DIM

With the results of data processing, the DIM parameters can be
learned from the training set of DIM. Then, we can perform proba-
bilistic model inference using the method described in Section 2.
Subsequently, the test set is utilized to show the inference perfor-
mance. Here, we illustrate the outcomes under the cases of left
lane change and right lane change, which can be seen in Figs. 5
and 6, respectively. The dotted lines in color refer to the probabili-
ties of the driving intention or motion characteristics over time,
and the solid black line indicates the true lateral position or lateral
acceleration of the vehicle. In addition, the probability of the driv-
ing intention is depicted in Figs. 5(a) and 6(a), and the probability
of the motion characteristics is presented in Figs. 5(b) and 6(b).

Next, we will quantitatively analyze the performance of the
DIM since it acts as the essential input to the TPM and has a signifi-
cant influence on the trajectory prediction accuracy. Since the col-
ored lines in Figs. 5 and 6 do not fluctuate frequently when the lane
change occurs, we will only evaluate the DIM using the accuracy
rate. If the probability of one specific sequence exceeds 90%, we
define it as a correct case. To further demonstrate our designed
DIM’s performance, we make comparisons using the traditional
models which includes HMM, HMM with mixture of Gaussians
output (GMM–HMM) [34,42], and our previously built driving
characteristic and intention estimation (DCIE) model [37]. The sta-
tistical results of the DIM are shown in Table 1. We can see that the
accuracy rate of the DIM for the driving intention and motion
characteristics reaches 94.5% and 92.3%, respectively, while the
results of the DCIE model are 92.4% and 90.1%. Moreover, both
the HMM and GMM–HMM have lower accuracy than our model.

In order to further demonstrate the improvement in the accu-
racy rate of the DIM for driving intention recognition after intro-
ducing traffic rules, we tested the model without node Ot

2 in
Fig. 3. The accuracy rate of this model for driving intention recog-
nition is 93.87%, and the DIM improved by 0.67% over it. Therefore,
the performance of our proposed model that introduces traffic
rules is promoted.

In conclusion, our designed DIM model can effectively infer the
probabilities of driving intention or motion characteristics. From
the visualized results, our DIM has good response properties, and
the advantages in inference ability and accuracy can be verified
compared to the other models.
5.3. Results analysis and comparison of the TPM

As mentioned before, each TPM corresponds to one specific
driving intention and motion characteristic. Thus, given the
training sets of the TPM, we can learn the model parameters of
each TPM from the data.

There are three main procedures to make long-term trajectory
predictions via our proposed method. First, through the DIM, we
can determine the start time when the probability of a driving
intention exceeds 90%. Afterward, we can identify the most likely
driving intention and motion characteristics at that time. Then,
we choose the right TPM model according to the most likely prob-
ability. The final probabilistic trajectory prediction can be made
with the chosen TPM and the corresponding vehicle model.

In the case of left lane change, the trajectory prediction results
of our proposed method are shown in Fig. 7. In Fig. 7(a), we show
the outcomes of the prediction at one second ahead of the start
time. We should note that the observed points in Fig. 7 are the fil-
tered points from the vehicle model-based prediction module.
Since the probability of a left lane change intention is over 90%
at the start time, the future long-term trajectory can be forecasted
via the TPM, as shown in Fig. 7(b). Furthermore, we can make the



Fig. 4. (a) The sequence data of the lateral acceleration in the left lane change case; (b) the change in the MSE over different cluster numbers; (c) the clustering centroids of
the motion characteristics in the left lane change case (Lcl-1, Lcl-2, and Lcl-3 respectively represent the motion characteristics 1, 2, and 3 in the process of left lane change);
(d) the clustering centroids of the motion characteristics in the right lane change case (Lcr-1, Lcr-2, and Lcr-3 respectively represent the motion characteristics 1, 2, and 3 in
the right lane change process).

Fig. 5. The probability results of the DIM in the left lane change case. (a) The probability of the driving intention; (b) the probability of the motion characteristic.

Fig. 6. The probability results of the DIM in the right lane change case. (a) The probability of the driving intention; (b) the probability of the motion characteristic.
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multimodal trajectory prediction (shown in Fig. 7(a)) via our pro-
posed method because the probabilities of left lane change and
lane-keeping intentions are both below 50% at that time. One thing
to note is that we should choose the CV model when dealing with
the lane-keeping case.
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In addition, one phenomenon that can be found in Fig. 7 is that
the quality of the TPG-based prediction will be improved with the
extended length of the observed sequence. Since our TPM is based
on the GP, it is easy to understand that the model performance will
be improved when additional reliable known points are provided.



Table 1
Accuracy rate of different models.

Accuracy rate Model

HMM (%) GMM–HMM (%) DCIE (%) DIM (ours) (%)

Driving intention 86.10 90.40 92.40 94.50
Motion characteristic 81.90 89.20 90.10 92.30

J. Liu, Y. Luo, Z. Zhong et al. Engineering 19 (2022) 228–239
Fortunately, based on the support points of vehicle model-based
prediction, we can not only obtain more reliable filtered points
but also lengthen the known points using the short-term predic-
tion points.

In Fig. 8, the uncertainty regions of the predicted trajectories
based on the historical observation sequences are shown, which
are represented by the purple ellipse with the horizontal axis rep-
resenting the longitudinal uncertainty and the vertical axis repre-
senting the lateral uncertainty. According to the theoretical part
of the TPM in Section 4, the predicted point at each moment obeys
a Gaussian distribution, and the longitudinal and lateral variances
of each point can be obtained according to Eq. (18). The values of
variances are used to determine the length of axes in the ellipse.
As can be seen in Fig. 8, the ellipse gradually increases since the
uncertainty rises over time. Moreover, the true future trajectories
in both Figs. 8 and 9 are always enveloped in the uncertainty
regions, which indicates that our method is able to provide a rea-
sonable description of the range of prediction uncertainty.

To achieve a comprehensive analysis of our proposed method,
we use two trajectory prediction methods for comparison. The first
is vehicle model-based prediction, which has been introduced fre-
quently in this paper, and the second prediction method is based
Fig. 7. Trajectory prediction of our proposed method with the intention of left lane chan
(b) the results of the trajectory prediction at the start time. The red solid square refers to
denote the observed points, and the black lines denote the true future trajectory; the red
the predicted trajectory of lane keeping. LK: lane keeping; Lcl: lane change left.

Fig. 8. Trajectory prediction of our proposed method with the uncertainty region. (a) The
to the start point; the blue lines denote the observed points; the black lines denote the tr
represent the prediction uncertainty derived from the covariance function in Eq. (18); the
the lateral uncertainty.
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on our designed DIM and TPM without using the vehicle model.
Actually, the second approach is a maneuver-based method. Here,
the comparative results under the left lane change and right lane
change intentions are illustrated in Figs. 9(a) and (b), respectively.

As shown in Fig. 9, the vehicle model-based prediction (the blue
line) has a high accuracy in the short term but has a low accuracy
in the long term. In contrast, the maneuver-based prediction (the
orange line) has good performance in the long term and is capable
of guaranteeing overall accuracy. For our proposed method, the
prediction accuracy during the whole process is further improved
by incorporating the vehicle model. Additionally, the TPM has an
advantage in uncertainty description using the covariance func-
tions. As depicted in Fig. 9, the uncertainty region generated by
our method is more reasonable and reliable than that generated
by the first method.

To evaluate the prediction performance, two evaluation criteria,
the average displacement error (ADE) and the final displacement
error (FDE)—are used to analyze the results [43]. In Table 2, com-
parative evaluations of the ADE/FDE using different methods are
presented. In general, the tendency of the ADE/FDE during the
whole prediction corresponds to the analysis of the three methods,
which is mentioned above. The best results are in bold in the table.
ge. (a) The results of the trajectory prediction at one second ahead of the start time;
the start point, and the quadrilateral refers to the predicted vehicle; the blue lines

lines denote the predicted trajectory of left lane change, and the orange line denotes

case of left lane change; (b) the case of right lane change. The red solid square refers
ue future trajectory; the red lines denote the predicted trajectory. Ellipses in purple
horizontal axis refers to the longitudinal uncertainty; and the vertical axis indicates



Fig. 9. Comparisons of different vehicle trajectory prediction methods. (a) The case of a left lane change; (b) the case of a right lane change. The blue shaded part indicates the
prediction uncertainty region of the model-based method, the red shaded part indicates that of our method, and the orange line refers to the results of our method without
using the vehicle model.
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In Section 1, we have mentioned three types of trajectory predic-
tion methods: vehicle model-based prediction, maneuver-based
prediction, and deep learning-based prediction. In Table 2, we will
compare a total of three methods. The first corresponds to the
vehicle model-based prediction, and the second and the third cor-
respond to the maneuver-based prediction. In Table 3 [3,28–30],
we will show the comparisons between our method and the deep
learning-based prediction.

In Table 2, the second one is our proposed method without
incorporating the vehicle kinematic model. From Table 2, we can
see that the ADEs of our method without model are 0.204 and
0.367 m for the prediction times of one and two seconds, which
are 4.08% and 27.43% higher than our method’s results of 0.196
and 0.288 m. In addition, for the prediction times of fourth and fifth
seconds, the ADEs of our method are 0.972 and 1.261 m, respec-
tively, which are 50.03% and 60.33% lower than the first results
of 1.945 and 3.179 m, and 7.95% and 9.99% lower than the second
results of 1.056 and 1.401 m. Similarly, compared with the other
methods, the FDEs of our method are lower. Therefore, our pro-
posed method improves the prediction accuracy both in the short
and long term, compared to our method without vehicle model.
Meanwhile, our method enhances the long-term prediction accu-
racy to a great extent compared to the model-based method. Thus,
integrating the short-term prediction results of the kinematic vehi-
cle model, the TPM can improve the precision of the entire predic-
tion process.
Table 2
The ADE/FDE (m) comparisons of different methods.

Method Prediction horizon

1 s 2 s

Mode-based method 0.184/0.204 0.306/0.548
Our method without model 0.204/0.349 0.367/0.503
Our method 0.196/0.237 0.288/0.415

Table 3
The ADE/CEI (m) comparisons of other state-of-the-art methods.

Method Prediction horizon

1 s 2

CS-LSTM [28] 1.18 1
L-RRNN [29] 0.22 0
LSTM encoder–decoder model-lane attention [30] 0.69 0

3D CNN-LSTM [3] 0.26 0
Ours 0.18 0

CEI: comprehensive evaluation index; CS-LSTM: LSTM with convolutional social pooling
convolutional kernel layers.
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The above analysis demonstrates the effectiveness of our pro-
posed framework for long-term trajectory prediction. To further
illustrate the benefits of our approach, in Table 3 [3,28–30], we
show comparisons of other state-of-the-art methods applied in
the public highD dataset. The best results for the ADE are labeled
in bold, and the second best results are underlined. It should be
noted that the results of the sequence-to-sequence method using
convolutional social pooling [28] are derived from Ref. [30]. We
can see that this method has high accuracy in the long term (the
prediction duration is more than 2 s) but low accuracy in the short
term (the prediction duration is 1 s). However, the second and
fourth methods have excellent performance in the beginning but
bad performance at the final stage, which accounts for the diffi-
culty of guaranteeing the prediction accuracy both in the short
term and long term. Although the third method based on the LSTM
encoder–decoder model with the lane attention mechanism
achieves the optimal results in the fourth and fifth seconds (one
possible reason is the difference in the test set), the accuracy
within the first three seconds is lower than our method.

To further validate the advantage of our method in the overall
prediction time domain, we define a comprehensive evaluation
index (CEI): the average value of ADE over the entire prediction
period. The CEI can be expressed as follows:

CEI ¼ 1
T

XT
i¼1

ADE ið Þ ð21Þ
3 s 4 s 5 s

1.163/1.724 1.945/2.751 3.179/4.363
0.629/0.891 1.056/1.322 1.401/1.771
0.502/0.667 0.972/1.138 1.261/1.474

CEI

s 3 s 4 s 5 s

.16 1.22 1.44 1.77 1.354

.63 1.31 2.22 3.38 1.552

.66 0.69 0.83 1.09 0.792

.65 1.20 1.91 2.74 1.352

.29 0.50 0.97 1.23 0.634

; L-RRNN: relational RNN with per lane embedding; 3D CNN-LSTM: LSTM with 3D
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where T is the total prediction time and ADE(i) means the value of
ADE at the ith prediction time.

In Table 3, [3,28–30] it can be seen that different methods have
an obvious difference in the prediction performance under differ-
ent prediction durations. The CEI can effectively measure the com-
prehensive prediction effectiveness of a certain prediction method
in the short and long term. We can see that the CEI value of the
method that dominates when the prediction time is 5 s is 0.792,
while our method has the best CEI value of 0.634. Our method
improves by 19.5% over it. Therefore, our designed method has
clear advantages over others in the whole prediction time.

In summary, our proposed method can obtain good prediction
performance in both the short term and long term. Compared to
the other methods, the effectiveness and reliability of our method
are superior. It is capable of ensuring higher prediction accuracy
and describing the prediction uncertainty more appropriately dur-
ing the whole prediction process.
6. Conclusions

In this paper, we proposed an integrated probabilistic architec-
ture to predict the long-term trajectory of the surrounding vehicle
by combining low- and high-level environmental information. This
architecture consists of two novel components: a DIM based on a
dynamic Bayesian network that incorporates physical movement
and traffic rules and a TPM based on a GP that considers the vehicle
motion characteristics and short-term prediction results together.
We first use the predicted vehicle’s historical data to obtain the
probability of both the driving intention and motion characteris-
tics, which also considers the basic road rules. According to the
above results, the vehicle trajectory can be predicted correspond-
ingly, which is fused with the vehicle’s physical motion. In addi-
tion, the region of prediction uncertainty can be presented since
our proposed framework is probabilistic.

Experiments on the public highD dataset show that the pro-
posed architecture is effective and reliable in highway scenarios.
Compared to other methods, the proposed model has the following
advantages:① an interpretable probabilistic framework to guaran-
tee prediction accuracy and feasibility; ② the capability of han-
dling sequential data to take advantage of high-level information
consisting of the driving intention and motion characteristics;
and ③ the guidance of autonomous driving systems with better
situational understanding. In future work, we will extend the vehi-
cle trajectory prediction architecture to adapt to more complex
scenarios and consider employing the prediction results to esti-
mate the collision probability. By considering the dynamic interac-
tion between vehicles, we can provide an early warning for
autonomous driving. There are also some improvements that need
to be made in some aspects. Since the structure of DIM is artifi-
cially constructed based on experience, a considerable amount of
time is spent on the adjustment of the model structure. For the
good scalability of our probabilistic prediction framework, further
refinements are still in proceeding, including the self-learning and
optimization of the model structure, and the application of this
approach to more complex scenarios. We are also conducting
experimental work on real vehicles in Chinese highways, hoping
to verify the performance of our model in Chinese highway
scenarios.
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