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The forward design of trajectory planning strategies requires preset trajectory optimization functions,
resulting in poor adaptability of the strategy and an inability to accurately generate obstacle avoidance
trajectories that conform to real driver behavior habits. In addition, owing to the strong time-varying
dynamic characteristics of obstacle avoidance scenarios, it is necessary to design numerous trajectory
optimization functions and adjust the corresponding parameters. Therefore, an anthropomorphic
obstacle-avoidance trajectory planning strategy for adaptive driving scenarios is proposed. First, numer-
ous expert-demonstrated trajectories are extracted from the HighD natural driving dataset.
Subsequently, a trajectory expectation feature-matching algorithm is proposed that uses maximum
entropy inverse reinforcement learning theory to learn the extracted expert-demonstrated trajectories
and achieve automatic acquisition of the optimization function of the expert-demonstrated trajectory.
Furthermore, a mapping model is constructed by combining the key driving scenario information that
affects vehicle obstacle avoidance with the weight of the optimization function, and an anthropomorphic
obstacle avoidance trajectory planning strategy for adaptive driving scenarios is proposed. Finally, the
proposed strategy is verified based on real driving scenarios. The results show that the strategy can adjust
the weight distribution of the trajectory optimization function in real time according to the ‘‘emergency
degree” of obstacle avoidance and the state of the vehicle. Moreover, this strategy can generate anthro-
pomorphic trajectories that are similar to expert-demonstrated trajectories, effectively improving the
adaptability and acceptability of trajectories in driving scenarios.

� 2023 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

With the development of information and communications
technology (ICT) and artificial intelligence (AI) technologies, intel-
ligence has become an inevitable trend in automobile development
[1]. Planning a collision-free trajectory from an initial state to a tar-
get state while driving is an important aspect of vehicle intelli-
gence [2].

Trajectory planning, as a link between the decision-making and
control execution layers of intelligent driving technology, has been
less studied because of the lack of abundant and accurate vehicle
trajectories. Existing trajectory planning techniques can be roughly
divided into four types: graph search [3–5], sampling [6–8], curve
interpolation [9–11], and numerical optimization [12–14]. Based
on the linear time-varying model predictive control method, the
vehicle lateral obstacle avoidance trajectory planning problem
was defined as a constrained optimal control problem [15]. A
real-time solution to the trajectory planning problem was realized
based on the spatial–temporal grid method [16]. Based on the
potential energy function and vehicle-reachable set, a robust
model predictive control method was adopted to generate feasible
vehicle trajectories [17]. Based on vehicle–vehicle communication
technology, the trajectory–planning problem has been trans-
formed into a constrained-optimization problem to solve the
obstacle avoidance trajectory satisfying driving safety and ride
comfort [18]. A time-independent polynomial equation was used
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to construct a dynamic obstacle-avoidance trajectory planning
model [19]. A linear quadratic method of constrained iteration
was proposed to solve the trajectory planning problem by trans-
forming it into a nonlinear programming problem [20]. The afore-
mentioned strategies satisfy the vehicle dynamics constraints and
effectively address the safety and efficiency of obstacle avoidance
trajectories.

However, these strategies mostly require the design of trajec-
tory optimization functions in advance and cannot be extended
to complex driving scenarios. The design of the trajectory opti-
mization function plays a key role in trajectory planning [21]. Con-
sidering the complexity of driving scenarios, the dynamics of traffic
flow, the randomness of driving behavior, and the game between
traffic participants, it is a significant challenge for a vehicle deci-
sion system to realize autonomous obstacle avoidance trajectory
planning andmeet safety and comfort requirements. The establish-
ment of a trajectory optimization function requires not only expe-
rienced engineers to carefully design each component, but also to
formulate its tradeoff strategy. Highly complex and dynamic driv-
ing scenarios often require a large number of trajectory optimiza-
tion functions, which makes their design more tedious and difficult
and may fail to obtain the optimal solution [22].

To avoid the numerous complications associated with manual
design, scholars have proposed various methods for directly or
indirectly recovering planning strategies from expert-
demonstrated obstacle avoidance trajectories (EDOATs). By com-
bining imitation learning and optimization, a long time-domain
model predictive control method was adopted to obtain expert
obstacle avoidance trajectories [23]. A backpropagation neural net-
work model was used to predict obstacle avoidance time to design
a constant-speed offset obstacle avoidance trajectory [24]. A
hyperbolic-tangent trajectory model was proposed to reconstruct
the actual trajectory using a large number of real driver obstacle
avoidance scenarios [25]. A trajectory optimization function was
designed by constructing the relationship between the obstacle
avoidance decisions of real drivers and the trajectory selection
probability [26]. Although the aforementioned studies generated
effective obstacle avoidance trajectories, obstacle avoidance on
structured roads involving surrounding dynamic traffic entities
presents a complex challenge. This necessitates a high degree of
scenario adaptability for the optimization function of the obstacle
avoidance trajectory. The process of establishing a mapping rela-
tionship between driving scenarios and obstacle avoidance trajec-
tory optimization functions has not been widely explored.

In addition to security considerations, acceptability is a crucial
factor in obstacle avoidance trajectory planning [27,28]. An anthro-
pomorphic trajectory that conforms to the driving habits of drivers
can enable vehicles to avoid obstacles more smoothly. This can
reduce the tension of drivers and passengers, and improve ride
comfort and acceptability. The Gaussian mixture model has been
used as a statistical method to model drivers and can effectively
describe the differences in drivers’ behavioral habits [29].
Remote-learning control modes and real vehicle test data have
been used to imitate human driving behavior and develop different
styles of driver modeling [30]. To simulate the behavior habits of
real drivers, a recurrent neural network-based long short-term
memory network architecture was developed, and a trajectory
planning strategy based on vision and imitation learning was pro-
posed [31]. By integrating personalized driving habits into obstacle
avoidance trajectory planning, a safe driving trajectory that adapts
to different driver styles was planned [32]. The state grid method
was combined with model predictive control to achieve automatic
driving with personalized trajectory characteristics of the driver
[33]. A convolutional neural network was used to extract track fea-
tures from road images collected by cameras, and track planning of
intelligent vehicles was realized through classification [34]. A
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Gaussian mixture model based on neural network parameteriza-
tion was proposed to predict the trajectories of vehicles at the
entrance of an expressway [35]. A lane-change prediction algo-
rithm adapted to the driver’s personalized style was proposed. A
trained support-vector-machine decision model was integrated
into the model predictive control framework to predict the lane-
change behaviors of different drivers [36]. These strategies have
ensured the acceptability of obstacle avoidance trajectories and
have made important contributions to the development of
human-like driving.

Therefore, considering both the acceptability and adaptability
of obstacle avoidance trajectory planning strategies, and avoiding
the complicated process of manual parameter tuning, this study
proposes anthropomorphic obstacle avoidance trajectory (AOAT)
planning for adaptive driving scenarios using the HighD natural
driving dataset [37]. The main contributions of this study are sum-
marized as follows.

(1) To avoid complicated parameter adjustment of the opti-
mization function, this study applies inverse reinforcement learn-
ing theory for the offline learning of EDOATs. A trajectory
expectation feature-matching algorithm is proposed to achieve
automatic recovery of the optimization function.

(2) To enhance the adaptability of the trajectory optimization
function to driving scenarios, this study uses the speed of the ego
vehicle and the speed difference between the ego and lead vehicles
as the primary driving scenario parameters influencing obstacle
avoidance trajectory planning. A mapping relationship between
the driving scenario information and the obstacle avoidance trajec-
tory optimization function is established.

The trajectory planning problem is described mathematically in
Section 2. The trajectory expectation feature matching algorithm
based on maximum entropy inverse reinforcement learning theory
is introduced in Section 3. The mapping relationship between the
trajectory cost function and key driving scenarios is established
and verified in Section 4. The conclusions and future work are pre-
sented in Section 5.
2. Related work

2.1. Problem description

The problem of vehicle obstacle avoidance trajectory planning
can be roughly described as follows. After receiving an obstacle
avoidance instruction from the decision-making layer, the system
preselects a feasible trajectory set R ¼ r1; r2; . . . ; rnf g based on con-
trol strategies according to the current driving scenarios, where
r1; r2; . . . ; rn represent the first, second, . . ., nth feasible trajectories,
respectively. Subsequently, the optimal trajectory r� is selected to
optimize the predesigned optimization function.

r� ¼ argmin
r2 r1 ;r2 ;...;rnf g

COAF ð1Þ

where r� is the final optimized obstacle avoidance trajectory and
COAF is the trajectory optimization function.

To balance the efficiency, comfort, and safety of the trajectory
planning, the optimization function of the obstacle avoidance tra-
jectory is expressed as

COAF ¼ COAF gr ; hrð Þ ð2Þ

where gr is a vector composed of trajectory features, and hr is the
weight matrix balancing these trajectory features,
hr ¼ hr

1; hr
2; . . . ; hr

n� �
, where hr

1; hr
2; . . . ; hr

n represents the weight
matrices of the trajectory features for the first, second, . . ., nth tra-
jectories, respectively. It should be noted that there is a complex



Fig. 2. AOAT planning strategy for adaptive driving scenarios.
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mapping relationship between feature weights and driving scenar-
ios, which leads to different obstacle avoidance trajectories.

Fig. 1 shows the driving-scenario information of intelligent
vehicles for obstacle avoidance on structured highways. In Fig. 1,
vx represents the longitudinal speed of the vehicle during collision
avoidance. In the same driving scenario, different weights of trajec-
tory features result in different obstacle avoidance trajectories
planned by the vehicles. If the speed of the ego vehicle is much
higher than that of the lead vehicle when it receives an obstacle
avoidance command, the red trajectory may be better than the
green and blue trajectories, based on the degree of obstacle avoid-
ance urgency. Therefore, the driving scenarios information includ-
ing the states of the ego vehicle and surrounding vehicles is
defined as E, E ¼ E1;E2; . . . ;Enf g, where E1;E2; . . . ;En represents
the driving scenarios information for the first, second, . . ., nth tra-
jectories, respectively.

Eq. (2) can be rewritten as

COAF ¼ COAF gr ; hr x;Eð Þð Þ ð3Þ

wherex is the weights parameter of the mapping model from driv-
ing scenarios information E to trajectory feature weights hr .

To balance the efficiency, comfort, and safety of trajectory plan-
ning, the feature weights of the trajectory optimization function
must be manually adjusted by engineers based on their own prac-
tical experience. Adjusting the parameters is generally tedious and
requires considerable repetition. To solve this problem, this study
proposes a new trajectory-planning scheme.

As shown in Fig. 2, the strategy adopted in this study is divided
into two stages: offline training and online optimization. In the off-
line training stage, abundant expert obstacle avoidance trajectories
r1; r2; . . . ; rnf g and corresponding driving scenarios information
E1;E2; . . . ;Enf g are firstly extracted from the HighD natural driving
dataset. Then, using the maximum entropy inverse reinforcement
learning technology, the feature weights hr

1; hr
2; . . . ; hr

n� �
of the

trajectory optimization function are extracted from the EDOATs.
Subsequently, the key driving scenario information that affects
the obstacle avoidance trajectory is extracted, and a mapping
model of the driving scenarios to the trajectory feature weight is
constructed. In this study, the model parameter x is obtained
using multivariate nonlinear fitting. In the online optimization
stage, the optimization function of the obstacle avoidance trajec-
tory is reconstructed based on the driving scenarios information
E and the mapping model obtained in the offline training stage.
2.2. Natural driving dataset selection and trajectory extraction

As mentioned above, to avoid a series of problems caused by
manual adjustment of weights hr , this research proposes an auto-
matic recovery method of feature weights hr based on inverse rein-
forcement learning theory, which has been widely used as a tool to
obtain optimization functions from expert examples. The core idea
of inverse reinforcement learning theory is to generate strategies
that match expert examples by obtaining the weights of the opti-
mization function. Therefore, the extraction of the obstacle avoid-
Fig. 1. Obstacle avoidance scenarios in structured highway driving.
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ance trajectory of a real driver is necessary to obtain the feature
weights of the trajectory optimization function.

In intelligent driving research, natural driving trajectory data-
sets provide an effective tool for the development and verification
of intelligent driving algorithms. Currently, researchers mainly use
the next-generation simulation (NGSIM), KITTI, Cityscapes, and
HighD datasets. The KITTI and Cityscapes datasets mainly focus
on urban road conditions. The trajectories in the NGSIM dataset
show poor smoothness of lateral displacement and lateral velocity.
This study focuses on obstacle avoidance trajectory planning for
autonomous vehicles when driving on structured highways.
Through a simple comparison, the HighD dataset was selected to
develop and verify the obstacle-avoidance trajectory algorithm.
The following is a description of the data used in the study.

Each frame of the HighD dataset provides 25 groups of data cen-
tered on the vehicle [37], as shown in Fig. 3. Based on the HighD
dataset, obstacle avoidance trajectory planning for vehicles on
structured highways was considered. For the main research objec-
tive of this study, an excellent obstacle avoidance trajectory in the
dataset should first be extracted. In the process of obstacle avoid-
ance trajectory extraction, the following items were considered:
Fig. 3. Information schematic of HighD dataset. DHW: distance-to-headway;
THW: time headway; TTC: time-to-collision.



Fig. 5. Maximum change rate of longitudinal velocity during obstacle avoidance.
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(1) The HighD dataset utilized drones to capture typical road
sections. Typical captured sections included ordinary highway
and ramp inflow scenarios. This study focuses on the obstacle
avoidance behavior of vehicles on ordinary straight roads. There-
fore, the free lane-change trajectory data in the barrier-free situa-
tion in the front and the ramp inflow trajectory data are discarded
in the trajectory extraction process.

(2) To improve the effectiveness of the designed obstacle avoid-
ance trajectory, trajectory data with vehicles around, but not in,
the captured field of vision were discarded. Trajectory data in
which the surrounding vehicles have left the captured field of
vision before obstacle avoidance is complete were also discarded.

(3) The moment when the absolute value of vehicle lateral
velocity reaches 0.1 m�s�1 is considered as the starting moment
of obstacle avoidance.

(4) The focus is mainly on high-speed driving obstacle avoid-
ance scenarios, and the data of the obstacle avoidance trajectory
when the vehicle speed was less than 30 km�h�1 were discarded.

Based on the above four points, 262 groups of EDOAT data were
extracted from the HighD dataset. Fig. 4 shows the extracted
EDOATs.

To facilitate the design of the trajectory optimization function,
the longitudinal velocity of the EDOAT was first analyzed.

The longitudinal velocity at the start time of obstacle avoidance
is assumed to be vx0 , the maximum or minimum longitudinal
velocity from the start time to the end of obstacle avoidance is
assumed to be vxd . The maximum rate of change of the longitudinal
velocity during obstacle avoidance is defined in Eq. (4).

vxt ¼
vx0

�� ��� vxd

�� ���� ��
vx0

�� �� ð4Þ

where vxt reflects the degree of change in longitudinal velocity dur-
ing obstacle avoidance. Statistical analysis of the EDOATs was per-
formed to obtain a statistical histogram of vxt , as shown in Fig. 5.

A total of 96.56% of the vehicles had vxt values of less than
10.00%. A total of 75.95% of the vehicles had vxt values of less than
5.00%. Therefore, it can be inferred that the degree of longitudinal
velocity change is very small during obstacle avoidance. This is clo-
sely related to the ride comfort and safety of vehicles. Therefore, it
is assumed that the longitudinal velocity of the vehicle was con-
stant during obstacle avoidance.
3. Methodology

3.1. Trajectory expectation feature matching algorithm based on
inverse reinforcement learning

The trajectory optimization function plays a key role in the
design of an obstacle-avoidance trajectory planning strategy. Opti-
mizing a function based on an engineer’s manual design is time
consuming and laborious. Although the obstacle-avoidance func-
Fig. 4. EDOATs extracted from the HighD dataset.
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tion is satisfied, the driving habits of real drivers are ignored, which
leads to poor acceptability.

3.1.1. Principle of inverse reinforcement algorithm
The key of inverse reinforcement learning is to find the desired

parameter hr such that the obstacle avoidance trajectory generated
by the trajectory optimization function COAF is similar to the
EDOAT. Trajectory r comprises a continuous sequence of states.

r ¼ x1; x2; . . . ; xi; . . . ; xt½ � ð5Þ

where xi is the state vector of the agent at moment i, i ¼ 1;2; :::; t.
The trajectory optimization function is the mapping of state feature
vector gr to the state feature weights. The state feature vector gr is
defined as the related features that affect the driving state of the
vehicle and the surrounding vehicles during obstacle avoidance tra-
jectory planning.

In this study, a linear relationship between optimization func-
tion COAF and state feature vector gr is preliminarily assumed.

COAF ¼ hr
T

s:t:gr ¼
P

xi2rgxi
2 R

n ð6Þ

Based on the above definition, the objective of inverse rein-
forcement learning can be described as follows. Given a set of
expert-demonstrated trajectories and obtaining its state feature
weights hr , the optimization function COAF parameterized by the
feature weights can generate obstacle avoidance trajectories simi-
lar to expert-demonstrated trajectories. That is, the probability dis-
tribution p rð Þ of the trajectory is expected to be obtained such that
the expectation of the trajectory features that satisfy the probabil-
ity distribution model is consistent with the empirical features egr

of the demonstration trajectory.

Ep rð Þ gr½ � ¼ egregr ¼ 1
mz

� �
g1 þ g2 þ . . .þ gmz

� � ð7Þ

where mz is the number of EDOATs. Because the only constraint
condition introduced is given by Eq. (7), the maximum entropy
principle best reflects existing information. Therefore, the trajectory
probability distribution obtained in this study can be expressed as

p� rð Þ ¼ argmax
p rð Þ

L pð Þ ¼ argmax
p rð Þ

R
r �p rð Þ logp rð Þdr

s:t:
R
r p rð Þdr ¼ 1egr ¼
R
r p rð Þgrdr

ð8Þ

where L pð Þ is defined as the distribution entropy of trajectory prob-
ability distribution model p rð Þ. Based on the Lagrange multiplier
method, the Lagrange function is constructed as expressed by Eq.
(9).



Fig. 6. Quintic spline interpolation curve of lateral obstacle avoidance trajectory
based on trajectory support points.
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F p rð Þ; k; hrð Þ ¼
Z
r
�p rð Þ logp rð Þdr þ hr

T
Z
r
p rð Þgrdr � ~gr

	 

þ k

Z
r
p rð Þdr � 1

	 

ð9Þ

where k and hr are Lagrange multipliers. Thus, Eq. (9) is transformed
into the optimization problem of Lagrange function F p rð Þ; k; hrð Þ.
p� rð Þ; k�; hr� ¼ argmax

p rð Þ;k;hr
F p rð Þ; k; hrð Þ ð10Þ

According to the variational method:

p rjhrð Þ ¼ exp �hr
Tgr

� �
exp 1� kð Þ ð11Þ

exp 1� kð Þ , Z hrð Þ ¼
Z
r
exp �hr

Tgr

� �
dr ð12Þ

where Z hrð Þ is the partition function.
Finally, the trajectory probability distribution model is given by

Eq. (13).

p rjhrð Þ ¼ exp �hr
Tgr

� �
Z hrð Þ ð13Þ

The distribution entropy of the maximization system under fea-
ture matching is equivalent to the likelihood of a maximization
expert-demonstrated trajectory under the exponential probability
distribution model. Therefore, the distribution parameter hr of
the probability distribution model is given by Eq. (14).

hr
� ¼ argmax

p r;hrð Þ
F p; hrð Þ ¼ argmax

p r;hrð Þ

X
~ri2~R

log p ~ri hrjð Þ ð14Þ

where ~R represents the set of EDOATs, ~ri represents the ith EDOAT.
Eq. (14) does not generally provide an analytical solution.

Therefore, this study obtains the value of hr through numerical
iteration. To achieve this, the gradient of the likelihood pair distri-
bution parameter hr of the expert-demonstrated trajectory must be
determined.

logp ~ri hrjð Þ ¼ �hr
Tgr � log Z hrð Þ ð15Þ

The partial derivative with respect to hr yields Eqs. (16) and
(17).

@

@hr
logp ~ri hrjð Þ ¼ �gr þ

Z
r
p r hrjð Þgrdr ð16Þ

@

@hr

X
~r i2~R

log p ~ri hrj
� �

¼ �mzegr þmz

Z
r
p r hrjð Þgrdr ð17Þ

The gradient of the distribution parameter hr is equal to the dif-
ference between the expected trajectory features and empirical
features of the expert-demonstrated trajectory under the exponen-
tial distribution model, as given by Eq. (16).

When the feature of a trajectory in the exponential distribution
model is large, the corresponding weight coefficient of the feature
increases, as given by Eq. (17). Combined with Eq. (13), the proba-
bility of the probability distribution model choosing this trajectory
is ‘‘exponentially” reduced. Finally, the trajectory features are
reduced to the empirical characteristics of the expert-
demonstrated trajectory.

Obtaining the gradient requires the expectations of the trajec-
tory features to be calculated using an exponential probability dis-
tribution model. Calculating the expectations of trajectory features
using a probabilistic model for high-dimensional continuous space
problems is difficult. Similar to Ref. [38], inverse optimal control
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theory is adopted in this study. Therefore, the feature of the trajec-
tory with the highest probability is used to approximate the expec-
tation of the trajectory features under the exponential probability
distribution model.

Ep rð Þ gr½ � ¼
Z
r
p r hrjð Þgrdr � g argmax

r
p r hrjð Þ

� �
ð18Þ

The final gradient, Gr, is expressed by Eq. (19).

Gr ¼ �~gr þ g argmax
r

p r hrjð Þ
� �

ð19Þ

Based on the abovementioned inverse reinforcement learning
process, the trajectory expectation feature matching algorithm is
given as follows.

3.1.2. Trajectory expectation feature matching algorithm
In contrast to the global path planning algorithm, the trajectory

provided by the local path planning algorithm is generally a con-
tinuous function of space coordinates at a certain time in the
future.

x ¼ x tð Þ; t 2 t0; t0 þ tp

 �

y ¼ y tð Þ; t 2 t0; t0 þ tp

 � ð20Þ

where x and y are the abscissa and ordinate of the obstacle avoid-
ance trajectory, respectively, relative to a certain coordinate sys-
tem; t0 is the initial obstacle avoidance time; tp is the total
duration of obstacle avoidance.

According to Fig. 5, the change in the longitudinal velocity dur-
ing obstacle avoidance can be ignored; thus, x can be expressed as

x ¼ x tð Þ ¼ xt0 þ tpv t0 ð21Þ
where v t0 represents the longitudinal velocity at the starting time of
obstacle avoidance.

The lateral obstacle avoidance trajectory is a continuous func-
tion of time; therefore, the obstacle avoidance trajectory optimiza-
tion problem is a typical infinite-dimensional optimization
problem, which must be transformed into a finite-dimensional
optimization problem. By introducing the ‘‘track support point,”
the vehicle’s obstacle avoidance trajectory is represented by a
quintic spline curve. Thus, the infinite-dimensional optimization
problem is transformed into a finite-dimensional optimization
problem.

According to the extracted EDOATs, most vehicles completed
obstacle avoidance behavior within 9 s, as shown in Fig. 4. In this
study, the starting time of obstacle avoidance was taken as the
starting point on the time axis, and seven discrete points were
taken at equal intervals of 1.5 s, as shown in Fig. 6. The lateral posi-
tion corresponding to initial moment t0 is the lateral position of the
vehicle at the initial moment of obstacle avoidance, which is



Fig. 7. Trajectory expectation feature matching algorithm based on inverse
reinforcement learning. kGrk2: the binary norm of the update gradient of the
trajectory feature weight; e: a pre-given value; s: the coefficient; hr0 : the initial
value of hr .

J. Wu, Y. Yan, Y. Liu et al. Engineering 33 (2024) 133–145
assumed to be known in this study. Finally, the point set pps com-
posed of six ‘‘trajectory support points” is selected as the interpo-
lation point for the spline interpolation of the obstacle avoidance
trajectory.

pps ¼ y t1ð Þ; y t2ð Þ; . . . ; y t6ð Þ½ � ð22Þ
The point set pps divides the vehicle’s lateral obstacle avoidance

trajectory into six segments. Based on the principle of quintic
spline interpolation, the jth segment yj tð Þ of the lateral obstacle
avoidance trajectory is represented by Eq. (23).

yj tð Þ ¼ 120hj
� ��1 a5

j Mjþ1 � a5
jþ1Mj

� �
þ 6hj
� ��1 a3

j Tjþ1 � a3
jþ1Tj

� �
� hj

36

� �
a3
j Mjþ1 � a3

jþ1Mj

� �
þ hj
� ��1 ajy tjþ1

� �� ajy tj
� �� �

þ 7h3j
360

� �
ajMjþ1 � ajþ1Mj
� �� hj

6

� �
ajTjþ1 � ajþ1Tj
� �

;

j ¼ 1;2;3;4;5;6
ð23Þ

where hj ¼ tj � tj�1, aj ¼ y� y tj
� �

, Mj is the fourth derivative of the
curve, and Tj is the second derivative of the curve.

According to the continuity of the first and third derivatives at
the interpolation points at both ends of the quintic spline interpo-
lation curve, the following can be obtained:

kj�1Mj�1 þ ljMj þ kjMjþ1 þ Ij�1Tj�1 þ ljTj þ IjTjþ1 ¼ 0
pj�1Mj�1 þ qjMj þ pjMjþ1 þ kj�1Tj�1 þ ljTj þ kjTjþ1 ¼ gj

j ¼ 2;3;4;5
ð24Þ

where

kj ¼ hj

6
;lj ¼ 2 kj�1 þ kj

� �
; Ij ¼ � hj

� ��1
; lj ¼ 1 Ij�1 þ Ij

� �
;

pj ¼ � 7h3
j

360

 !
; qj ¼

8pj�1 þ 8pj

7

� �
;

gj ¼
y tjþ1
� �� y tj

� �
 �
hj

� �
� y tj

� �� y tj�1
� �
 �

hj�1

� �
;

j ¼ 2;3;4;5:

According to Eqs. (23) and (24), there are 12 unknown variables
and eight constraint equations. Four of the constraint equations are
given by the boundary conditions. The other four constraint
equations are obtained by setting the lateral velocity and lateral
acceleration of the starting and ending positions of obstacle avoid-
ance to 0. The lateral obstacle avoidance trajectory is expressed as
a function of the ‘‘trajectory support point” and time, as expressed
by Eq. (25).

y ¼ y pps; t
� � ð25Þ

Thus, the optimization function of the obstacle avoidance tra-
jectory is defined as a linear combination of the trajectory feature
gr and feature weight vector hr . The features of the obstacle avoid-
ance trajectories must be designed in advance. The following three
trajectory features are used to describe the trajectory of the vehicle
obstacle avoidance:

gr1
¼
R
t ky pps; t
� �� ydk2dtR
t kMlpdk2dt

ð26Þ

gr2
¼
R
t k _y pps; t
� �k2dtR

t kMlvk2dt
ð27Þ
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gr3
¼
R
t k€y pps; t
� �k2dtR

t kMlak2dt
ð28Þ

where gr1
, gr2

, and gr3
represent the lateral position deviation, lat-

eral velocity, and lateral acceleration characteristics of the trajec-
tory, respectively; Mlpd, Mlv, and Mla are the maximum lateral
position difference, lateral velocity, and lateral acceleration, respec-
tively, during the obstacle avoidance process. yd is the abscissa of
the vehicle when the expected obstacle avoidance is complete,
_y pps; t
� �

and €y pps; t
� �

respectively represent the first-order and
second-order derivatives of y pps; t

� �
with respect to time.

The vehicle obstacle avoidance process can be divided into
obstacle avoidance risk assessment, obstacle avoidance target lane
selection, and trajectory planning. The first two points are the con-
tent of obstacle avoidance behavior decisions, and the focus of this
study is vehicle lateral obstacle avoidance trajectory planning.
Therefore, it is assumed that the obstacle avoidance instructions
and expected obstacle avoidance lanes are known.

The trajectory features in Eq. (26) describe the distance
between the lateral positions of the vehicle and target during
obstacle avoidance. The trajectory features in Eq. (27) describe
the speed at which the vehicle approaches the target position.
The trajectory features in Eq. (28) describe the acceleration of the
vehicle as it approaches the target position. To a certain extent, this
reflects the comfort of the obstacle avoidance trajectory. Combined
with the three proposed trajectory features, the optimization func-
tion of the obstacle avoidance trajectory can be written as

COAF ¼ hr
Tgr ¼ hr1gr1

þ hr2gr2
þ hr3gr3

ð29Þ

where hr1 , hr2 , and hr3 are the weight coefficients of gr1
, gr2

, and gr3
,

respectively.
Next, the inverse reinforcement learning algorithm is combined

with the obstacle avoidance trajectory based on the quintic spline
curve proposed in this study. The trajectory expectation feature
matching algorithm based on inverse reinforcement learning is
illustrated in Fig. 7.
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In Fig. 7, when the binary norm kGrk2 of the update gradient of
the trajectory feature weight is less than a pre-given value e, the
algorithm terminates. During the learning process, feature weight
vector hr is always positive. When Gr is negative, Gr is first multi-
plied by the coefficient s. Then, we take the exponent of Gr � s
and multiply it by hr to achieve the update.

3.2. Obstacle avoidance trajectory planning for adaptive driving
scenarios

The following obstacle avoidance behaviors of experienced dri-
vers on a structured expressway are closely related to the sur-
rounding driving scenarios. Based on the above model, this
section explores the quantitative model relationship between the
optimization function of the obstacle avoidance trajectory and
the surrounding driving scenarios. An AOAT planning strategy for
adaptive driving scenarios is proposed.

To study the quantitative model of the optimization function
and driving scenarios, we define the driving scenarios information
E, which includes the states of the ego vehicle and surrounding
vehicles. Firstly, the mapping relationship between obstacle avoid-
ance environment E and weight coefficient hr of the obstacle avoid-
ance trajectory features is obtained.

hr1 ¼ hr1 xr1 ;E
� �

hr2 ¼ hr2 xr2 ;E
� �

hr3 ¼ hr3 xr3 ;E
� � ð30Þ

where xr is used to represent the mapping relationship between
trajectory feature weights and critical driving scenarios,
xr ¼ xr1 ;xr2 ;xr3


 �
.

The mapping model must be interpretable and transferable.
Therefore, a polynomial regression model is used to study the map-
ping relationship between driving scenarios E and weight coeffi-
cients hr .

hr1 ¼ a0 þ a1 � E1 þ a2 � E2 þ a3 � E1
2 þ a4 � E1 � E2

hr2 ¼ b0 þ b1 � E1 þ b2 � E2 þ b3 � E1
2 þ b4 � E1 � E2

hr3 ¼ c0 þ c1 � E1 þ c2 � E2 þ c3 � E1
2 þ c4 � E1 � E2

ð31Þ

where a0–a4, b0–b4, and c0–c4 are the fitting parameters of hr ,
respectively, and E1 and E2 denote the key environmental informa-
tion that affect the weight coefficients, E ¼ E1;E2½ �.

4. Strategy validation and results analysis

4.1. Verification of inverse reinforcement learning algorithm based on
feature matching

To verify the effectiveness of the algorithm, an EDOAT (demon-
stration trajectory 1) was randomly selected from the HighD data-
set to verify the algorithm. The initial trajectory feature weight hr0
in the maximum entropy inverse reinforcement learning algorithm
was set to ½0:1;10:0;150:0�.

After 76 iterations, the binary norm of update gradient Gr of the
trajectory feature weights is less than the set value e. The optimal
feature weight vector h�r obtained by inverse reinforcement learn-
ing theory is ½18:621;0:479;1:713�.

The blue line represents the lateral position, velocity, and accel-
eration of demonstration trajectory 1, as shown in Fig. 8. The arrow
indicates the change in the direction of the features during the
learning process. The final learned obstacle avoidance trajectory
has a good degree of feature matching with demonstration trajec-
tory 1, which verifies the effectiveness of the learning algorithm.

To further quantify the learning effect of the algorithm, the
change of feature gradient in the learning process is given.
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Figs. 9(a)–(c) show the gradient changes in the features given in
Eqs. (26) and (28) during the learning process. As the learning con-
tinued, the gradients of the three trajectory features gradually
approached zero, as shown in Fig. 9. The difference between the
features of the demonstration trajectory and the feature expecta-
tions of the trajectory decreased.

Next, another expert trajectory (demonstration trajectory
2) was randomly selected from the HighD dataset for algorithm
verification. The initial trajectory feature weight hr0 was set to
½0:1;10:0;150:0�.

After 86 iterations, the binary norm of update gradient Gr of tra-
jectory feature weights is less than the set value e, as shown in
Figs. 10 and 11. The optimal feature weight vector h�r obtained by
inverse reinforcement learning theory is ½15:471; 0:452 ;1:105�.

To explore the influence of the initial track feature weight vec-
tor on the final results, we set the initial trajectory feature weights
hr0 to ½150:0;1:0;0:1� for the same demonstration trajectory
(demonstration trajectory 2).

After 38 iterations, the binary norm of update gradient Gr of tra-
jectory feature weights is less than the set value e, as shown in
Figs. 12 and 13. The optimal feature weight vector h�r obtained
using inverse reinforcement learning theory is
½51:282; 1:456 ; 3:655 �.

It can be seen that under different initial weights of the trajec-
tory features, the final trajectory learned is very similar, but there
are significant differences in the numerical weights of the trajec-
tory features. This is because the absolute value of each feature
weight coefficient in the trajectory optimization function does
not determine the trajectory features, that is, the relative value.
The first weighting coefficient hr1 is set to unit 1. Under completely
different initial values of the two feature weights, the ratios of hr2
and hr3 to hr1 are ½ 0:0292 ;0:0714� and ½0:0284 ;0:0713�, respec-
tively. Under the two different initial values of the feature weights,
the relative changes in the feature weight coefficients were less
than 3%, as shown in Fig. 14.

To simplify the calculations, the ratio of the feature weights was
used to describe the trajectory optimization function.

COAF ¼ hTgr ¼ gr1
þ hr2

hr1

� �
gr2

þ hr3
hr1

� �
gr3

¼ gr1
þ h1gr2

þ h2gr3

ð32Þ
Based on the HighD dataset, the obstacle-avoidance trajectories

of 262 groups of vehicles on structured roads were extracted. The
extracted trajectories are learned to obtain the statistical results of

featureweight vector h, h¼ 1;
hr2
hr1

� �
;

hr3
hr1

� �	 
T
;h1¼ hr2

hr1

� �
;h2¼ hr3

hr1

� �
.

4.2. Validation of the mapping model

To effectively select the key environmental information that
affects the vehicle obstacle avoidance trajectory planning behavior,
the driving scenario information was analyzed from a practical
perspective. Generally speaking, the actual length of the driver’s
obstacle avoidance time is mainly affected by ‘‘obstacle avoidance
emergency degree,” ‘‘obstacle avoidance risk,” and the state of the
vehicle. When the time headway (THW) between the ego vehicle
and lead vehicle is small, the driver is more inclined to complete
obstacle avoidance over a shorter time. However, if the speed is
high, the driver may be more inclined to complete the obstacle
avoidance task over a longer time to ensure the comfort of obstacle
avoidance and reduce the tension of the passengers.

Based on practical experience, drivers usually perform obstacle
avoidance operations to leave the congested lane and improve
driving efficiency.



Fig. 8. Feature matching process for demonstration trajectory 1.

Fig. 9. Gradient change during feature matching for demonstration trajectory 1.

Fig. 10. Feature matching process for demonstration trajectory 2.

Fig. 11. Gradient change during feature matching for demonstration trajectory 2.

Fig. 12. Feature matching process for demonstration trajectory 2.
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Fig. 13. Gradient change during feature matching for demonstration trajectory 2.

Fig. 14. Learning results of obstacle avoidance trajectory feature weights. (a) Statistical histogram of h1; (b) statistical histogram of h2. For most trajectories, h1 is less than 0.5,
and h2 is less than 5.0.
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Based on the analysis of 262 groups of obstacle avoidance infor-
mation extracted from the HighD dataset, it was found that
approximately 83.97% of the vehicle speeds were higher than that
of the lead vehicle when obstacles were avoided. Approximately
85.50% of the vehicles avoided obstacles with a distance-to-
headway (DHW) of less than 100 m; approximately 91.61% of vehi-
cles avoided obstacles with a THW of less than 4 s; and approxi-
mately 90.84% of the vehicles avoided obstacles with a time-to-
collision (TTC) of less than 50 s.

After the vehicle receives the obstacle avoidance command, the
speed difference between the ego and lead vehicles, DHW, and TTC
can be used as key driving scenario information to represent the
urgency of obstacle avoidance, as shown in Fig. 15.
Fig. 15. Statistical histograms of obstacle avoidance trajectory data. (a) Speed diffe
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Considering the above situation, the speed difference between
the ego and lead vehicles is regarded as one of the key factors
affecting vehicle obstacle avoidance trajectory planning. It is worth
noting that the vehicle speed also affects the choice of obstacle
avoidance trajectory. When the speed is high, the driver usually
chooses a trajectory with a smaller curvature to reduce passenger
tension and avoid vehicle instability caused by urgent obstacle
avoidance. Therefore, to make the obstacle avoidance trajectory
more anthropomorphic and acceptable, the vehicle speed is also
used as one of the key factors affecting vehicle trajectory planning.

In summary, Dvx and vx are key scenario factors affecting obsta-
cle avoidance trajectory planning. The relative weight coefficients
of each feature in the trajectory optimization function determine
rence between the ego vehicle and lead vehicle; (b) DHW; (c) THW; (d) TTC.



Table 1
Evaluation results of mapping model fitting.

Weight SSE R2 RMSE

h1 0.1654 0.9853 0.03129
h2 0.6493 0.9424 0.06217

SSE: the sum of squares dueto error; R2: coefficient of determination; RMSE: root
mean squared error.
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the trajectory features. Therefore, the mapping relationship
between the key scenario factors E and the weight coefficients h

of trajectory features is redefined.

h1 ¼ h1 x1;Eð Þ
h2 ¼ h2 x2;Eð Þ ð33Þ

Nonlinear fitting technology was adopted for the expert-
demonstrated trajectories to obtain the mapping relation from
the driving scenario information to the feature weight of the trajec-
tory optimization function:

h1 ¼ �0:08414� 0:005121 � Dvx þ 0:0126 � vx

þ 0:0005247 � Dvx
2 � 0:0005662 � Dvx � vx

h2 ¼ �0:4147� 0:12 � Dvx þ 0:1207 � vx

þ 0:009817 � Dvx
2 � 0:00752 � Dvx � vx

ð34Þ

The fitted curves corresponding to Eq. (34) are shown in Figs.
16(a) and (b), respectively.

Table 1 lists the fitting results of the mapping model between
the driving scenarios and weights of the trajectory features.
According to Table 1, the estimation model can better explain
the mapping relationship between the key information of obstacle
avoidance scenarios and feature weights.

As shown in Fig. 16, h1 and h2 are subtractive functions of Dvx;
h1 and h2 will decrease as the speed difference between the ego
vehicle and lead vehicle increases. The greater the vehicle speed
difference Dvx, the higher is the urgency of vehicle obstacle avoid-
ance and collision risk. Therefore, the corresponding obstacle
avoidance completion time should be shorter, and the correspond-
ing h1 and h2 should be smaller. Because h1 and h2 are increasing
functions of vx, the higher the speed of the ego vehicle when avoid-
ing obstacles, the greater are h1 and h2. This can be explained in
terms of obstacle avoidance risk. When the vehicle is moving at
high speed, an obstacle avoidance time that is too short will
increase the risk of dangerous conditions, such as rollover, thereby
increasing the driver’s nervousness. Therefore, when the speed is
high, the corresponding obstacle avoidance time should be longer,
and the corresponding h1 and h2 values should be higher.

At this point, the offline learning phase is completed. The effec-
tiveness of the obstacle avoidance trajectory planning strategy is
verified as follows.
4.3. Simulation and experimental verification

In this study, 262 groups of real vehicle obstacle avoidance tra-
jectory data points were extracted from the HighD dataset. A total
of 220 groups of trajectory data were used as samples to train the
mapping relationship between the key information of the driving
scenarios and feature weights of the trajectory optimization func-
tion. The effectiveness of the proposed trajectory-planning strategy
was verified based on the remaining 42 groups of real obstacle-
avoidance trajectory data.
Fig. 16. Mapping relationship between driving scenarios and weights of trajecto
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First, a trajectory optimization function for comparison
(Scheme 1) was constructed by taking the average of the learned
feature weights from 220 obstacle avoidance trajectories. The tra-
jectory optimization function constructed from the feature weights
obtained through the mapping of driving scenario information is
shown in Scheme 2. To more intuitively quantify the advantages
and disadvantages of the two strategies, the trajectory feature dis-
tance vector Dgr is introduced, Dgr ¼ ½Dg1; Dg2; Dg3 �T.

Dg1 ¼ kgr1
� ~gr1

k2

Dg2 ¼ kgr2
� ~gr2

k2

Dg3 ¼ kgr3
� ~gr3

k2
ð35Þ

where gr1
–gr3

are, respectively, the features of the obstacle avoid-
ance trajectory generated by the trajectory planning algorithm;
and ~gr1

–~gr3
are, respectively, the features of the EDOAT. A specific

description is provided in Eqs. (26)–(28). According to the definition
of the trajectory feature distance vector Dgr , this value describes the
distance between the obstacle avoidance trajectory generated by
the planning algorithm and features of the expert-demonstrated
trajectory. The smaller Dgr is, the closer the generated obstacle
avoidance trajectory is to the expert-demonstrated trajectory.

The proposed algorithm (Scheme 2) and comparison scheme
(Scheme 1) were used to generate trajectories for 42 groups of
vehicle–obstacle avoidance test scenarios. The average value of
Dgr obtained by the two schemes in 42 groups of test scenarios is
taken to obtain the ‘‘average” distance between the features of
obstacle avoidance trajectories generated by the two schemes
and expert-demonstrated, as shown in Fig. 17.

The obstacle avoidance trajectory generated by the two trajec-
tory planning schemes and the expert-demonstrated trajectory
had certain trajectory feature differences. This is because neither
scheme considered the different driving styles of drivers in the
HighD dataset. Compared to Scheme 1, Scheme 2 can significantly
improve the similarity between the generated and expert-
demonstrated trajectories. Specifically, the average feature differ-
ence in the lateral position of the obstacle avoidance trajectory
generated in Scheme 2 was only 49.04% of that generated in
Scheme 1. The average characteristic difference of the lateral veloc-
ity in Scheme 2 was only 42.91% of that in Scheme 1. The average
characteristic difference of the lateral acceleration in Scheme 2 was
only 55.35% of that of Scheme 1.

To further verify the effectiveness of the proposed scheme, three
groups of real obstacle avoidance scenarios were randomly selected
ry features. (a) h1 and driving environment; (b) h2 and driving environment.



Fig. 17. Comparison of obstacle avoidance trajectory feature distance under two
control schemes.
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from the 42 groups of test samples. The proposed trajectory plan-
ning strategy was used to generate an AOAT, as shown in Fig. 18.
The EDOATs in Scenarios 1, 2, and 3 are denoted as EDOAT1,
EDOAT2, and EDOAT3, respectively. The AOATs generated based
on Scenarios 1, 2, and 3 are denoted as AOAT1, AOAT2, and AOAT3,
respectively. The lateral velocity and acceleration of the obstacle
avoidance trajectory generated based on real driving scenarios are
denoted as LV and LA, respectively. The real lateral velocity and
acceleration in this scenario are denoted as LVT and LAT.

Figs. 18(a)–(f) show the lateral displacement, velocity, and
acceleration of the trajectory generated based on Scenarios 1, 2,
and 3, respectively. The Dvx values of the three scenarios are
14.40, 21.30, and 41.76 km�h�1, respectively. According to the driv-
ing scenario information, Scenario 3 was a more urgent condition
than Scenarios 1 and 2. To prevent collision accidents, the vehicle
chooses an obstacle avoidance trajectory with high lateral accelera-
tion in Scenario 3.

To verify the real-time performance and acceptability of the
strategy, a hardware-in-the-loop (HIL) test platform was built
based on the aforementioned obstacle avoidance scenarios, as
shown in Fig. 19.

The HIL platform includes a ground resistance moment simula-
tion system, automotive steering assembly, dSPACE MicroLabBox,
and national instruments’ peripheral component interconnect
Fig. 18. Simulation results fo
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extensions for instrumentation national instruments’ peripheral
component interconnect extensions for instrumentation (NI PXI)
real-time system. The HIL experimental process is shown in
Fig. 20. An AOAT planning strategy for driving scenario adaptation
was run in MicroLabBox to ensure real-time performance. Vehicle
and road models in CarSim were embedded in NI PXI real-time
systems using NI LabVIEW software. The servomotor simulated
the ground resistance moment. These components communicate
via a controller area network (CAN) bus. The working process is
as follows. After MicroLabBox receives the driving scenario
information from NI PXI through the CAN bus, it plans the optimal
AOAT r� and calculates the optimal control angle d�f . The actuator
receives control instructions through the CAN bus and causes the
corresponding steering action dsw to follow an optimal trajectory.
The NI PXI software receives the actual control actions of the
platform to complete the closed-loop control.

Figs. 21 and 22 show the trajectory planning and following pro-
cess of the vehicles for 10 s from the start of obstacle avoidance.

In Scenario 1, the speed difference between the ego and lead
vehicles at the beginning of obstacle avoidance was 14.4 km�h�1,
and the ego vehicle speed was 121.9 km�h�1. In Scenario 2, the
speed difference between the ego and lead vehicles at the begin-
ning of obstacle avoidance was 21.3 km�h�1, and the ego vehicle
speed was 118.3 km�h�1. In Scenario 3, the speed difference
between the ego and lead vehicles at the beginning of obstacle
avoidance was 41.76 km�h�1, and the ego vehicle speed was
94.50 km�h�1. Compared with Scenarios 1 and 2, the speed of the
vehicle in Scenario 3 was slightly lower, but the speed difference
between the ego and lead vehicles was large. Therefore, the obsta-
cle avoidance urgency in Scenario 3 was relatively high and the
obstacle avoidance time was relatively short.

As shown in Fig. 22(a), the maximum lateral position errors in
the three scenarios are 0.185, 0.130, and 0.090 m, respectively.
By contrast, the tracking accuracy of Scenario 2 was slightly worse
than that of Scenario 1, whereas that of Scenario 3 was the worst.
The reasons for this phenomenon are as follows. Compared with
Scenario 1, the trajectory in Scenario 3 is more urgent, and the sys-
tem may sacrifice trajectory tracking accuracy appropriately to
r Scenarios 1, 2, and 3.



Fig. 21. Tracing effects of

Fig. 22. Tracing effects of

Fig. 19. Intelligent vehicle HIL test platform. NI PXI: national instruments’
peripheral component interconnect extensions for instrumentation.

Fig. 20. AOAT planning and following process for driving scenario adaptation.
d�f : the optimal control angle; sdis: the steering resistance moment to the front
wheels; dsw: the actual steering wheel angle of the platform.
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ensure vehicle safety. Fig. 22(b) shows the motor control current
required to track the three obstacle avoidance trajectories. Through
the HIL experiment, it can be observed that the AOAT planned in
this study follows well. The data in the HighD dataset are all real
traffic scenarios. The simulation and experimental results show
that the proposed trajectory planning strategy can automatically
adjust its weight coefficients according to the degree of urgency
and safety in different driving scenarios. Thus, an AOAT suitable
for the current driving scenarios was planned.
5. Summary

Trajectory optimization functions are difficult to design and
exhibit poor adaptability to various scenarios. Moreover, a single
trajectory optimization function cannot generate an obstacle
avoidance trajectory that is consistent with driver behavioral
habits. Thus, based on maximum entropy inverse reinforcement
learning theory, automatic acquisition of the optimization func-
tions of real obstacle avoidance trajectories was realized, and the
acceptability of the trajectory optimization function was improved.
Then, combined with the key driving scenario information affect-
ing vehicle obstacle avoidance behavior, an AOAT planning strat-
egy for adaptive driving scenarios was proposed. This strategy
significantly enhances the adaptability to driving scenarios and
improves driving safety, while avoiding obstacles.

In future work, more complex and reliable mapping models will
be designed to describe the relationship between driving scenarios
and the feature weights of the optimization functions, and the pro-
posed algorithm will be fully validated by real car tests. For inverse
Scenarios 1, 2, and 3.

Scenarios 1, 2, and 3.
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reinforcement learning, obstacle avoidance trajectories of humans
with different driving styles were studied in depth. In addition, the
vehicle trajectory planning in this study was limited to rectilinear
road conditions. Obstacle avoidance trajectory planning for com-
mercial vehicles under typical nonrectilinear road conditions will
be an important research direction in the future.
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