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Abstract: Eco-environmental protection strategies in China have entered a new stage of synergizing reductions in
pollution and carbon emissions during the 14th Five-Year Plan period. Watersheds bear heavy loads from
economic and social development, and emit large amounts of greenhouse gases and pollutants. Thus, it is
important to synergize strategies for reducing pollution and carbon emissions at the watershed scale. This study
examined the synergistic mechanisms for reducing greenhouse gases and pollutants, categorized watershed
ecosystems into artificial and natural ecosystems, and proposed the main pathways and key technologies for these
ecosystems. The specific applications of key technologies were summarized using the Yellow and Yangtze River
basins as examples. Negative emissions, agricultural non-point source pollution control, and water eutrophication
remediation technologies should be further developed. Additionally, three countermeasures are proposed: (1)
refining existing water ecological environment protection standards and establishing a risk prevention and control
system, (2) establishing a comprehensive treatment system for pollution and greenhouse gas emission sources to
improve watershed management and control mechanisms, and (3) expanding investment in science and technology
and participating in international initiatives for addressing climate change.
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1 Introduction

To address current global climate change conditions, China is committed to bringing its carbon emissions to a
peak by 2030 and achieving carbon neutrality by 2060. During the 14th Five-Year Plan period, energy
consumption and carbon dioxide (CO2) emissions per unit of gross domestic product are proposed to reduce by
13.5% and 18.0%, respectively. Additionally, China plans to achieve a sustained reduction in total emissions of
major pollutants, ensure a widespread adoption of green production technologies and lifestyles, a steady decrease
in carbon emissions after reaching the 2030 peak, a fundamental improvement in the ecological environment, and
the construction of a “Beautiful China” by 2035 [1]. As of 2021, approximately 40% of the cities in China at the
prefectural level and above do not meet ambient air quality standards, whereas the development and utilization rate
of water resources in the basins of the Yellow, Haihe, and Liaohe rivers exceed the internationally recognized
warning threshold. The structural, fundamental, and trend pressures for environmental protection in China have not
yet been substantially alleviated. Thus, a long-term conflict remains between protection and development [2].
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These combined factors indicate that China must reduce pollution to substantially improve ecological and
environmental quality and reduce carbon emissions [3].

Watersheds are complex natural-social-economic systems composed of environmental elements such as water,
soil, air, and biota, as well as anthropogenic elements such as population, society, and economy, which are
interrelated and interact with each other through the water medium. In this study, watershed ecosystems were
divided into two categories: (1) artificial ecosystems, including urban—rural and industrial-agricultural systems,
and (2) natural ecosystems, including water, forest, and grassland systems. Studies related to the Global Carbon
Project have shown that, over the past decade, the global annual emissions of methane (CH4) to the atmosphere
from the energy and other industrial sectors, agriculture and waste disposal, and natural sources containing inland
waters were approximately 111, 217, and 218 Tg, respectively, and the annual emissions of nitrous oxide (N20)
were approximately 1.6, 6.4, and 15.2 Tg, respectively [4,5]. The Bulletin on the Second National Census of
Pollution Sources showed that the emissions of chemical oxygen demand, total nitrogen, and total phosphorus
from polluted urban and rural domestic water sources as well as agricultural sources in China in 2017 reached 2.05
%107, 2.89 %108, and 3.08 x 10° t, respectively [6]. Different ecosystems in a watershed produce or harbor large
amounts of greenhouse gases, which is predominantly COz, and other pollutants in the water, air, and soil. This
makes watersheds a key area for developing strategies mitigating the effects of climate change, strengthening
ecological and environmental controls, and promoting ecological civilization in China [7].

Based on the strategy of watershed zoning management and the goal of carbon peaking and neutrality, this
study aimed to clarify the synergistic pathways and key technologies for the reduction of pollution and carbon
emissions between artificial and natural ecosystems at the watershed scale. Furthermore, this study aimed to
formulate synergistic control measures for emissions of greenhouse gases and pollutants to provide a reference for
water ecological environment improvement and greenhouse gas mitigation.

2 Mechanisms underlying a synergistic reduction of pollution and carbon emissions in
watersheds in China

According to the data provided by the Emissions Database for Global Atmospheric Research (EDGAR), CO2
emissions in China since 2000 have been mainly concentrated in the nation’s eastern watersheds. Among these, the
Yangtze River Basin has the highest total CO2 emissions, accounting for 29.4% of the national total, followed by
the Huaihe River Basin (12.9%) and the Yellow River Basin (12.5%). Owing to a decline in local heavy industries,
adjustments in industrial structures, and the promotion of ecological restoration, the Songliao River Basin
currently ranks fourth in total CO2 emissions, accounting for 11.2% [8]. The CO2 emissions from the western
watersheds (southwestern and inland rivers) account for only 3.8% of the total national emissions, but this number
is expected to increase in the future owing to western development strategies and construction of the Silk Road
Economic Belt [8]. In 2018, the industrial, manufacturing combustion, and transportation sectors were the highest
contributors of the CO2 emissions across all watersheds (Fig. 1).

In the 21st century, the energy structure of China, which is dominated by raw coal and crude oil and continues
to rely on crude oil extraction and fossil energy sources such as raw coal for economic development [9]. The high-
carbon energy, high-energy consumption industrial, and road freight-based transportation structures determine that
a synergistic strategy for reducing pollution and carbon emissions can be effectively deployed in the artificial
ecosystem of a watershed. Controlling the emission of greenhouse gases or pollutants from one side of each sector
should simultaneously reduce emissions on the other side [10,11]. For natural watershed ecosystems, changes in
land use patterns caused by anthropogenic activities can affect carbon sink intensity; for example, the conversion
of natural wetlands to other land uses can lead to a reduction in net CO2 uptake [12]. Furthermore, an increase in
the area of construction and agricultural land can affect the nitrogen and phosphorus loads of water bodies, leading
to water pollution, especially eutrophication [13]. Eutrophication is the phenomenon of excessive algal growth and
increased productivity of water bodies due to high concentrations of nutrients such as nitrogen and phosphorus
(mainly total phosphorus) resulting from anthropogenic activities/natural factors [14]. Moreover, higher nutrient
levels increase CHs and N20 emissions from water bodies, making them potential sources of greenhouse gas
emissions [15]. The emissions of greenhouse gases and environmental pollutants have the same emission processes
and characteristics, such as homogeneity and spatiotemporal consistency. Current research shows that the
synergistic impact of comprehensive reductions in pollution and carbon emissions in China is increasing annually
[16], and that the policies for such reductions have notable synergistic effects [17]. Therefore, an effective
promotion strategy for synergistically reducing pollution and carbon emissions can promote changes in
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environmental governance by focusing on end-of-pipe management instead of source prevention and governance
[10].
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Fig. 1. Share of CO, emissions from different sectors in China’s watersheds in 2018.

3 Major pathways for synergistically reducing pollution and carbon emissions in
watersheds in China

3.1 Major pathways for artificial ecosystems

The first reduction pathway is to adjust the energy structure. Dual controls should be provided for total energy
consumption and intensity to improve the efficiency of energy use. Clean and efficient development and use of
fossil energy should be promoted; the research, development, and promotion of clean coal technology should be
encouraged; and operations of coal—electricity integration or coal—electricity—transportation integration should be
implemented. It is necessary to vigorously develop wind and solar power and hydropower sources according to
local conditions, effectively use biomass power, develop nuclear power while ensuring safety, and gradually
reduce the demand for and consumption of fossil fuel energy [18]. It is also necessary to implement supportive
policies for developing the renewable energy industry, create renewable energy markets with continuous and stable
growth of demands, improve renewable energy consumption, and promote technological progress in renewable
energy [18].

The second pathway is to accelerate the transformation of industrial structures. It is necessary to slow the blind
development of high-pollution and -consumption projects, and strictly implement an equal or reduced capacity
replacement to expand these projects, while formulating corresponding control policies to continue mitigating
excess capacity [18]. The development of service industries should be vigorously promoted as well as strategic
emerging and green low-carbon industries such as information technology, biotechnology, new energy, new
materials, new energy vehicles, aviation, aerospace, and marine equipment.

The third pathway is to improve green transportation development levels. We should focus on the “highway-to-
railway, highway-to-waterway” for bulk cargo and medium- and long-distance cargo transportation and accelerate
the construction of a multi-modal transport system integrating railway-waterway, highway-railway/waterway, air-
land transportation, among others, to improve the efficiency of combined integrated transport systems [18]. The
status of rail transit and other public transportation modes should be improved in the overall transportation system.
The usage of new energy vehicles, new energy motor ships, bike-sharing, and electric bike-sharing should be
promoted, and the construction of support facilities for charging and refueling should be encouraged.

The fourth pathway is to expand the coverage of clean heating in rural areas. We should adhere to the principles
of “localization, multi-energy complementarity, comprehensive utilization, and effectiveness” and create scientific
plans for replacing coal with natural gas and electricity and its reasonable redistribution with the continuous
implementation of policies. It is necessary to promote the supply and utilization of solar energy, bioenergy, clean
energy, and clean coal in rural areas, and deepen the structural reform to rural energy on the supply side [19].
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The fifth pathway is to improve the soil carbon sequestration potential of agricultural land. It is necessary to
promote and apply conservation tillage measures, such as straw returning, covering crop planting, no-till, less
tillage, rotational tillage, and fallow systems. In rice cultivation, we should promote agronomic measures with
more carbon sequestration potential, such as dry—wet alternate irrigation and wetting irrigation. It is also suggested
to conduct actions to replace chemical fertilizers with organic fertilizers for organic matter sequestration and build
a technical support system for carbon sequestration in farmland soils based on the above measures.

3.2 Major pathways for natural ecosystems

The first pathway is to improve the carbon sequestration potential of wetlands. We should increase the extent of
water catchment areas and establish hydraulic buffers to maintain stable wetland water levels. It is necessary to
introduce and apply straw mulching to restore damaged wetland vegetation layers. Anthropogenic disturbances
should be controlled to prevent further wetland fragmentation. The construction of key protected areas for natural
enclosures and appropriate return of arable land to lakes should be strengthened [20].

The second pathway is collaborative agricultural non-point pollution control. It is necessary to focus on source
management, promote the decrement and synergism of agricultural inputs (chemical fertilizers, pesticides, etc.),
and implement formula fertilization by soil testing. A balance between planting and raising should be advocated. It
is suggested to establish and improve comprehensive usage of straw, improve the treatment and use of livestock
and poultry waste, and enhance the utilization rate of agricultural waste recycling [18]. Biogas engineering should
be developed according to local conditions and modern organic agriculture, ecological recycling agriculture, and
digestate and biogas slurry recycling should be effectively combined [18]. In addition, we should conduct
agricultural non-point pollution management and supervision initiatives, comprehensively analyze the dominant
influence factors of non-point pollution, and develop localized assessment models and source apportionment
techniques for evaluating agricultural non-point pollution [21,22].

The third pathway is to control the eutrophication of water bodies. A combination of engineering and ecological
measures and agricultural reclamation should be applied to increase vegetation cover in the headwater and
upstream areas of rivers and control the input load of nutrients (nitrogen and phosphorus) in the middle- and
downstream areas of rivers. A comprehensive improvement measures such as dredging sediments to increase the
coherence and circulation of water bodies should be adopted to enhance the effective retention capacity of
nutrients in watersheds.

4 Key technologies for synergistically reducing pollution and carbon emissions in
watersheds in China

4.1 Key technologies for artificial ecosystems

Negative emission technologies (NETSs) are key methods for synergistically reducing pollution and carbon
emissions in artificial ecosystems, by removing and sequestering CO2 from the atmosphere to achieve temperature-
control goals and reduce carbon emissions. NETSs include various options (Fig. 2) [23,24].

Bioenergy and carbon capture, utilization and storage (CCUS) technologies are widely used NETSs solutions that
allow plants to absorb atmospheric CO2, produce biomass for conversion into electrical or heat energy, and capture
and pump the CO2 produced during this process into the ground.

Direct air capture can extract atmospheric CO2 using sorbents, and concentrate and store it in underground oil
and gas reservoirs or saline aquifers. Through a series of engineered technologies, direct air capture can regenerate
sorbents by transforming the heat, pressure, or temperature to be used continuously for CO2 capture. Despite its
high cost, direct air capture may facilitate CO2 removal at a large scale and could be applied in different fields in
the future [23,24].

Soil carbon sequestration technology is the most effective NETs for increasing the carbon content in soil,
largely by adjusting agricultural production methods (e.g., adopting measures such as no-till or crop rotation).

Afforestation and reforestation technology is the most cost-effective solution for NETs and involves fixing
atmospheric carbon in biota and soil by planting trees, conserving water and soil, and reducing nutrient loss from
soil to water. The cost of this technology is less than a few tens of dollars per 1 t of CO2 removal [24].
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Overall, applications of different NET solutions must consider cost, effectiveness, availability, safety, and
timeliness. Furthermore, competition for land with food production and biodiversity conservation can limit the use
of technologies such as afforestation and reforestation [23]. Thus, as the technology continues to mature, NET
solutions will be widely used in research on reducing pollution and carbon emissions from watersheds.
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Fig. 2. Key technologies for the synergistic reduction of pollution and carbon emissions in watersheds:
A taxonomy of negative emissions technologies (modified from [24])

4.2 Key technologies for natural ecosystems

Agricultural non-point pollution control technology mainly includes head-end control technologies for reducing
pollutants such as nitrogen and phosphorus, including the reasonable adjustment of nutrient ratios in fertilizers and
livestock feed, and the application of new fertilizers. This also includes middle-end control technologies for
pollutant interception, such as the construction of grassed ditches, vegetated buffer strips, and planting hedges, and
head-end control technologies for pollutant elimination, such as the construction of artificial wetlands, landscaping
green land, grit chambers, and artificial wetland stabilization ponds [25].

Waterbody eutrophication restoration technologies mainly include physical remediation strategies such as
substrate dredging, physical algae removal, artificial aeration, and water division. This also includes chemical
remediation methods, such as chemical algae removal and chemical fixation, and bioremediation, such as
phytoremediation, animal remediation, and microbial remediation [26]. Among these categories, bioremediation
technology has become the most popular, cheap, and least harmful to ecological environments in recent years. This
technology can reduce the concentrations of pollutants in water bodies by adsorbing, degrading, and transforming
concentrations using plants, animals, and microorganisms. Additionally, composite bioremediation technologies
are widely used, such as microbial and phytoremediation techniques that combine ecological floating beds and
artificial wetlands, which can simultaneously remove multiple toxic pollutants from water bodies and sediments
and increase biodiversity [26].

4.3 Case study: application of synergistic technologies for reducing pollution and carbon emissions in
watersheds

Several studies on synergistic technologies for reducing pollution and carbon emissions have been conducted in
important watersheds, such as the Yellow and Yangtze Rivers. These studies analyzed the effects of adopting
NETS, such as CCUS, and afforestation, estimated CO2 emissions, and identified the main driving factors based on
methods such as the environmental Kuznets curve model. Moreover, they provided numerical references and
development suggestions for synergistic technologies to reduce pollution and carbon emissions within watersheds
in China. The related contents are listed in Table 1.
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5 Countermeasures

5.1 Refining the water ecological environment protection standards and establishing a risk prevention and
control system

Relevant recommendations are as follows: (1) The key microbial processes and control mechanisms of
greenhouse gas production and consumption at different interfaces of water bodies (e.g., water-land, water-gas,
and sediment-overlying water interfaces) should be studied to improve the monitoring of greenhouse gas emissions
and standardization of data compilation methods [38]. (2) Laws, regulations, and support systems for
environmental impact assessments must be improved, and greenhouse gas emissions from water bodies should be
gradually incorporated into the environmental impact assessment system and pollution discharge permits in
watershed projects. (3) It is necessary to develop standards for water chemistry, eutrophication, and biological
monitoring of water bodies in different ecological zones, perform calculations and management of nutrient and
pollutant loads, and evaluate watershed ecosystem integrity [39]. (4) We should construct multi-scale and multi-
information source systems for watershed monitoring, early warning, and risk control in key tributaries, and even
the entire watershed, through watershed environmental risk identification, to prevent pollution occurrences and
improve emergency response capabilities to water pollution events.

5.2 Establishing a comprehensive treatment system for pollution and greenhouse gas emission sources to
improve watershed management and control mechanisms

Relevant recommendations are as follows: (1) Under the mechanism of “integrated planning, deployment,
promotion, and assessment” for reducing pollution and carbon emissions, the synergistic management of
greenhouse gas and pollutant emissions in the upper, middle, and lower reaches, rivers, lakes, and reservoirs, left
and right banks, and main stream and tributaries in a watershed should be enhanced and promoted through
constructing ecological protection compensation mechanisms and industrial layout planning [39-41]. (2) The
“Three Lines One Permit” strategy should be applied and promoted, along with the delineation of important water
ecological spaces such as ecological functional areas of water, wetlands, and water-containing nature reserves, as
well as ecological buffer zones of rivers and lakes in the watershed. Moreover, production and living activities that
damage the water ecological environment should also be regulated. (3) Strict controls should be implemented to
curb the development of highly water-consuming and highly polluting industries in water-scarce, severely water-
polluted, and sensitive areas, along with the encouragement of pilot demonstrations of methods to develop
collaborative systems to reduce pollution and carbon emissions in key watersheds [40,41].

5.3 Expanding investment in science and technology and participating in international cooperation on
climate change

Relevant recommendations are as follows: (1) Upgrade the recycling capabilities of industrial parks and
industrial clusters and promote the co-construction and sharing of public facilities, cascade utilization of energy,
resource recycling, and centralized disposal of pollutants [40,42]. (2) Promote advanced technology and equipment
for energy conservation, water conservation, and the comprehensive use of resources, and perform comprehensive
clean production transformations in key industries [40,42]. (3) Strengthen the innovation, demonstration, and
deployment of carbon-neutral technologies, such as CCUS, hydrogen production from renewable energy, and
advanced energy storage materials. Increase the achievement transformation of related technologies. (4) Through
the Belt and Road Initiative and “South—South Cooperation” platforms, strengthen the exchange, cooperation, and
transfer of green low-carbon technologies to promote global climate governance.
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