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Abstract: The nonferrous metal industry is the foundation of China’s real economy and plays a vital role in the 

national economy and defense construction. Industrial software is crucial for the high-quality development of the 

nonferrous metal industry and is associated with the in-depth implementation of national software development 

strategies. Currently, the development of industrial software in the nonferrous metal industry is significantly 

restricted by a lack of knowledge models. Hence, we propose a method to construct an intelligent model library for 

the nonferrous metal industry. Considering meta-model-driven engineering, we defined a nonferrous metallurgical 

meta-model and its attributes and proposed a meta-modeling method based on the MODELING architecture. In 

addition, we designed an overall architecture for an intelligent model library based on the industrial Internet, an agile 

model development environment integrating multiple languages, and a meta-model encapsulation system based on 

multi-scenario black-box reuse. Moreover, a meta-model full lifecycle management platform was constructed using 

a five-layer, two-dimensional classification standard, and a domain knowledge graph. An intelligent model library 

for the nonferrous metal industry was developed based on the long-term accumulation of nonferrous metallurgy 

process mechanisms, operating experience, and intelligent methods. The role of the intelligent model library in 

improving the intelligence level in engineering applications was presented through the application of two typical 

nonferrous metallurgical scenarios. The intelligent model library of the nonferrous metal industry serves as a vital 

source of core knowledge for advancing industrial software, and its role is fundamental in driving smart 

manufacturing and strengthening the nonferrous metal industry as a whole. 

Keywords: nonferrous metal industry; industrial software; meta-model; intelligent model library; industrial 

Internet 

 

1 Introduction  

The nonferrous metal industry is the pillar industry of the national economy, the foundation for the development 

of the real economy, and an important source of manufacturing power [1]. Over the past 40 years of reform and 

opening-up, China has witnessed remarkable advancements in nonferrous metal production technology, equipment, 

and automation levels, leading to the establishment of a comprehensive and modern nonferrous metallurgical 

industrial system in the country [2]. The production and consumption of nonferrous metals in China have been 
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ranked first worldwide for many years [3]. For example, the output of ten commonly used nonferrous metals accounts 

for more than 50% of the world’s nonferrous metal production [4]. Despite the significant advancements made in 

China’s nonferrous metal industry, a noticeable gap between China and leading nonferrous metal powerhouses 

remains. The high-quality development of the nonferrous metal industry faces challenges such as high emissions, 

high energy consumption, and serious labor dependence. Hence, there is an urgent need to promote the deep 

integration of informatization and industrialization and promote green, intelligent, and efficient production through 

intelligent manufacturing [5]. 

As a product of the softwareization of industrial technology, industrial software is a key support for virtual 

manufacturing, digital process design, and production optimization control. It is also a core element of intelligent 

manufacturing in the nonferrous metal industry [6,7]. Industrial software, an urgent issue in China’s current scientific 

and technological research, is related to the long-term development of industrial systems [8]; it has strong industrial 

attributes and is a coded expression of industrial knowledge. Software is the application carrier, and the model is the 

core that embodies the technological capabilities of industrial software. In the nonferrous metal industry, the 

nonferrous metallurgical model encapsulates process mechanisms, best practices, and other aspects of the production 

process, serving as the bottom and core support for industrial software. In summary, it provides a technical 

knowledge base for industry intelligence and promotes the intelligent transformation of the nonferrous metal industry 

[9]. 

Considerable research has been conducted on various aspects of the nonferrous metal production process, forming 

a series of knowledge models. For example, a hybrid nonlinear model predictive controller was proposed for a 

mining grinding system to ensure stable control of the grinding circuit under external interference [10]. A method 

for identifying antimony flotation conditions based on the combination of multiple information fusion and extension 

theory was proposed, achieving accurate identification of antimony flotation conditions [11]. An intelligent 

integrated modeling and description method was proposed for nonferrous metallurgical processes, and optimization 

methods were explored in conjunction with multiple types of nonferrous metallurgical engineering problems [12]. 

Moreover, a process monitoring method based on label propagation dictionary learning was studied for complex 

production processes in nonferrous metallurgy, and its effectiveness was verified using aluminum electrolysis [13]. 

To address the dynamic uncertainty characteristics of nonferrous metallurgical processes, probability, fuzzy, and 

interval uncertainty optimization methods were proposed for typical scenarios [14]. Dynamic optimization control 

methods were adopted to effectively improve the control accuracy of titanium processing and forming [15]. 

While various models exist for nonferrous metal production, such as process modeling and operation optimization, 

many of these models are tailored for specific scenarios; this high level of integration makes them challenging to 

apply in different scenarios and contexts. The development of relevant models is mostly conducted separately, 

without aggregating and managing model resources on a unified standard platform, resulting in large differences and 

poor compatibility among models. The fragmentation and dispersion of nonferrous metallurgical models make it 

difficult to effectively support industrial software development [16]. Therefore, the shortage and uneven quality of 

nonferrous metallurgical models have significantly hindered industrial software development. To promote the high-

quality development of the nonferrous metal industry, it is crucial to consolidate industry knowledge and create 

universal and highly compatible models. The construction of standardized and scalable aggregation management 

platforms for the entire industry is vital. By integrating advantageous resources through the model library, a new 

ecosystem of resource enrichment and collaborative evolution can be fostered. Moreover, it is important to explore 

effective solutions for addressing the challenge of insufficient core knowledge in industrial software and promote 

the overall development of industrial software in the nonferrous metal industry. 

This study takes the nonferrous metallurgy universal model and aggregation management platform as starting 

points and systematically analyzes the construction method of the nonferrous metal industry model library. It 

summarizes the requirements for constructing a nonferrous metal intelligent model library, defines the nonferrous 

metallurgical meta-model and meta-modeling paradigm, and proposes an intelligent model library construction 

technology based on the industrial Internet of Things (IIoT). Based on industrial knowledge, a nonferrous metal 

intelligent model library is constructed, and the application efficiency of the model library is verified through typical 

scenarios in nonferrous metallurgy. Finally, the future research direction of the model library is explored to provide 

inspiration and reference for the intelligent development of the nonferrous metal industry. 

 

 



Strategic Study of CAE 2022 Vol. 24 No. 4 

DOI 10.15302/J-SSCAE-2022.04.013 

3 

 

2 Demand for constructing nonferrous metal industry intelligent model library 

2.1 Macro architecture of nonferrous metals industry model library 

Considering the current state of the nonferrous metal industry, existing model libraries mostly exist as offline 

resources with limited contents and incomplete categories, which are difficult to access and use. The model resources 

are disconnected from actual applications, making it difficult to integrate them into the development trend of 

intelligent manufacturing and networked collaboration and insufficient to support the formation of model 

development/application/service formats.  

The IIoT is a product of the deep integration of the latest generation of information technology and modern 

industrial technology. It is an important carrier for the digitization, networking, and intelligence of manufacturing, 

becoming a strategic vantage point in the new era of industrial competition [17]. At the national planning level, it is 

necessary to accelerate the construction of a strong manufacturing country; this involves accelerating the 

development of advanced manufacturing and promoting the deep integration of the Internet, big data, artificial 

intelligence (AI), and the real economy [18]. As a key infrastructure in intelligent manufacturing, IIoT can help the 

nonferrous metal industry achieve intelligent production, networked collaboration, and service-oriented 

transformation. 

The infrastructure-as-a-service (IaaS) layer in the IIoT provides a strong infrastructure and massive data for the 

nonferrous metal industry intelligent model library. The open cloud operating system in the platform-as-a-service 

(PaaS) layer provides scalable and compatible service support, and the application construction method of industrial 

applications (APP) in the software as a service (SaaS) layer provides a convenient and lightweight method for 

applications in different scenarios [19]. Therefore, the IIoT provides carrier support and application channels for the 

model library, and the platform’s resource aggregation and sharing capabilities promote the application of the model 

library. 

In the new era and stage, understanding the direction of intelligent manufacturing and building an intelligent 

model library for the nonferrous metal industry based on the IIoT will accelerate the development of industrial 

intelligence, form new driving forces for the transformation and upgradation of the nonferrous metal industry, 

effectively alleviate the problem of the lack of core knowledge models faced by domestic industrial software in the 

nonferrous metal industry, and build a solid foundation for the development of intelligent models and industrial 

software in the nonferrous metal industry. 

2.2 Technical requirements for constructing a nonferrous metals industry model library 

2.2.1 Describing the phase-field coupling characterization of the nonferrous metallurgy process is difficult, and the 

model is highly integrated and has poor versatility; therefore, it is necessary to define a meta-model with moderate 

granularity and a standardized modeling paradigm. 

Nonferrous metallurgy represents a typical long-process industrial scenario characterized by complex physical 

and chemical reactions during production. The process involves complex interactions among multiple phases, 

including gas, liquid, and solid phases, and exhibits electric–magnetic–thermal–flow–force–concentration multi-

field coupling phenomena. This usually requires multiple processes and various pieces of equipment to collaborate, 

with strong process correlation and data complexity. The corresponding models contain multiple parameters and the 

models are coupled with each other [20]. Nonferrous metallurgy practitioners face challenges in encoding and 

developing complex models, whereas software developers face difficulties in understanding the coupled relationship 

between industry knowledge and codes. Hence, a serious industry knowledge barrier has led to difficulties in 

developing nonferrous metallurgy models. In the traditional model-development mode, developers encapsulate 

multiple complex functions to form higher-level coarse-grained models in pursuit of integration. The excessive 

integration of the original model and the lack of independent disassembly necessitate significant modifications or 

complete recoding when calling a specific function for a new scenario, resulting in duplicate model development 

and low application efficiency. 

To solve the problems of model coupling, development difficulty, high integration, and low universality, models 

should be decoupled and split into moderately granular and generalized basic meta-models to represent industry 

knowledge. This can significantly reduce the development and application difficulties, promote the deposition and 

reuse of industrial knowledge, and guide the healthy development of industry model libraries. 
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2.2.2 Models suffer from poor compatibility and reusability owing to diverse compilation environments. Hence, an 

agile development environment supporting multiple languages is required to facilitate model integration and 

enhance efficiency. 

From the perspective of a meta-model developer, the current model development is often fragmented owing to 

differences in knowledge and skills among developers who may use various programming languages such as Python, 

C++, Java, and others. Existing single development environments struggle to accommodate the diverse needs of the 

model development process, resulting in isolated language models with poor compatibility and collaboration 

challenges. Hence, a model development environment must enable collaborative development across multiple 

languages. From the perspective of a meta-model user, multiple meta-models should be combined according to the 

actual requirements to obtain a model with specific complex functions. However, meta-model integrators are mostly 

professionals in the nonferrous metal industry who have rich domain knowledge while lacking proficient 

programming skills, making it difficult to inherit and derive meta-model codes from scratch to form complex models 

in a short period of time. 

Graphical and configuration-based development environments are highly suited for agile use by personnel. These 

environments allow users to visually combine multiple meta-models based on logical relationships, facilitating the 

creation of complex function models without the need for coding. This significantly reduces the model development 

threshold and improves overall efficiency [21]. 

2.2.3 The current model management suffers from low efficiency and challenges in promotion and application. 

Hence, a comprehensive lifecycle management platform covering classification management, review, and 

evaluation, and a precise search is required. 

The nonferrous metal industry includes a wide range of categories, long production processes, diverse process 

types, and highly coupled process units with complex reaction mechanisms. As the basic carriers of knowledge in 

the nonferrous metal industry, meta-models are numerous, diverse, and strongly correlated [22]. As the number and 

variety of developed meta-models increase, without effective organizational management, the meta-models may 

become fragmented and difficult to navigate, resembling “scattered sand.” Users often face challenges in quickly 

locating the appropriate meta-model when developing services that require specific functions. This leads to 

underutilization of many meta-models; as a result, the full potential of the model library remains unused. 

Therefore, it is crucial to focus on the entire lifecycle of meta-models and build a comprehensive management 

platform that integrates classification management, review, evaluation, and accurate search functionalities to 

efficiently manage massive model resources and fully promote the practical application and value presentation of 

the model library. 

3 Construction technology of nonferrous metal industry meta-models 

3.1 Definition and characteristics of meta-models 

Nonferrous metallurgy models are mathematical (software) expressions of the quantitative or qualitative 

relationships between variables in a nonferrous metallurgy system (object), including mechanism models, data 

models, knowledge models, and AI methods. The purpose of this study is to describe the dynamics of a nonferrous 

metallurgy system (object) and support the process design, operation control, and decision optimization in the 

nonferrous metal industry. Decoupling the model and breaking it down into multiple independent model units, using 

meta-models with moderate granularity and universalization to represent industry knowledge, can significantly 

reduce the threshold for model development and application and promote the development level of the industry 

model library.  

Meta-models are model units with independent decision-making functions that cannot be further decomposed; 

they are the basic elements for creating models in specific domains (i.e., the “models” of models). Independent units 

with complex functions are abstract representations of code, and high-level functional units are composed of multiple 

basic functions. Models are defined jointly by multiple meta-models and are advanced combinations of meta-models 

that are closer to application services and have richer functionalities than meta-models. Meta-models can be 

combined using parallel integration, weighted integration, serial integration, nested integration, structural network 

integration, and partial substitution integration. A single meta-model can be used with multiple models, and a single 

model can be associated with multiple meta-models. Meta-model-driven engineering (MDE) is generally divided 

into three layers, from bottom to top: code block layer M0, meta-model layer M1, and model layer M2 (Fig. 1). 

Meta-models are object-oriented and structure codes related to specific functionalities as a unified entity; they 
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provide a higher-level representation of systems, enabling them to closely resemble the natural operational patterns 

of real-world entities. As a fine-grained representation of models, meta-models are essentially forms of models with 

the same scope of application, structural form, and method set. By abstracting the code and decoupling the models, 

industrial knowledge can be precipitated and solidified with moderate complexity. A triple can represent each meta-

model; a meta-model is a model unit that contains this triple and cannot be further divided, whereas a model can be 

described as an organic combination of meta-models. 

Meta-models are independent, intelligent units with complex functions utilized in meta-model-driven engineering, 

software development, and IIoT applications; they possess the following distinct key characteristics: (1) Reusability: 

Meta-models are built as standardized, generalized, and reusable components that remain consistent across different 

applications. Reusable meta-models have good adaptability, improving model development and application 

efficiency, reducing development costs, and improving system maintainability. (2) Interoperability: Meta-models 

developed in different programming languages and development environments can connect and exchange data 

without obstacles, thus forming a model service through the interoperability of multiple meta-models. (3) Cross-

platform: Meta-models can be directly executed in different language environments, operating systems, hardware 

configurations, and IIoT platforms without modifying the original files or codes. Compared with native development, 

service development based on cross-platform meta-models has advantages such as low cost, shorter development 

cycles, and reduced complexity. 

 

Fig. 1. Three-layer architecture of meta-model driven engineering. 

Note: M is the prototype object of meta-model; T is the data type of the input, output, and formal parameter sets of meta-model; A 

is the functional attribute of meta-model. 

3.2 Modeling paradigm of nonferrous metal industry meta-model 

The highly specialized and interdisciplinary nature of nonferrous metallurgical knowledge can lead to significant 

differences in the understanding and description approaches used by experts in different domains, resulting in 

inconsistent quality of meta-models. Hence, a process-oriented and standardized meta-modeling paradigm is 

required as a methodological guide to ensure consistency and improve the efficiency and quality of meta-modeling. 

This study proposes a meta-modeling approach for nonferrous metallurgy based on a MODELING framework, 

employing hierarchical development and iterative optimization to construct meta-models with abstraction objects, 

concrete descriptions, and software applications.  

The MODELING method for meta-models of nonferrous metallurgy includes modeling objects, functional 

definitions, expression forms, logical interfaces, standardized coding, and iterative optimization. (1) At the beginning 

of the modeling process, modeling objects (such as processes, operations, and equipment) are determined, and the 

functionalities of the meta-model are defined to clarify the modeling purpose (such as decision-making, control, and 

diagnosis). (2) By accumulating knowledge and expertise of the modeling objects and functionalities, the meta-

model is accurately expressed in various forms, such as mathematical formulas, network structures, process rules, 

and more. The logical interfaces (input, output, and formal parameters) used for information exchange are abstracted 

from the modeling objects. (3) Using multiple programming languages, the meta-model is digitally described, and 

software is implemented based on its functionalities and interfaces in a standardized coding fashion. (4) Based on 

the testing and user evaluation results, the meta-model is gradually optimized and updated through iterative 

improvements to increase its maturity. 
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Using the MODELING method, a meta-model can be described in various forms. A general meta-model with a 

standardized interface is formed by encoding and encapsulating various representational forms. For example, process 

mechanisms such as material transformation, reaction kinetics, and field phase changes in the nonferrous metallurgy 

process can be modeled in the form of chemical reaction equations and differential equations. Operational experience 

and best practices such as trend analysis and parameter setting can be modeled by expert rules, fuzzy functions, and 

Petri nets to create a concrete knowledge meta-model. AI methods can be represented by neural networks and tree 

structures. 

Taking the reaction mechanism modeling of the cobalt removal process in Zn smelting as an example, the 

application of the MODELING method is elaborated. The reaction mechanism of the Zn smelting Co removal 

process was used as the modeling object to reveal the dynamic characteristics of the key indicators in the Zn smelting 

Co removal process over time and the operating parameters. A reaction mechanism expression form for the Zn 

smelting Co removal process, comprising kinetics, thermodynamics, reaction type, reaction steps, and specific 

reactions, was developed using prior knowledge of the Zn smelting process, material balance, production data, and 

physical and chemical properties, along with key process variables. The reaction kinetics and specific parameters of 

the Co removal process were determined using a modeling method that combined the mechanism and data. The 

reaction mechanism meta-model is encoded and encapsulated using software to create an industrial mechanism meta-

model entity, enabling the meta-model to receive feedback updates through meta-model invocation and the 

application of its effects. 

4 Construction technology of nonferrous metal industry intelligent model library 

4.1 Intelligent model library architecture based on IIoT 

IIoT serves as a fundamental network for connecting devices, materials, people, and information systems, 

enabling comprehensive perception, dynamic transmission, and real-time industrial data analysis to support scientific 

decision-making and intelligent control. This is considered a critical infrastructure for smart manufacturing [23]. In 

the overall architecture of the intelligent model library for the nonferrous metal industry based on the IIoT (Fig. 2), 

the infrastructure provided by the IIoT IaaS layer offers rich resources for the construction of the model library while 

collecting and aggregating data from various sources to provide “raw materials” for the development and testing of 

meta-models. The PaaS layer possesses scalable open cloud operating systems supported by industrial cloud 

middleware and microservices based on general PaaS and industrial big-data systems, providing service support for 

the model library in a diverse and compatible platform environment. Microservices and industrial application 

development tools in the SaaS layer can quickly construct customized industrial APPs, form application services 

that meet different scenarios, resolve practical and innovative industrial demands, and provide a convenient approach 

to easily invoke meta-models. The integration development platform for meta-models, comprehensive management 

platform, developer community, and all meta-model elements were deployed in the IIoT PaaS layer, providing core 

technical foundations for various industrial APP applications.  

 

Fig. 2. Nonferrous metals industry intelligent model library architecture based on IIoT.  
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The overall technical route for the nonferrous metal industry intelligent model library based on the IIoT is shown 

in Fig. 3. In the underlying data layer, massive amounts of production data are dynamically collected, and real-time 

stream calculations, extraction loading, and distributed storage are performed. Database access capability is provided 

through standard interfaces such as Java Database Connectivity (JDBC) and Open Database Connectivity (ODBC). 

For an integrated development environment, various language compilation environments and JupyterLab are adapted 

and integrated through technologies such as JSON-RPC, Docker, and WebSocket to build an integrated development 

environment that supports multiple programming languages such as C++, Java, and Python, achieving multi-

language and interactive meta-model code modeling. Meanwhile, a graphical development environment was built 

based on technologies such as Docker, Kubernetes, and Render, achieving configuration-based operations and the 

atomic interaction of meta-models. Intelligent services can be rapidly developed by “drag-and-drop” connection of 

meta-models. 

In the meta-model full lifecycle comprehensive management platform, a five-layer, two-dimensional 

classification system was built based on the Neo4j graph database to construct a knowledge graph of nonferrous 

metal meta-models. Through knowledge extraction, knowledge fusion, and semantic understanding, fast and 

accurate searches and intelligent recommendations of meta-models can be achieved. Digital and standardized meta-

models in the model library are instantiated and encapsulated into the RESTful API to support flexible invocation 

methods such as curl, Python, and Scala for online use. Offline use cases are encapsulated in PMML formatted files 

to achieve cross-scenario usage. The “plug-and-play” meta-model invocation method enhances the industrial 

application development efficiency for browser/server (B/S) and client/server (C/S) architectures, improving system 

maintainability and flexibility in various applications. 

Fig. 3. Technical route of nonferrous metal industry intelligent model library based on IIoT 

Note: PMML represents Predictive Model Markup Language; XML represents Extensible Markup Language; HTML represents 

Hypertext Markup Language; RPC represents Remote Procedure Call.  

4.2 Multilingual fusion model integration agile development environment 

4.2.1 Multilingual fusion meta-model integration agile development environment 

Considering the differences in meta-model development languages, tools, and environments, an integrated 

development environment framework for meta-models with multi-language fusion is proposed. Users can freely 

switch compilation environments according to their needs to achieve interactive meta-model code development 

under multi-language collaboration. Docker technology is used at the underlying level to build virtual compilation 

environments for programming languages such as C++, Python, and Java. Each environment is independent of the 

others and adopts a parallel operation mode, eliminating coupling interference between different environments and 

improving the utilization efficiency of computing resources. In the front end, JupyterLab is used to adapt kernel 

images of various languages, and WebSocket, Bridge, JSON-RPC, and other technologies are used to complete 

message transmission between the front-end coding interface and the back-end compilation kernel, realizing online 

running of multi-language code and real-time feedback of results [24]. 

4.2.2 Graphical configuration model agile development environment 

A graphical and configurable agile development environment was developed to reduce the threshold for model 
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development and improve model development efficiency. The individual meta-model encapsulated in code 

programming was packaged as an independent image, published as standardized services, and made available for 

external calls. Hence, users can quickly customize the personalized models required. In the graphical and 

configurable interface, each meta-model is encapsulated as a “drag-and-drop” independent module through object 

diagrams, activity diagrams, and more. Various modules adopt hot-swap technology and can be directly selected and 

connected for calling. Users can drag the modules to select the required meta-models and connect input/output 

relationships based on the logical relationship of the meta-models in the application, quickly completing the model 

development in a visual configuration form. During execution, meta-models transmit the data flow according to the 

logical relationship of the connection, sequentially calling the corresponding services that are connected to the 

underlying operator image. When a meta-model is called, a calculation task is issued to the underlying image through 

a service. After completion of the calculation, the result is uploaded to the graphical interface and passed on to the 

next meta-model. Specifically, when a meta-model task is completed, multiple meta-models directly connected to it 

can be executed in parallel, significantly improving the computational efficiency. 

In the graphical and configurable agile development environment for models, users use knowledge associations 

and logical strategies to perform graphical “drag and drop” and directional connections on meta-models based on 

existing basic meta-models. Sentence-level programming is converted into component assembly, quickly completing 

the development of different models and achieving programming with reusable features. The “process is the code” 

form largely avoids the shortcomings of computer programming skills among personnel in the nonferrous metallurgy 

industry, enabling them to leverage their professional advantages and lower the threshold and cost of model 

development. 

4.3 Encapsulation method for nonferrous metallurgical meta-model 

After the meta-model is encoded and the interface is defined, it must be encapsulated into an object-oriented 

model for modular storage management and standardized and convenient calling. This hides the details inside the 

entity (providing access interfaces only to the outside), allowing users to make direct calls without knowing the 

specific implementation process of the function. Standardized and modular methods simplify application 

programming, improving meta-model management and application efficiency, enhancing system maintainability, 

and protecting the intellectual property rights of meta-model developers. From the perspective of the full lifecycle 

of the meta-model definition and development, management, and application, meta-model encapsulation must meet 

requirements such as reusability, interoperability, cross-platform, standardization, interface compatibility, and 

security. 

The proposed encapsulation architecture for the nonferrous metallurgy meta-model (Fig. 4) defines clear inputs, 

outputs, and parameters, enabling a prototype of the meta-model with modeled codes and interfaces. The meta-

model properties and proxies are then obtained through standardized encapsulation. The meta-model properties 

include the number, name, function, interface, and programming language, which describe meta-model-related 

information and provide a basis for meta-model management and invocation. The meta-model proxy serves as a 

reference for the meta-model prototype, exposing only the input/output interfaces and limited parameters to the 

outside. Users do not need to access the meta-model prototype but can call it through the proxy. The proxy pattern 

protects the meta-model prototype from arbitrary modifications to its code or methods while allowing users to freely 

add additional functionality on top of the meta-model proxy, enhancing its scalability. 

Fig. 4. Nonferrous metallurgy meta-model encapsulation architecture. 
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During meta-model invocation, significant differences may arise in deployment environments and methods. For 

example, a meta-model can be encapsulated and released for internal platform deployment, allowing online calls 

within the same network environment. Alternatively, it can be published in the cloud and invoked on the edge, 

supporting online invocation through network interconnections. In addition, owing to network restrictions in 

different enterprises or regions within the same enterprise, effective bidirectional communication cannot be achieved 

between the meta-model publishing and calling ends; hence, the meta-model can only be transmitted offline to the 

calling end for deployment. Considering the differences in meta-model deployment environments and the proprietary 

requirements of meta-model encapsulation, an encapsulation method for a nonferrous metallurgy meta-model was 

proposed for both online and offline calling. The meta-model proxy constructed in the form of the RESTful 

application programming interface (API) and PMML provides online and offline encapsulation of the meta-model, 

respectively, with good independence, generality, reusability, compatibility, and support for a unified description of 

heterogeneous languages and cross-platform invocation. 

For online invocation: after the meta-model is developed on a cloud platform through code editing and interface 

definition, it is encapsulated as a meta-model proxy in the form of a RESTful API and published externally. The 

RESTful API primarily includes a uniform resource locator (URL) for the connection and a token for authentication 

[25]. After obtaining a token, users can authenticate the URL to obtain usage rights. Users can obtain the output 

results of the meta-model by accessing the input data and parameters of the calling templates. Based on the concept 

of runtime black-box reuse, the RESTful API provides external access to the meta-model ontology in the form of 

URL links, shielding users from internal implementation details and retaining interfaces and limited parameters, 

thereby avoiding the impact on the meta-model prototype. In addition, there are no special requirements for the 

user’s programming language or resource environment, and there is no need to modify or configure the deployment 

environment. The openness of the interface enables flexible cross-platform calling, and the structured message 

format presents inputs/outputs in a standard format, endowing the meta-model with interoperability through 

standardized and open interfaces. 

For offline invocation, the meta-model can be encapsulated in the PMML format and pushed offline to the user 

as a file [26]. After obtaining the meta-model proxy PMML file, the user can use standard loading and calling 

methods in programming languages such as Python or Java. The PMML relies on a meta-model generated using a 

unified XML format. The target environment can parse the PMML library to load the meta-model. They can be 

operated on different operating systems and application platforms with good independence and portability. 

4.4 Meta-model full lifecycle comprehensive management platform 

The meta-model’s full lifecycle comprehensive management platform includes quality audit and testing, 

classification management, release management, version management, precise search, model downloading, and 

performance evaluation. (1) Quality audit and testing: Meta-models uploaded by developers are tested from 

professional perspectives, such as functionality and reliability. After passing an audit, the meta-models can be stored 

in a model library for the user. (2) Classification management: A multi-dimensional classification system is 

established for numerous meta-models, and tags are assigned to the meta-models for classification management. (3) 

Release management: Resources such as computation and memory are reasonably allocated to meta-models, which 

are selectively put online for use. (4) Version management: Considering the iterative updates of meta-models during 

use, the released meta-models are continuously upgraded, and new images are constructed while preserving 

historical images. (5) Precise search: Users can select meta-models based on their requirements and filter them using 

category tags. Moreover, they can conduct keyword searches to obtain the required meta-models quickly. (6) Model 

downloading: Meta-models can be downloaded as a RESTful API or PMML according to online and offline use 

requirements. (7) Performance evaluation: Users can rate the meta-models based on their experiences and provide 

descriptive comments. Continuous user feedback helps optimize the meta-model quality. This study focuses on 

research and progress in classification, audit, evaluation, and search, emphasizing key content related to these aspects. 

4.4.1 Classification system of the nonferrous metallurgy meta-model 

In the nonferrous metallurgy process industry, the process hierarchy can be divided into the entire process, process, 

and equipment layers. There are many coupling relationships between each process, and meta-models can be nested 

with each other. By cascading multiple meta-models, new models can be derived; for example an entire process 

model can be obtained through a cascade of multiple process meta-models and a process model can be obtained 

through a cascade of multiple equipment meta-models. In addition, all meta-models in each layer have corresponding 
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functions, such as production optimization control, material formula optimization, operation status monitoring, and 

other main functional domains, each of which includes specific functional properties. Based on this, a multi-

dimensional classification system for the meta-models of nonferrous metallurgy is proposed and comprises the layers 

of whole process, unit process, equipment, functional domain, and functional label” (Fig. 5). 

 

Fig. 5. Nonferrous metallurgy meta-model classification system.  

 

The “five-layer, two-dimensional” meta-model classification system is mainly divided into process and function 

dimensions: the former is divided into three levels of overall process, unit process, and equipment from top to bottom, 

according to the physical structure of different metal types and smelting processes. The latter includes two levels of 

functional domain and functional label, which describe the functional characteristics of the meta-model from macro 

categories and micro attributes. For example, the meta-model for predicting the soluble zinc content of zinc roasting 

concentrate belongs to the overall process of zinc smelting–roasting process–roasting furnace equipment; by 

inputting the standard temperature and zinc concentrate assay value, the soluble zinc content of zinc roasting 

concentrate can be predicted, and the optimization of the standard temperature setting value can be guided. Hence, 

in the function dimension, it belongs to production optimization control-indicator prediction. Through a standardized 

and structured classification system, meta-models with the same properties or features are collected, and the resulting 

clear and hierarchical architecture facilitates meta-model queries, identification, management, and invocation. 

4.4.2 Review and evaluation system for nonferrous metallurgical meta-models 

The quality of the nonferrous metal industry intelligent model library was determined by the quality of the meta-

models. From the developers’ perspective, functional and reliability reviews of meta-models are required, and only 

meta-models that have undergone testing can be added to the model library for use. The maturity and operational 

efficiency of the meta-models are evaluated from the users’ perspective, and iterative improvements of the meta-

models are performed based on user experience. 

Developers submit meta-model source code, user manuals, and requirement specifications, which are judged and 

tested by system administrators and industry experts based on formal standards, functionality/performance, and other 

aspects. The meta-model can only be stored in the model library when the overall indicator and specific item scores 

meet the audit standards. The multi-dimensional audit system ensures model quality at the source, and the relevant 

audit indicators include functionality, reliability, robustness, security, ease of use, and execution efficiency. 

Functionality is evaluated by completeness and correctness assessments. Reliability describes the ability of meta-

models to complete a specified function within defined time and conditions and can be measured by the mean time 

between failures. Robustness is qualitatively described by fault tolerance and recovery capabilities. Security refers 

to the ability of a meta-model to run correctly and ensure that the software runs legally within the authorized scope 

when facing malicious attacks. Ease of use refers to the ease of understanding, learning, and operation of the meta-

model inputs/outputs and parameters during use. Execution efficiency is quantitatively described by the time 

characteristics and resource features under multiple service concurrency conditions. 

Only users with experience with the meta-model can evaluate it; this evaluation is divided into user ratings and 

comments. The former includes functionality completeness, correctness, stability, fault tolerance, and ease of use; 

users rate each dimension numerically. The latter serves as a qualitative evaluation and can directly express user 

opinions of the model (such as usage experience and improvement suggestions). User feedback directly reflects the 
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actual performance of the meta-model in the application stage, and developers can iterate and optimize the meta-

model based on the evaluation feedback. 

4.4.3 Meta-model search engine based on domain knowledge graph 

The interrelationships among the nonferrous metallurgy meta-models are strong. As the number of meta-models 

increases, the complexity of the relationship between them increases exponentially. Traditional relational databases 

have long search times and high resource loads, making it difficult to meet the fast search requirements of a large 

number of nonferrous metallurgy meta-models. A knowledge graph is a semantic network that reveals relationships 

between entities. A clear and explicit relationship network supports the fast retrieval of results. Building a meta-

model search engine can achieve the efficient retrieval and management of meta-models, improving their application 

efficiency. 

Constructing a knowledge graph in nonferrous metallurgy consists of five parts: ontology design, knowledge 

extraction, knowledge mapping, knowledge fusion, and knowledge storage. (1) Ontology design. This is based on 

the experience of industry experts in constructing an ontology in a top-down manner. The inputs include knowledge, 

terminology dictionaries, and expert experience in nonferrous metallurgy, whereas the outputs include entity 

categories constituting the knowledge graph and the relationships between categories. The 7-step method [27] is 

commonly used to mine knowledge in the field of nonferrous metallurgy, define the concept ontology of meta-

models, and form a nonferrous metallurgy meta-model ontology library (Fig. 6). (2) Extracting knowledge. 

Knowledge graph nodes are constructed by extracting entities, properties, and the mutual relationships between 

entities from diverse data sources. Based on rule-based methods, entity identification and relationship extraction are 

conducted, establishing a knowledge library as “entity–relationship–entity” triplets and forming ontology-based 

knowledge expression. (3) Knowledge mapping. Organizing the extracted entities, properties, and relationships 

according to the ontology design allows the formation of nodes and facilitates a unified internal knowledge 

representation. This, in turn, enables multi-source knowledge fusion and inference in knowledge graph applications. 

(4) The fusion of knowledge involves integrating new knowledge, eliminating contradictions and ambiguities, and 

fusing various types of knowledge using methods such as referent resolution, entity disambiguation, and entity 

linking (5) Knowledge storage. Graph databases, as non-relational databases, are adopted to store entity-entity 

relationships, nodes, edges, properties, and other essential composition elements corresponding to entities, 

relationships, and properties in the knowledge components. Using the Neo4j graph database [28] as a medium 

completes the knowledge storage, significantly improving the efficiency of association queries. 

 

Fig. 6. Nonferrous metallurgy meta-model ontology library.  

 

The meta-model search process based on the domain knowledge graph is as follows: (1) For the selected labels 

or query text input by the user, semantic understanding is used to extract attributes and relationships from the labels 

or query text. (2) Based on the Cypher querying language of the Neo4j graph database, a database querying statement 

is automatically generated using the relevant attributes and relationships. (3) The meta-model number in the 

knowledge graph is searched according to the query statement, and the corresponding meta-model is obtained by 
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indexing the library, thereby returning the search results. The main methods used by users to search for the required 

meta-models are label selection and keyword search. The former mainly relies on the classification query of model-

related nodes; that is, starting from the meta-model ontology node and ending at the function domain and function 

label nodes selected by users, all meta-model nodes pointing to the label node are retrieved using the Cypher 

querying language. In the Cypher querying language, the keywords of the meta-model properties are automatically 

converted into querying conditions in the Match querying statement, and the meta-model nodes that satisfy the 

querying conditions are then retrieved as output. 

5 Nonferrous metal industry intelligent model library and application 

5.1 Nonferrous metal industry intelligent model library 

Based on the aforementioned technology, we successfully built a nonferrous metal industry intelligent model 

library with an IIoT architecture. The library uses a multi-language integrated meta-model agile development 

environment to retain the nonferrous metallurgical process mechanisms, experiential knowledge, data models, and 

AI methods (Fig. 7). The physical, operational environment of an intelligent model library is equipped with high-

performance central processors, storage systems, and graphics processors to meet the requirements of meta-model 

development, testing, operation, release, and management.  

Fig. 7. Nonferrous metal industry intelligent model library. 

 

The nonferrous metal industry intelligent model library focuses on the production processes of copper, aluminum, 

lead, zinc, and other nonferrous metals. It covers 25 subclasses under five main categories: equipment, process, 

entire process, general, and optimization algorithms. Currently, 1251 meta-models are available from this library. To 

address the urgent need for nonferrous metallurgical production, such as intelligent equipment monitoring and raw 

material supply chain optimization, solutions have been developed and applied in key nonferrous metallurgical 

enterprises. This effectively improves the industry intelligence level and creates significant economic benefits.  
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5.2 Application 1: intelligent monitoring of zinc roasting furnace 

A roasting furnace is a large-scale equipment used in the Zn smelting process, and its operating status is crucial 

not only for the stable operation of downstream processes but the entire process [29]. Condition identification and 

operational optimization are vital to ensuring the long-term safety, stability, and efficient operation of roasting 

furnaces. Owing to the large volume, complex structure, strong coupling of subsystems, and serious imbalance 

between multiple-sampling-rate operating data and assay data, monitoring and controlling the operational status of 

the related equipment is difficult. Under the current manual operation and maintenance service mode, the equipment 

operation efficiency is low, abnormal states are frequent, and temperature fluctuations are large; hence, long-term 

stable operation is difficult. 

To address this engineering challenge, several applications that utilize meta-models from the model library have 

been developed. These applications include the fluidization velocity calculation model, fault identification model, 

temperature setting model, operating condition classification model, reconstruction error control limit calculation 

model, and error-triggered update model for roasting furnaces. Together, they constitute an intelligent monitoring 

solution for the zinc smelting roasting furnace, enabling functions like autonomous evaluation of operational status, 

multilevel equipment fault diagnosis, and temperature-stable control. For example, in the temperature real-time 

stable control of the roasting furnace, various meta-models such as the total sensible heat of the feed, flue gas sensible 

heat, feed rate control under the mechanism model, temperature trend extraction and analysis, and fuzzy rule control 

algorithm are interconnected using a “drag-and-drop” approach. This facilitates the rapid creation of a mechanism 

and data-driven temperature real-time stable control model for the roasting furnace, based on the specific business 

logic. The application service is encapsulated and published in the RESTful API and can call applications under 

various architectures, such as B/S and C/S. In addition to configuring meta-models to build model services, various 

RESTful APIs or PMML application systems provide individual meta-models for calling. 

Based on the meta-models related to intelligent monitoring of the zinc smelting-roasting furnace, a solution 

including a series of applications has been constructed, and engineering applications have been conducted in lead-

zinc smelting enterprises (Fig. 8). This significantly reduces the production failure rate of the roasting furnace, 

improves the temperature control accuracy, and achieves long-term stable operation. 

Fig. 8. Intelligent monitoring solution for zinc roasting furnace.  

5.3 Application 2: raw material supply chain optimization in zinc smelting enterprises 

Zinc concentrate is an important raw material in the zinc smelting process, and its procurement and coordination 

directly affect the production and operation of enterprises. However, the annual procurement cost of zinc concentrate 

is several billion CNY, accounting for approximately 70% of the total cost, with a high capital utilization rate [30]. 

Reducing procurement costs by 1% increases the profit of the enterprise by 5%–10%. However, Zn smelting is a 

continuous production process, and a continuous supply of raw materials is required because of the high cost of 

material interruption recovery. As the first step in the Zn smelting process, the quality of raw material blending 

directly affects the stability of subsequent production processes and product quality. The combination of raw material 

price fluctuations, varying supplier quality, subjective manual decision-making, and lack of proper feedback on 

information often results in issues such as high inventory occupation, elevated procurement costs, and an influx of 

impurities in raw materials. 
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To address the issues in the raw material supply chain, a solution for the raw material supply chain was constructed 

based on relevant meta-models in the intelligent model library (Fig. 9). The meta-models used included the metal 

balance, safety stock setting for zinc concentrate, multi-dimensional evaluation of zinc concentrate suppliers, multi-

metal comprehensive pricing of zinc concentrate, and order allocation of zinc concentrate. After applying the 

solution to the raw material supply chain, a fully integrated optimization from raw material procurement to material 

blending was achieved, significantly improving the quality of material supply and blending and the stability and 

efficiency of subsequent production processes, thereby improving the enterprise’s production costs. 

Fig. 9. Raw material supply chain optimization solution.  

6 Conclusion  

The nonferrous metal industry plays an important role in China’s economic and social development, and industrial 

software is an innovative driving force for the high-quality development of the nonferrous metal industry. This study 

addresses the practical challenges in developing and utilizing nonferrous metal industry models. It proposes a 

theoretical system for nonferrous metallurgy meta-model modeling and encapsulation, an architecture for a 

nonferrous metal industry intelligent model library based IIoT, and establishes a multi-language model agile 

development environment and a comprehensive meta-model lifecycle management system. Typical scenarios in 

nonferrous metallurgy show that the intelligent model library is crucial for improving the level of industrial 

intelligence in practical applications, providing innovative technological support for the construction of a strong 

country in the nonferrous metal industry.  

Knowledge of the nonferrous metal industry is complex and diverse, and the production process is dynamic and 

changeable. In the future, knowledge discovery and model self-learning should be explored in depth. (1) In-depth 

mining and explicit representation of tacit knowledge. Explicit knowledge, such as the process mechanism and 

intelligent methods of nonferrous metallurgy, can be relatively easily precipitated into meta-models; however, tacit 

knowledge, such as the know-how and intuition of knowledge workers, is difficult to obtain accurately, and the 

relevant content needs further research. (2) Adaptive online updating of models in complex dynamic environments. 

Most existing models have fixed structures that are unsuitable for complex, changeable, dynamic, and uncertain 

nonferrous metal production processes. Therefore, it is necessary to study model-adaptive online updating methods 

and establish a self-consistent and autonomous software system through model self-learning. Research 

breakthroughs on related issues will further enhance the intelligence level of nonferrous metal industry model 

libraries and promote the steady development of new technologies, thinking, and formats. 
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