DOI 10.15302/J-SSCAE-2023.06.017

海洋CO2管道输送技术现状与展望

王子明^{1,2*},李清平^{3,4,5},李姜辉^{6,7},范振宁^{8,9},张建^{8,9}

(1. 厦门大学材料学院,福建厦门361005; 2. 厦门大学海洋材料腐蚀防护研究中心,福建厦门361005; 3. 中海油研究总院 有限责任公司,北京100028; 4. 海洋天然气水合物全国重点实验室,北京100028; 5. 怀柔实验室,北京101499; 6. 厦门 大学海洋与地球学院,福建厦门361102; 7. 近海海洋环境科学国家重点实验室,福建厦门361102; 8. 中石化石油工程 设计有限公司,山东东营257026; 9. 中国石化碳捕集、利用与封存(CCUS)重点实验室,山东东营257026)

摘要:管道输送是经济高效的CO₂运输方式,海洋CO₂运输是离岸碳捕集、利用与封存(CCUS)产业链的关键环节和规模 化开展离岸CCUS工程建设所需的核心技术。本文明晰了我国实施离岸CCUS的优势、典型海洋碳运输情境和海洋CO₂运输 方式,剖析了国内外海洋CO₂管道输送的技术与工程概况;从CO₂流体相态及流动安全,沿程腐蚀风险评估、监测及预警, CO₂泄漏实时监测技术,高压CO₂泄放及对环境的影响等方面梳理了海洋CO₂管道输送工艺技术现状;从CO₂管道材料断裂 行为及止裂措施、高耐蚀及密封材料、碳钢管道长寿命运行的关键腐蚀控制技术、注采井筒的腐蚀风险评估等方面梳理了海 洋CO₂管道材料技术现状。研究认为,加快发展适应海洋CO₂管道输送复杂工况的材料体系、全流程CO₂管道的智慧管理与 数字孪生技术、海底CO₂管道全生命周期运行关键技术、在役海底管道改输评估与保障技术,采取加快推动我国近海碳封存 CO₂管网规划、拓展和深化跨行业/跨机构合作模式创新、系统建设海陆统筹的标准体系、引导专业化技术服务企业深度参 与海底CO₂管网建设等举措,促进我国海洋CO₂管道输送体系高质量建设。 关键词:CO₂管道,离岸CCUS;海底管道;管道腐蚀;管道断裂;泄漏监测

中图分类号: TE832 文献标识码: A

Current Status and Outlook of Offshore CO₂ Pipeline Transportation Technologies

Wang Ziming^{1, 2*}, Li Qingping^{3, 4, 5}, Li Jianghui^{6, 7}, Fan Zhenning^{8, 9}, Zhang Jian^{8, 9}

 (1. College of Materials, Xiamen University, Xiamen 361005, Fujian, China; 2. Center for Marine Materials Corrosion and Protection, Xiamen University, Xiamen 361005, Fujian, China; 3. CNOOC Research Institute, Beijing 100028, China; 4. National Key Laboratory of Marine Natural Gas Hydrates, Beijing 100028, China; 5. Huairou Laboratory, Beijing 101499, China; 6. College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; 7. State Key Laboratory of Marine Environmental Science, Xiamen 361102, Fujian, China; 8. Sinopec Petroleum Engineering Corporation, Dongying 257026, Shandong, China; 9. Sinopec Key Laboratory for Carbon Capture, Utilization and Sequestration, Dongying 257026, Shandong, China)

Abstract: Pipeline transportation is an economical and effective way for transferring carbon dioxide (CO_2) to the sea, serving as a key procedure for an offshore carbon capture, utilization and sequestration (CCUS) project, as well as a core technology for the large-scale construction of CCUS projects in China. This study clarifies the advantages of China in the construction of offshore CCUS projects, typical offshore carbon pipeline scenarios, and typical offshore CO₂ transportation modes. It also reviews the technologies and

收稿日期: 2023-10-06; 修回日期: 2023-10-22

通讯作者: *王子明,厦门大学材料学院副教授,研究方向为海洋材料腐蚀防护、CO₂腐蚀等; E-mail: zmwang@xmu.edu.cn **资助项目:** 国家自然科学基金项目"多相流环境中超耐蚀碳钢储油表面调控制备及其动态修复机理研究"(52271075) **本刊网址:** www.engineering.org.cn/ch/journal/sscae

projects in China and abroad regarding offshore CO_2 transportation via pipelines. The current technologies relevant to offshore CO_2 pipeline transportation are systematically reviewed. Specifically, the process technologies include CO_2 fluid state analysis and flow assurance; corrosion evaluation, monitoring, and early warning; real-time monitoring of pipe leakage; and release of high-pressure CO_2 and its environmental impacts. The material technologies include the fracture of pipeline materials and its mitigation, high corrosion-resistant and sealing materials, key corrosion-control techniques for the long-term operation of pipelines, and corrosion risk evaluation of CO_2 injection wells. Further efforts should focus on the following aspects: material selection systems for the complex conditions during offshore CO_2 pipeline transportation, full-chain intelligent management and digital twin technologies for CO_2 pipelines, key technologies regarding the whole life-time operation of subsea CO_2 pipelines, and evaluation and assurance techniques for the transferred transportation pipelines. Furthermore, the following suggestions are proposed to promote the high-quality development of the offshore CO_2 pipeline transportation system in China: (1) promoting the planning of offshore CO_2 pipeline networks, (2) expanding interdisciplinary innovations, (3) establishing standards systems that applicable to both onshore and offshore scenarios, and (4) encouraging the participation of diversified technology service enterprises.

Keywords: CO2 pipeline; offshore CCUS; subsea pipeline; pipeline corrosion; pipeline fracture; leakage monitoring

一、前言

碳捕集、利用与封存 (CCUS) 正逐渐发展成 为我国实现碳达峰、碳中和("双碳")战略目标的 高效解决方案之一,涵盖捕集高浓度工业产生 CO₂、加压后集中运输至目标区块、进行价值利用 或地质封存在内的完整技术链。早在20世纪70年 代,北美地区即探索利用CO2提高石油采收率,在 应用中实现CO,动态地质封存。在我国, 吉林油 田、胜利油田等油气开发企业较早启动了CO,驱油 利用与地质封存的规模化工业试验,初步形成了陆 上CCUS工程的全流程技术链^[1]。2023年7月,我 国陆上首条年输送量超百万吨的中国石化齐鲁石化 公司一中国石化胜利油田CO2管道顺利建成, 主体 部分长度为109 km,将中国石化齐鲁石化公司工业 废气中的CO₂捕集、纯化、增压后经管道输送至中 国石化胜利油田纯梁采油厂进行驱油利用和地质封 存。这一项目的投产,标志着我国陆上CCUS工程 步入了商业运营阶段。

相较陆上CCUS工程,我国离岸CCUS工程起 步较晚。2021年,中国海洋石油集团有限公司启动 了我国首个海上CO₂封存示范工程(恩平15-1油 田),工程于2023年建成投运,每年将约3×10⁵ t来 源于中海油恩平油田群采出气分离的CO₂注入海底 800 m深的封闭咸水空间并永久封存。同期,我国 在渤海、东海、南海等海域开展了多个海洋CO₂封 存的前期可行性研究^[23]。源自北欧地区的离岸 CCUS工程经验表明^[4],在低碳经济指标的引导下, 海底广阔的地层空间可能是未来大规模封存CO₂的 最佳场所。

随着离岸CCUS项目的发展和深化,高效匹配

CO₂产生源与CO₂封存有利区成为工程实践中的一大 难题,又以安全且低成本的海洋CO₂运输作为重点 考量因素。本文针对我国发展离岸CCUS产业链面 临的CO₂运输问题,从海底碳封存的工程需求出 发,立足海洋CO₂运输方式、海洋CO₂管道工程现 状,力求全面梳理海洋CO₂管道输送涉及的材料、 工艺等要点,辨识相应技术瓶颈并总结发展方向, 为加快离岸CCUS技术体系建设、推进离岸CCUS 工程应用提供基础参考。

二、离岸CCUS工程发展背景

(一) 实施离岸 CCUS 的优势

近年来,沿海各省份积极发布有关可持续海洋 "蓝色"经济的政策,使离岸CCUS得到越来越多 的关注。建设离岸CCUS工程,将显著拓展碳封存 空间,为实现"碳中和"目标提供更多选择方案; 有助于多元化利用海洋能源资源,助力海洋经济发 展。我国开展离岸CCUS工程建设,具有以下三方 面优势。

1. 海底碳封存潜力及源汇匹配

我国海岸线总长度超过1.8×10⁴ km,近海海域 面积超过4.7×10⁶ km²,相应的海域CO₂地质封存潜 力为2.58×10¹² t^[5],可为实现"双碳"目标提供重 要支撑。东部沿海地区是经济发达地区,具有大量 的工业碳源(约占全国碳排放总量的41%),可与 海洋地质碳汇空间进行高效的源汇匹配^[6]。我国离 岸 50~300 km范围内的近海沉积盆地,有着巨大的 CO₂封存容量,可以满足沿海地区百年以上的碳封 存需求^[7]。 2. 封存安全与风险可控

对于陆上CCUS,即使在向地层注入CO₂前执 行了严格的选址标准、采取了周密的方案设计,在 注入过程中及注入后依然需要考虑CO₂泄漏的潜在 风险。相比之下,离岸CCUS工程风险的后果更 小,这是因为:海底环境因海水压力的作用而较陆 上环境更不利于CO₂的规模化泄漏;海水的溶解、 扩散等过程可极大降低海洋CO₂泄漏带来的环境影 响;近海海底封存远离人口聚集区,CO₂泄漏造成 的经济社会后果相对可控^[8]。

3. 海洋能源协同利用与开发

我国近海海洋油气资源丰富,如东海、南海区 域的石油储量预计值分别为1×10¹⁰ t、2.75×10¹⁰ t^[9]。 联合实施海底碳封存、CO₂驱油,能够以经济的方 式实现油气领域"双碳"目标^[2,8,10],甚至能够实现 "负碳排放"的油气开发模式^[11]。此外,充分发挥 海上风电、潮汐能、波浪能等能源资源,能够进一步 优化离岸CCUS产业链,降低CO₂捕集、运输、利 用等方面的成本^[12],从而推动传统行业与新能源产 业的融合发展。

(二)典型的海洋碳运输情境

在离岸CCUS工程中,从碳源规模、海洋封存选 址角度看,存在3种典型的碳运输模式(见图1): 陆-海运输、海-海运输、跨区域远距离运输。

陆-海运输模式具有规模大、连续产出的特 点,碳源多为沿海热电厂、化工厂等捕集的燃烧后 CO₂,经纯化后仍含有少量水汽、氧气以及硫氧化物、氮氧化物等杂质组分。该运输模式涉及各类工厂产生的CO₂汇集至沿海CO₂储运点、通过大规模长距离的海上运输到达封存点。

海-海运输模式中的CO₂主要是海洋油气生产 过程中分离的燃烧前CO₂,通常含有少量水汽以及 H₂S、烷烃等还原性气体。该运输模式需将各生产 平台或海底工厂分离出的CO₂运输至集中平台进行 增压注入,以实现海洋平台之间的碳转运。

跨区域远距离运输模式指跨省份、跨地区甚至 跨国、跨洲际碳交易情形下的海洋CO₂运输,碳源 呈现多样化,通过较远距离(>500 km)碳运输到 达最优的海底碳封存地点。相应运输线路可能途经 陆地、海洋等,运载量主要与碳源量、碳税政策、 经济指标等因素相关。

(三)海洋CO2运输方式

海洋 CO₂通常采用的输送方式有水上运载器 (如船舶)、水下管道等。在海洋碳运输方式的决策 中,运输成本是重要影响因素之一^[13],需兼顾碳源 形式、输送量、输送距离等变量进行优选。船舶运 输适用于:小规模、分散碳源,水路运输线路密集 分布的地区;跨越区域较远距离的碳运输。管道运 输具有规模大、运量稳定等优点,是陆地或海洋 CO₂连续大规模输送的备选方案,适用于碳源稳定、 输量大、距离适中的海/陆碳封存工程。当前的 CO₂管道主要建于陆上,如北美地区建设的CO₂管

图1 典型海洋CO2运输模式

道长度累计超过6000 km。海洋CO₂管道工程案例 较少,挪威Snøhvit项目是目前规模较大的海洋CO₂ 管道工程^[14]。欧洲规划的CO₂管道建设里程为3×10⁴~ 1.5×10⁵ km,多为海底管道^[15]。鉴于我国沿海地区 的碳源与碳汇格局,未来一定时期内我国海洋CO₂ 管道输送的需求量巨大^[16]。

从工程投资的角度看,船舶运输、管道运输在 大规模 CO₂输送方面均具有优势,如运载量超过 1×10⁶ t/a 后,对于 250 km运输距离,可将运输成本 控制在 1~10 欧元/t 的较低水平^[17]。我国陆上 CO₂管 道的运输成本可低至 0.4~0.6 元/(t·km),海洋 CO₂ 管道的运输成本通常为同等规模陆上方案的 2 倍^[18], 主要原因是后者的建造成本高出 40%~70%^[19]。船舶 运输是间歇性流程,运输船的系泊受海洋环境影响 较大,需要设置大容量 CO₂储罐,都将增加船舶运 输成本。海洋运输方式的选择通常取决于运载量和 运输距离^[13]。在固定年运量的条件下,海底管道在 短距离运输时更经济。我国海洋 CO₂管道将呈规模 化发展势头,相应的单位运输成本走低,在远距离 运输中也将逐渐取代传统的船舶运输^[20]。

三、海洋CO2管道输送的工程与技术现状

(一)国外海洋CO₂输送工程案例

1. 陆-海远距离输送与注入

挪威 Snøhvit 项目是目前少数成功运行的海洋 CO₂管道输送项目,自2008年开始运营,将Snøhvit 液化天然气工厂捕集的CO₂运送至153 km外、300 m 水深的海底碳封存点,设计输送量约为7×10⁵ t/a^[21]。 Snøhvit 气田的天然气中含4%~9%的CO₂,在处理 站场经过捕集和纯化后,再采用分子筛技术将含水 量降至极低水平(摩尔比为5×10⁻⁵),以最大程度控 制运行过程中的管道腐蚀风险。管道入口端的CO₂ 流体温度为25 ℃、压力为15 MPa,输送至海底管 道末端后温度降低至5 ℃^[14]。海底管道全程焊接 (不分段),未设置中转站或增压站、阀门等设施, 仅在陆地段设置管道清扫设施用于特殊工况下的应 急处置。基于动态生产模拟软件进行管道运行的全 程实时监控,辅助进行泄漏探查、清管器模拟跟踪 和自动控制。

2. 海-海近距离直接注入

Sleipner项目位于挪威北海区域,是国际上最早

开展海上CO₂封存的项目;CO₂分离自海上生产的 天然气,被注入至临近天然气藏(深度约为1000 m) 的地质储层内。注入系统位于天然气生产平台,故 无需长距离输送CO₂,CO₂被分离后未经干燥流程 直接加压注入地层(注入压力为6 MPa、注入温度为 25 ℃);采用25Cr不锈钢管道以抵御腐蚀问题。项 目自1996年开始运行,累计注入CO₂约2.7×10⁷t^[22], 注入管道未发生腐蚀和泄漏情况,验证了高耐蚀材 料在短距离输注工况中的应用可靠性。

巴西Lula油田是国际上首个开展离岸大规模CO₂ 驱油工程的油田,2011年正式启动,工程水深约 2200 m,采用浮式平台开采模式以提高经济性^[23]。 为提高石油采收率和环境效益,将伴生气中的CO₂ (含量约为12%)直接在采油平台进行分离和回注, 无需长距离输送,在生产区设置1组CO₂注入井、 2组气水交替注入井。经多年运行后,注入井处未 发生明显的水合物、结垢、流动安全等问题。

(二)我国海底管道技术发展现状

我国基本掌握了海底管道铺设、耐蚀管材研制、海底管道检测评估、海底管道维修等关键技术,为海洋CO₂管道输送工程建设提供了坚实的技术支撑。

1. 海底管道铺设技术

过去20年,我国海底管道铺设能力得到跨越式 发展,作业深度从浅水逐步走向深水,具备1500 m 深水油气管道的自主建设能力^[24]。在海底管道铺设 装备方面,拥有S型、卷筒铺设等铺管船,柔性管 道铺管船、水下机器人、喷射式和犁式挖沟机等 海底管道工程大型作业装备^[24,25]。2019年,在东方 13-2油气田自主建成了铺设最长的海底管道(长度 为195 km、管径为0.6 m)。在深海作业能力方面, 2021年"深海一号"气田建成我国最大水深的海底 管道(长度为4.5 km、管径为0.2 m),最大作业水 深达1542 m^[24]。

2. 海底管道新材料技术

我国海底油气管道普遍采用X65材质。南海荔 湾输气管道工程采用了X70材质,管径/厚度比为 24.1,总长度为160 km,是高强度等级钢材用于海 底管道的最新案例^[26,27]。近年来,相关机构加快开 展高强度、大厚度管材的研发与应用,整体技术水 逐步接近国际先进。在酸性等腐蚀介质环境中,新 型耐蚀材料开始用于海底油气管道,低成本、高耐蚀的双金属复合管在深海油气集输方向具有广阔的应用前景^[28]。2017年,我国首次在文昌油田自主铺设总长度为4.92 km的不锈钢复合双层海管^[29]。具备超深水工况下柔性管的自主安装设计和施工能力,掌握垂直铺设作业关键装备技术,已在流花油田、陵水气田等区块形成工程案例^[30]。然而,高性能热塑性管材及相应的多层复合界面增强技术仍待攻克,才能推动海洋柔性管的规模化应用。

3. 海底管道检测评估技术

海底管道在运行过程中,受到机械或化学作用 可能导致局部破裂而引发不同程度的泄漏^[31]。现有 的海底管道检测评估技术可分为预防性检测技术、 泄漏定位技术^[32,33]:前者侧重于评估管道破坏风险, 如保温层完整性,管道内壁腐蚀产物、腐蚀速率、 含水率的在线监测信息;后者属于事故感知型监测 手段,用于实时或在短时间内判断泄漏发生位置, 以负压波、次声波等监测分析方法为代表^[32]。在具 体实施过程中,通常需要多种技术手段联合运用才 能准确定位事故。

4. 海底管道维修技术

海底管道维修从空间上可分为水上维修、水下 维修^[34,35]:前者借助重型支持船进行海上提管维修 或修补作业^[35],适用于浅海区域中等以上破损的海 底管道(需要管道停输);后者直接在海底对破损 管道进行更换维修或开分支等作业。当管道局部损 伤时,可采用不停输封堵维修技术,如夹具或管卡 维修、机械式三通维修法等^[36];当管道严重损伤或 断裂时,需在停输状态下借助机械连接器进行修复 或者采用水下焊接进行维修^[34]。借助干式舱开展水 下焊接仅适用于水深 30 m 以内的浅水区,更深海 域工况需要发展湿式水下焊接技术。

(三)我国在役海底管道工程现状

当前,我国海底管道总里程超过9000 km^[24], 其中油气混输管道、天然气管道、注水管道、原油 管道的占比分别为40%、19%、26%、13%,尚无 用于CO₂输送的长距离海底管道^[37]。我国海底管道 多为新建工程,服役时间少于10 a的管道占比约为 57%,服役时间超过25 a的老旧管道仅占8%^[37]。海 底管道的建设成本高昂,因而挖掘在役管网的调配 潜力、进行多种介质分批次或定期转输是未来的关 注点。目前,我国已有开展海底管道转输的工程案例,如渤海BZ34-1油田实施了22d的海底天然气管道改输原油方案^[38],在海底输水管道转输油气混合介质^[39]、含腐蚀缺陷的输水管道转输天然气^[40]等方面也开展了探索,为后续的在役海底管道转输CO₂提供了技术借鉴。天然气管道设计压力一般高于10 MPa (如荔湾海底输气管道设计压力一般高于10 MPa (如荔湾海底输气管道设计压力高达23.6 MPa),能够满足转输密相CO₂的压力等级要求; 原油或油水混输管道设计压力多数不高于8 MPa, 仅适用于气态CO,输送。

四、海洋CO2管道输送工艺技术及面临的挑战

(一) CO₂流体相态及流动安全

海底管道内 CO₂以气态、液态、超临界态、固 态等多种相态形式存在,决定了管道内流体的流动 特征。杂质气体会改变 CO₂流体的黏度、密度、相 区以及临界相转变点,进而影响输送效率和流动安 全。在海底管道的低温、高压服役环境中,微量水 可能促使 CO₂水合物析出,成为影响管道流动安全 的重要因素。

1. CO₂流体相态

CO₂相态取决于管道输送的温度和压力。在海 洋环境中,如不采取高效保温措施或辅以伴热系 统,长距离运输过程中管道流体温度将接近于海水 温度。按照理论模型^[41],起始温度为15℃的CO₂ 流体在输送1.5h后,其温度下降至5℃左右;这一 预测温变与Snøhvit项目实际管道温度的演变规律 相符。管道内流体压力的变化与海床深度、输送距 离相关,在CO₂自重作用下管道流体压力逐渐增 加,而远距离管道输送会降低压力^[42]。在Snøhvit项 目中,管道入口端的压力为15 MPa(设计压力为 21 MPa),153 km外、300 m深的海底井口处压力仍 为15 MPa,表明CO₂重力压差与管道压降相等。

图 2 展示了海底管道中 CO₂相态随温度和压力 变化的典型演变路径。CO₂处于超临界态时,因其具 有高密度、低黏度的特点而被视为陆上管道最高效 的 CO₂输送状态。美国 Cortez 项目中即采用超临界 态 CO₂(压力为 9.6 MPa、温度为 43 ℃)进行输送。 采用超临界态 CO₂输送时,全线运行压力应高于 1.1 倍 的临界压力(即 8.1 MPa)^[43],以避免压力波动而进 入 CO₂气相区间。在英国 Longannet、Kingsnorth 项

目的前端工程设计报告中,示范阶段、全规模阶段 分别采用了气相输送、高压密相输送的设计方 案^[44]。采用气相输送方案具有压力低、成本低的优 势^[45]。对于海底管道,建议采用液相输送^[19,44]。

在长距离输送过程中,CO₂随着温度下降、压 力增加而保持单一液相;在注入井筒内被地温加热 后,1000 m左右深度,CO₂流体开始转变为超临界 态,密度不会发生突变,对井筒运行安全的影响较 小。然而,在管道试运行、故障停运、压力泄放或 停输再启动等过程中,控制管道压力显得尤为重 要,因为频繁且高载荷的压力波冲击可能导致海底 管道固定系统损伤以致出现大幅度位移。

2. 杂质气体对CO2流体的影响

由于碳源和捕集方法的差异,CO₂流体中含有 不同类型的杂质气体,如燃烧后工艺捕集的CO₂中 含有一定量的N₂、O₂、CO、SO₂、NO₂等,天然气 中直接分离的CO₂中往往含有一定量的CH₄、H₂S、 H₂等。当杂质气体含量达到工程上限时^[46,47],将对CO₂ 流体的诸多物理参量产生影响^[48](见图3)。①杂质 气体对CO₂密度的影响取决于其分子量,较大分子 量的气体趋向于增加CO₂密度^[48]。②CO₂流体黏度 与分子间的摩擦力,和杂质气体导致的紊流有关。 SO₂、H₂S、H₂O的存在将提高CO₂流体黏度^[48],从 而增加管道输送能耗。对于密相输送的CO,流体, 其黏度随温度升高而降低。③在水平管道内,较 CO,轻的杂质气体会提高流体流速,导致管道摩阻 增加、管道压降加大;仅有SO₂、H₂O会缓解沿程 压降。在下坡管道内,受流体重力的影响,较CO, 重的杂质气体将进一步增加流体压力。④ 杂质气体 导致CO₂分压降低,可能进入气液两相区。H₂、N₂ 将导致最宽的两相区范围,而H₂O、H₂S几乎不改 变CO2的相区分布[49]。⑤各种杂质气体均会提高 CO,的临界压力(即>7.37 MPa)^[50],较高的临界压 力预示着CO,流体需在更高压力下才能维持密相输 送。SO₂、H₂S、NH₃可提高CO₂的临界温度,其他 杂质气体均可降低CO,的临界温度^[48]。提高临界温 度有利于CO,流体保持密相输送的安全性。

从图3可知, N₂对CO₂流体行为的影响较为明显,而H₂S的影响较为微弱,该结论对工程实践具 有指导意义。在进行地质封存时,对海上天然气分 离的CO₂中H₂S含量上限可不作要求,而燃煤电厂 等燃烧后捕集的CO₂输送时,合理控制N₂含量成为 保持流动安全性的重要手段。

3. CO₂水合物的形成及预防

CO₂水合物是由CO₂分子、水分子按特定比例 构成的笼合物固体结构,若聚集会堵塞管道和阀门 并影响设备运行^[51,52]。当存在游离水时,只要流体 温度和压力位于水合物形成区(见图2),便会形成 一定体积的CO₂水合物形成区(见图2),便会形成 一定体积的CO₂水合物^[53,54]。低温、高压的海底管道 输送环境有利于形成CO₂水合物。CO₂水合物形成与 液态CO₂中水的溶解度极限相关^[54],快速降温可能 导致CO₂水合物析出。例如,在压力为8.89 MPa、 温度为-5℃时,摩尔比为0.0011的含水量不会导致 CO₂水合物析出;当温度降低至-10℃,将会析出

影响程度	有利→不利									
密度	H_2O	SO_2	H_2S	NH_3	CO	Ar	CH_4	O ₂	H_2	N_2
黏度	H_2O	H_2S	SO_2	NH_3	СО	O ₂	CH_4	H_2	Ar	N_2
压降	H_2O	SO_2	NH_3	СО	H_2S	Ar	CH_4	O ₂	H_2	N_2
相区		H_2S	СО	NH_3	SO_2	CH_4	Ar	O ₂	N ₂	H_2
临界压力		H_2S	СО	SO_2	NH_3	CH_4	Ar	H_2	O ₂	N_2
临界温度		NH_3	SO_2	H_2S	СО	Ar	H_2	CH ₄	O ₂	N_2

图3 杂质气体对CO2流体性质的影响程度

少量的CO₂水合物^[54]。在稳态输送工况下,只要严格控制CO₂流体的含水量,即可避免水合物析出。 在北美地区Weyburn、NJED陆上CO₂输送项目中, 采用了较低的含水量(摩尔比分别为5×10⁻⁵、4.18× 10⁻⁴),即使在冬季低温环境中管道内也未发现CO₂ 水合物^[14]。当含水量较低时,即使启停过程中或偶 遇温压突变导致CO₂水合物析出,待管道运行平稳 后少量的水合物将逐渐分解^[51]。

此外, CO₂流体含水量也是管道腐蚀控制的关键因素。确定经济合理的含水量设计值,对于海底 CO₂管道安全输送至关重要。目前,同时考虑CO₂ 水合物形成与管道腐蚀的CO₂含水量控制准则研究 未见报道,杂质气体对不饱和含水条件下CO₂水合 物形成的协同影响等研究也属稀缺。

部分研究表明,CO₂水合物浆料输送也是一种 潜在的海洋CO₂管道输送方式^[56],与密相输送相比 具有低能耗、低成本、无堵塞风险等优势,但固液 两相输送可能面临冲刷腐蚀等潜在风险。

(二)沿程腐蚀风险评估、监测及预警

海底CO₂管道运行过程中不可避免地出现水汽 凝结、游离水聚集、偶发性水段塞过流等问题,从 而引发管道内壁腐蚀。在低温、高压环境中,CO₂ 溶于水形成碳酸,碳钢管道难以耐受低pH值(<3) 电解质的长期浸蚀,成为海底CO₂管道腐蚀穿孔的 重要诱因。

1. 低温、高压CO2管道腐蚀风险评估

当存在游离水时,管道腐蚀风险主要取决于表 面腐蚀产物膜的保护能力。在海底管道低温、高压 工况下,FeCO₃的临界饱和度关于温度敏感^[57],因 而保护性不佳;水气段塞等复杂流动可能对FeCO₃ 膜造成冲刷腐蚀并破坏其完整性^[58,59]。一旦失去腐 蚀产物膜的保护,碳钢在CO₂饱和水溶液中将发生 剧烈的活性溶解^[60]。当不存在游离水时,管道内沉 积的水滴或薄液膜^[41,61,62]成为电化学腐蚀发生的电解 质场所,相应腐蚀风险与CO₂流体的含水量^[63]和流 速^[61]相关。杂质气体会改变CO₂流体特性,进而促 成液滴沉降或改变腐蚀产物,在一定程度上加剧 腐蚀。

在气、水交替注入工况下,管道内壁处于密相 CO₂和水相的周期性交替作用环境中。对于CO₂相 取代水相的过程,滞留水膜的停留时间直接决定管 道腐蚀风险^[41]。粗糙或带有腐蚀产物的管道内壁容 易滞留更厚的水膜,而干燥程度更高、输送速度更 快的CO₂流体有利于缩短水膜停留时间。

腐蚀是金属表面发生的电化学反应,只有在表面形成宏观或微观的电解质聚集(即游离水、水 滴、水膜),腐蚀才能发生。在海洋CO₂输送工况 下,当管道所处水深为数百米,管道流体的温度和 压力将处于CO₂水合物形成区间;管道内的游离水 将以水合物形式存在,微液滴或薄液膜也转变为固 态水合物,无法提供电化学反应所需的电解质溶 液。这种水合物形成环境中的管道腐蚀风险尚需进 一步的实验验证。

2. 海底管道内腐蚀监测技术

CO₂海底管道为整体焊接的封闭结构,在线监 测腐蚀的难度较大。实际工程中集成运用多种技 术,发挥CO₂流体监控、局部监测、定期全覆盖检 测的优势,辅以清管作业等措施、数字孪生等技 术,实现多源数据融合和全生命周期评价。

现有的 CO₂管道工程均设置了含水量监测系统,用于实时记录 CO₂流体的含水量^[14]。当含水量高于设定的临界值时,需要启动干预措施以干燥 CO₂流体,确保管道系统稳定运行。

安装于特定位置的腐蚀探头或传感器(分为电 阻型、电感型、电化学型等种类),可进行腐蚀信 号监测并实时获取相关信息。这是一种局域性的腐 蚀监测技术,在安装位置受限的海底环境中难以针 对腐蚀风险点进行全流程周密布局,可能漏失大多 数腐蚀监测的关键信息。

腐蚀缺陷检测是基于多种物理信号反馈的全覆 盖式管道监测手段^[64],分为超声法、涡流法、漏磁 法等。在水下环境中,此类监测装备需要配合水下 或管道机器人进行管道沿程扫描,但成本高昂。在 清管器上搭载智能检测系统,可以获得更多管道内 壁的腐蚀信息。对于海底CO₂管道,超远距离作业 和高压CO₂对橡胶的溶解作用导致运行清管作业存 在较大的技术挑战^[14]。

(三) CO2泄漏实时监测技术

海底管道运行环境复杂,加之泄漏点难以预 见,实时监测并定位管道泄漏的难度极大。当泄漏 事件发生后,首先需要借助在线监测系统的数据分 析来获取泄漏点的大概位置,再利用水下机器人对 事故点附近进行巡航检测,进而经由影像、声学等 手段准确定位泄漏点,随后快速处置以将环境影响 降至最低。

1. 分布式光纤定位技术

光纤传感技术是利用光纤光栅响应周围环境以获得光散射信号的变化,进而准确定位信号突变部位的一种原位监测技术。环境的应力、温度、振动等信号变化,均会对局域光纤内光信号的散射产生影响。该技术在长距离油气管道^[65]、输水管道^[66]等工程中已有应用,在海底管道健康监测方面也有少量案例^[32]。根据实践经验,百余千米长度管道的监测定位精度可达30m;较短距离管道的监测定位精度可达1m^[67]。

光纤传感器需要与海底管道同步(近距离)铺 设,或紧贴于管壁外侧。海底CO2管道一旦发生局 部泄漏,释放的高压CO2对局部环境产生降温、振 动等多重作用,均会在光纤传感信号中得以体现。 相较油气管道,CO2泄漏导致的温度变化更为显著, 有利于光纤传感信号的准确识别。

利用分布式光纤传感技术,还可获得管道外壁 的热流、微振动等信号。设置相应的信号阈值,可 判断出管道内部水合物、水游离水、段塞流等的发 生部位,为现场管理及安全预警提供可靠依据^[32]。 考虑到深海环境下安装难度大、维护成本高,分布 式光纤传感技术应用于海底管道泄漏定位还需克服 具体施工问题。

2. 泄漏特征波谱定位技术

泄漏点处的CO₂流体在管道内外压差作用下形 成湍流,剧烈摩擦产生声波信号,声波将沿着流体 和管壁传播。通过次声波达到两个监测点的时间差 可计算出泄漏点位置并实现定位。次声波有着较短 的波长,在传播过程中不易衰减,最大传播距离可 达50 km,适用于海底管道长距离泄漏监测^[68]。根据 陆上油气管道的运行经验,次声波法泄漏点定位精 度可达±50 m^[68,69]。由于次声波作用距离远,一定长 度的管道仅需在首/末段安装检测设备即可实现全 程泄漏的监测与定位,因而具有广阔的应用前景。

负压波法、压力梯度法也是海底油气管道泄漏 监测与定位的常用方法^[32,68]。对于海底密相输送 CO₂流体,泄漏发生后短时间内管道内压力变化较 微弱,此类基于压力敏感的定位方法可能不适用于 CO₂管道泄漏监测。

3. 水下机器人巡检

水下机器人(ROV)是承担海底管道泄漏精准 定位任务的关键装备。在经由光谱法、波谱法获得 管道泄漏事件的初步定位信息后,需要ROV对可 疑区段进行沿线巡检;利用ROV搭载的声学、光 学、温度等传感器,获得管道泄漏的定量信息。 ROV工作需要潜航器或维修船配合,联合完成海底 管道的巡检和维修工作。以目前的技术能力看, ROV可执行4000m深水作业^[32]。

近年来,自主水下航行器(AUV)正在快速发展,以适应恶劣海洋环境下的无人操控需求。尚处于实验室研发阶段的长期驻守自充电AUV在海底管道检测、定位与维修等方面展现出广阔前景^[32]。与人工智能技术结合,AUV可适时自主开展常规 巡检任务,获取信息并同步传输至终端控制平台,等待人为指令开展必要的维修前准备工作;将缓解 海底管道巡检的人力资源需求,适应极端环境下海 底管道泄漏事故的快速定位与高效处置场景。

(四)高压CO₂泄放及对环境的影响

海底CO₂泄漏将引发一系列的海洋安全与环境 问题。面向突发性的海底CO₂管道泄漏事故,需要 认清CO₂泄放规律,准确把握泄漏过程的关键因素 并客观评价对环境的影响后果,才能实施应急救援 并开展后续生态补偿等工作。

1. 海底管道CO, 泄放规律

理解海底管道高压密相CO₂的泄放过程, 需从 两方面出发: CO₂羽流在海水中的逸散规律, CO₂ 泄放过程中管道内流体的相变规律。

与陆上CO₂管道不同,海底管道泄放出的高压 CO₂羽流会受周围海水限制,其逸散规律与水深密 切相关。理论研究认为^[70],高压海水环境可有效抑 制CO₂逸散。如果泄放点浅于10m水深,超过90% 的CO₂将以气体形式快速释放到海平面以上的大气 中。如果泄放点深于50m水深,则全部CO₂气体被 溶解于海水,在海平面几乎观察不到气泡逸出。如 果泄放点深于500m水深,CO₂将以液态形式涌出, 随后在较短时间内溶解于深层海水。如果泄放点深 于1000m水深,CO₂与海水形成水合物,可能影响 泄放速率甚至间歇性堵塞泄放口。

在海底管道CO₂泄放过程中,管道内部流体的 温度和压力会发生变化,可能导致气液两相流动, 局部低温则进一步增加管道材料脆性断裂的风险。 国内外分别开展了不同规模的现场管道、模拟实验 管道的测试研究。长度为50 km、管径为0.6 m的 陆上埋地管道中9300 t CO₂泄放实验表明^[71],泄放 过程中的温度、压力沿着气液分界线演变,管道内 出现了气液两相共存。小规模的 CO₂管泄放模拟 中,监测到 CO₂流体的气液两相共存状态^[72],观察 到干冰直接喷出现象^[73,74]。海洋 CO₂管道不设置隔 离阀门或分段节流阀,如果某处发生泄漏,则整条 管道中 CO₂均参与泄放,尚无直接相关的实验 研究。

2. 海底管道CO2泄漏的安全、环境与生态影响

CO₂虽然无毒性,但易于在地表或海面聚集,可能对附近人员或生物造成窒息、冷冻等安全伤害^[75]。1994—2013年,北美地区陆上CO₂管道累计发生64次泄漏事件^[76],虽未造成严重的伤亡事故,但需要清醒认识CO₂泄漏的潜在安全隐患。例如,1986年喀麦隆的尼奥斯湖底的天然CO₂大规模喷发,在短时间内蔓延至周边的低谷地带,造成1700余人死亡^[77]。CO₂管道中的其他杂质气体如H₂S、SO₂等,在泄漏过程中也会严重威胁人身安全^[46]。也要注意到,海洋表面的人员聚集度非常低,加之高压海水可溶解并缓冲CO₂羽流^[70],一般认为海底管道CO₂泄漏的安全风险远低于陆上管道,对海面船只、平台上的工作人员影响有限。

大量泄漏的CO₂溶解于海水,会降低局部区域 海水的pH值,短时间内对海洋浮游生物造成直接 伤害^[78]。长期生活于低pH值环境中的海洋生物, 其生活习性、细胞内环境会发生改变^[79]。也要注意 到,与CO₂地层泄漏不同,CO₂管道泄漏更加局域 化,更容易实施人为管控措施,相应影响强度低、 时间短;当CO₂管道得到修复,所引发的负面环境 生态效应也随之消失。

(五)海洋CO2管道输送面临的工艺技术挑战

1. 低温、高压环境中CO₂含水量阈值设置缺乏 依据

海底管道中CO₂含水量控制需要考虑腐蚀、水 合物形成两方面因素。工程上最简单的做法是将 CO₂脱水处理,使含水量远低于相应环境的含水饱 和度。国外工程经验是将管道输送的CO₂含水量控 制在摩尔比< 5×10^{-4 [80]},但缺少充分的科学论证。 在Weyburn油田、Snøhvit项目中,选择了数值更低、更为安全的含水量阈值,然而CO₂脱水处理成本昂贵^[81],杂质气体则进一步恶化输送环境。平衡含水量、流动安全之间的关系^[82],成为大规模CO₂管道输送的关键技术难题。

2. 海底CO2管道腐蚀风险评估与监测技术

CO₂管道腐蚀与游离水存积相关,发生的时间 和空间均受局域环境波动、管道几何等因素的影 响,具有较大的不确定性。常规的全覆盖式腐蚀监 测技术不具备时效性,当发现管道腐蚀缺陷时往往 破坏已无法逆转。局部腐蚀实时监测技术仅安装于 特定位置,存在监测信息代表性差、腐蚀风险估计 不足的问题。海底CO₂管道沿程腐蚀风险评估的核 心难题是融合可获取的流体、环境、材料等多类型 参数,形成"流动-管道-材料"集成的理论预测 模型和风险识别方法。

3. 超远距离高压CO2管道清管技术

清管作业常用于管道检测、清除堵塞物,是管 道运行的重要保障措施。在Weybum油田、美国 NJED项目中,执行了CO₂管道全线或支线的清管 作业,用于检测管道腐蚀和排出游离水¹¹⁴。在长距 离CO₂输送(>50 km)过程中,清管作业面临着代 表性难题:清管器主要依靠流体压力运行,超远距 离清管作业的压力损失可能导致清管器动力不足, 从而存在滞留风险;在密相或超临界CO₂环境中, 超远距离作业时清管器的密封部件会发生磨损或降 解而失效。

4. 低成本海底CO2管道泄漏精准定位技术

次声波法用于泄漏定位虽然成本低、沿线装备少,但定位精度受作业环境影响较大,也仅适用于距离不超过50 km的海底管道(或需要分段监测),才能确保精度和适用性。分布式光纤传感技术被视为CO₂海底管道泄漏快速精准定位的先进方向,但光缆需要伴随海底管道同步铺设,施工难度大、成本高。此外,光纤传感器仅能监测光缆铺设一侧的CO₂泄漏信号,若进行管道空间全方位监测,需要围绕管道至少布设4个象限的电缆,将显著增加工程投资。因而提高定位精度、降低工程成本是当前技术攻关的重点方向,集成多种实时监测与沿程动态模拟技术能够更好实现全方位的快速精准定位。

五、海洋CO2管道材料技术及面临的挑战

(一) CO2管道材料断裂行为及止裂措施

管道运行过程中受到的第三方机械损伤、内外腐蚀、焊接缺陷及应力等材料/结构缺陷,都可能成为CO₂管道断裂的裂纹源。海底CO₂管道断裂行为由管道材料、环境温度、减压波特性等因素共同决定。CO₂的焦耳-汤姆逊系数较大,故泄漏口附近温降显著,管道材料韧性变差。通常情况下,CO₂管道以韧性断裂为主^[83],CO₂泄漏造成的减压波传播速度小于天然气等介质,密相或超临界态CO₂输送管道更易发生裂纹长程扩展^[83,84]。当泄漏管道的减压波速度高于裂纹扩展速度时,裂纹停止扩展^[85]。

1. 管道材料韧脆转变

在常温条件下,碳钢管道材料在受力后多表现 为韧性断裂,随着温度下降其断裂韧性逐渐变差; 当环境温度低于韧脆转变温度时,相应断裂韧性急 剧下降,表现为脆性断裂特征^[53,85]。参照陆上CO₂ 管道的规模泄漏实验,管壁温度局部可降低至 -70℃^[86],此条件下管道材料存在较高的脆性断裂 风险。在海底CO₂管道泄漏过程中,海水压力、水 合物形成能够抑制CO₂释放,海水良好的热传导特 性也可缓解管道局部温降,但尚未有系统理论或大 规模海底CO₂管道泄漏的模拟实验来验证沿程的温 度与压力变化、裂纹扩展等特性。

2. 管道断裂的影响因素

材料力学性能和缺陷是导致CO₂管道断裂扩展 的主要内因。材料的断裂韧性越高,裂纹开动难度 越大、扩展速度越慢,更易于实现止裂。管道材料 的制造缺陷、腐蚀缺陷等造成应力集中,当局部应 力超过材料断裂韧性极限时将演变为裂纹源。焊接 接头在强度、韧性等方面与管道主体存在一定差 异,特别是焊缝的热影响区往往是海底管道的薄弱 点,对裂纹萌生和扩展起到关键而不利的影响。

管道泄漏导致的温降和减压波是管道裂纹扩展 的关键外因。低温条件下材料断裂韧性变差,不利 于限制裂纹扩展。在CO₂管道泄漏过程中,如果减 压波传播速度低于裂纹扩展速度,裂纹前端在高应 力下将加速扩展。相较于气相和密相CO₂,超临界 CO₂的初始减压波速度最小,更难自发止裂^[84]。杂 质气体会影响CO₂流体的相行为、减压波传播,对 管道断裂扩展的影响更加复杂^[87,88]。例如,杂质气 体N2含量越高,所需的止裂韧性值越高^[84]。

3. 管道断裂控制措施

抑制 CO₂管道长距离断裂扩展的措施主要有: 提高管道自身断裂韧性以适应 CO₂流体的动态变 化,采用止裂器强制止裂。对比减压波速度和裂纹 扩展速度,参照天然气管道断裂方向的 Battelle 双 曲线法,可判定管道依靠自身韧性止裂的可能性; 尽管该方法被认为不能直接应用于 CO₂输送管道^[84,88], 但仍然是揭示流体与材料相互耦合作用的重要依 据。在国外一些 CO₂管道工程中,沿程每隔约 300 m 安装止裂环以防止长距离开裂,但缺乏止裂装置的 设计标准与使用准则^[87,89]。针对在役油气管道转输 CO₂的改造工程,需重点评估使用止裂措施降低管 道开裂的可行性^[44],尽管在役管道安装止裂环的技 术难度更大、工程造价更高。

(二) 高耐蚀及密封材料

海底 CO₂管道通常采用低碳钢材料(如低锰钢^[90]),面临着内部 CO₂饱和电解质、外部海水的联合腐蚀作用。超临界或密相 CO₂是良好的有机溶剂,与其接触的有机材料将会加速降解失效。

1. 不锈钢及耐蚀合金

不锈钢等耐蚀材料可确保CO₂输送系统的安全 运行。在Sleipner海底碳封存项目中,由不锈钢制 成的短距离注入管道长期服役于含饱和水的CO₂流 体环境^[14]。世界第一口CO₂注入井的绝大部分过流 管件选择了高耐蚀的316不锈钢材质,仅少量部件 选用了带耐蚀防护层的碳钢管道^[90]。对于长距离海 底管道,考虑成本因素则建议在某些薄弱部位或关 键部件使用高耐蚀材料。在海洋CO₂驱油工程项目 中,双金属复合管道适用于CO₂气水交替注入管道 等强腐蚀工况,根本性解决腐蚀问题。

2. 有机涂层及柔性复合管

有机涂层广泛用于海洋环境工程,成为海工装 备延寿的经济性解决方案。海底管道外防腐层一般 选用环氧类有机涂层,也较多与阴极保护等技术联 合使用^[19]。然而,受限于涂层材料的制备缺陷、严格 的可靠性要求,有机涂层或其他类型涂层较少用于 油气管道内腐蚀防护;CO₂管道不推荐采用有机或 其他类型涂层的内腐蚀防护方案^[89]。美国SACROC 管道项目采用喷涂玻璃纤维增强树脂作为防腐 层^[14],聚乙烯和塑料内衬层也试用于注入井油管腐 蚀防护^[90],这些经验具有工程借鉴价值。柔性复合 管在海洋天然气生产中得到广泛应用,而用于CO₂ 输送时需考虑树脂降解问题,导致适用性受限;聚 四氟乙烯、聚偏二氟乙烯、聚酰胺等工程有机塑料 均可作为内衬层用于CO₂输送系统^[14]。

3. 抗CO₂降解的密封材料

橡胶类有机材料在超临界 CO₂中会出现溶解、 渗透、膨胀、鼓泡等现象,从而加速材料失效。工 程经验表明,三元乙丙橡胶是能够耐受无油、高压 CO₂环境的密封材料^[14],镀铬或氧化铝密封垫可用 作阀门的硬接触部件。CO₂相态会影响密封材料的 服役性能^[91],密相液态 CO₂对有机类密封件性能的 劣化影响最为明显。

(三)碳钢管道长寿命运行的关键腐蚀控制技术

对于碳钢材料的高压 CO₂管道,如果运行管控 措施不到位,可能面临严重的电化学腐蚀而显著缩 短服役寿命。CO₂管道腐蚀控制需要平衡风险性与 经济性,如低风险需要极低的含水量,对应于 CO₂ 干燥工艺的高成本^[81]。为确保碳钢管道长寿命运行, 可从两方面控制腐蚀:严格规范管道入口 CO₂的含 水量,避免游离水析出或聚集;精准调控管道内壁 形成的致密保护性腐蚀产物膜。

1. CO2管道腐蚀评判准则

管输 CO₂流体的含水饱和度会随着时间和空间 而变化,包裹的气态水或微水滴会析出、凝结并短 期停留于管道内壁^[92],最终在表面形成颗粒状、区 域状或相连成片的腐蚀产物形貌^[61]。当以均匀腐蚀 速率评判 CO₂管道的腐蚀程度时,为了达到工程可 接受的最小腐蚀速率(0.1 mm/a),需要大量微液滴 附着于表面以得到较高的含水量容忍值^[76,93]。将局 部腐蚀速率>0.1 mm/a确定为临界含水量判据,更 能准确反映最恶劣情形^[94],由此得出的临界含水量 远低于以均匀腐蚀速率为判据的数值。在 CO₂输送 工况下,管道内的水量极为有限,长期服役过程中 管道内壁可能不具备维持局部腐蚀扩展的溶液环 境,因而局部腐蚀速率可能仅反映短期腐蚀行为。

2. CO2管道腐蚀产物膜的稳定性

CO₂管道材料通常暴露于受限溶液环境中,有利于快速形成具有良好保护性的腐蚀产物膜^[95,96]。当溶液中Fe²⁺离子、CO₃²⁻离子的浓度积大于FeCO₃的饱和度时,FeCO₃倾向于沉积成膜^[95,97],相应成膜过

程遵循晶体形核与生长规律。FeCO₃晶粒可能优先 在溶蚀Fe₃C网络结构内形核^[98],后逐步覆盖整个表 面。在局部液滴覆盖或游离水成片聚集区域,均能 形成晶粒细密的腐蚀产物堆积^[61],具有良好的保护 性^[99]。尚缺少FeCO₃膜保护性能的原位评价方法, 这是制约管道长期服役行为准确评估的关键因素。

在温度<20 ℃的海洋工况下,Fe²⁺离子溶出速 度减缓,FeCO₃的临界饱和度较高,不利于FeCO₃ 快速成膜,使海底CO₂管道面临更高的腐蚀风险。 可溶性杂质气体(如O₂、SO₂、H₂S)^[100],环境波动 等因素,均会影响FeCO₃膜的保护性^[76]。

(四) CO₂注采井筒的腐蚀风险评估

注采井筒是海洋CO₂运输的重要环节,与海底 CO₂管道连接,将CO₂持续增压或直接注入海底碳 封存目标地层。注采井筒可能暴露于含水的高温、 高压CO₂环境中,面临着较高的腐蚀风险;套管外 部与固井水泥接触界面可能遭受地下水与渗漏CO₂ 的联合腐蚀作用。

1. 油管腐蚀风险评估

当CO₂以液态注入且井口注入压力>10 MPa时, CO₂含水临界饱和度随着井深的增加而逐渐增 大^[101],微液滴越难析出,相应腐蚀风险越低。地温 对井筒具有加热作用,少量游离水的沉积也将形成 保护性腐蚀产物膜,降低腐蚀风险。当CO₂驱油工 程中采用CO₂-水两相交替注入工艺时,井筒腐蚀 取决于CO₂取代水相后管壁残留水膜的停留时间。 在腐蚀产物无法成膜的条件下,水膜停留时间越短 则腐蚀越轻微;而在成膜条件下,需要停留相应时 间以待腐蚀产物膜达到最佳保护性能^[41]。增加井深 有利于形成保护性FeCO₃膜,进而抑制腐蚀。

2. 套管腐蚀风险评估

封存于地层中的少量 CO₂会沿着套管周围薄弱 区域向上扩散或泄漏^[102]。如果与地层水在套管外壁 相遇,碳化后的水泥溶解液增加套管腐蚀及破坏风 险^[103],因而强化套管与固井水泥界面是确保井筒完 整性的有效手段^[100,104]。地层水中溶解氧和氯离子的 浓度存在差异^[105,106],也将诱发套管局部腐蚀。在CO₂ 封存地层环境中,固井水泥会发生碳化^[107]。CaCO₃ 沉积于固井水泥的孔隙或裂缝内,起到阻滞 CO₂扩 散的作用^[108]。美国 SACROC 区块运行 30 年的套管 一侧固井水泥,最大碳化层厚度约为0.3 cm,表现 出对CO₂扩散的自阻滞效果^[109]。

(五)海洋CO2管道材料面临的技术挑战

1. 在役管道改输后断裂扩展评估与经济高效止 裂技术

与在役海底油气管道设计标准不同,CO₂输送 通常需要更高的运行压力,流体运行温度可低至 4℃,故管道材料面临更高的断裂风险。进行在役 管道改输CO₂主要面临两方面挑战:在役管道断裂 韧性及抗裂纹扩展性能评估,经济高效的止裂技 术。在油气管道的长期服役过程中,酸性气体腐蚀 或含氢天然气等可能造成材料局部氢渗透,导致材 料韧性下降,需要发展针对在役管道断裂行为的预 判与评估方法。安装止裂装置是当前管道止裂的主 要方法^[87,89],但对于在役海底管道而言施工难度大、 成本高昂,亟待发展经济高效的止裂技术。

2. 海底管道水下维修与焊接技术

1000 km 长陆地 CO₂管道的失效概率为0.32~ 0.64次/a^[110],海底管道面临的服役工况则更加复杂恶 劣。按照欧洲海底 CO₂管道(总里程为1.5×10⁵ km) 估算^[15],未来管道破裂次数可超过100次/a。随着 海底管道里程的增长,如过无法快速实施破裂管道 的水下维修作业,将给海洋环境带来潜在的威胁。 应用 ROV 快速识别管道泄漏并及时补漏维修,是 降低各类管道事故负面影响的最佳方案、保障海底 管道运行安全的重要形式。水下湿式焊接与 ROV 配合将显著提高维修作业效率,亟待发展大水深、 自动化的水下焊接技术。

3. 高阻体系腐蚀产物膜稳定性原位评价技术

开展腐蚀产物膜的原位评价,是揭示碳钢管道 长期服役规律的关键内容。CO₂管道以微液滴或薄 液膜腐蚀为主,形成的FeCO₃膜,其稳定性不同于 实验室大体积的溶液体系。金属腐蚀是电化学反应 动力学过程,通过宏观或微观腐蚀形貌推断的腐蚀 产物膜稳定性及保护性,仅具有限的参考价值。然 而,管输微量含水的高压密相CO₂流体是典型的高 阻电解质体系,其中液滴和液膜的形成具有随机 性,故传统电化学阻抗等方法应用面临诸多挑战。 拓展高阻体系电化学理论和测试方法是原位精准评 估CO₂腐蚀产物膜的基础、开展海底CO₂管道服役 寿命预测的依据。 4. 海底CO2管道腐蚀原位靶向防护技术

导致CO₂管道腐蚀的液滴凝结和游离水沉积具 有随机性,相应过程取决于局部温度、压力突变、 管道几何特征等因素。当前的局域监测技术仅适用 于常规多相流管道内腐蚀,所得监测数据不能准确 反映管道内壁的实际腐蚀状态。开展海底CO₂管道 腐蚀防控,难点在于判定局域腐蚀风险并开展定点 防护,因而需要发展智能防护能力。可能的解决思 路有两类:研制原位供给型缓蚀剂或无机形核促进 剂,技术挑战在于提出缓蚀剂或促进剂的定点沉积 策略;实施CO₂流体控制,依靠预置的游离水聚 集、液滴或液膜区域原位生长高致密腐蚀产物膜, 提供高耐蚀FeCO₃膜的原位靶向防护能力。

六、海洋CO2管道输送技术展望与发展建议

(一)海洋CO2管道输送技术展望

 1. 适应复杂海洋CO2管道输送工况的材料体系 CO2管道运行环境与普通油气管道差异较大, 管道材料面临更大的腐蚀与断裂风险。目前,CO2 管道的材料选择一般参照原油和天然气管道,尽管 积累了一些工程经验^[90],但尚无严格论证的选材准 则^[60]。对于长距离海底CO2管道,亟需发展具有良 好韧性的高强度钢,论证X70等钢种在海洋CO2输 送方向的适用性,研发基于腐蚀产物精准调控的管 道腐蚀防护技术。针对短距离CO2输送和关键节点 材料,可考虑应用高耐蚀不锈钢、双金属复合管。 非金属内衬管和密封材料在海洋CO2输注工况下的 长期服役行为,有待更多关注和进一步研究。

2. 全流程CO,管道的智慧管理与数字孪生技术

为保障海底CO₂管道运行安全,至少需要考察 六方面因素:温度、压力、流量等运行参数,流体 含水量,腐蚀,水合物,局部泄漏,瞬态温压变 化。在管道进/出口布设必要的监测设备,用于获 取长距离海底CO₂管道的实时运行数据。利用有限 的检测数据和管道设计数据,挖掘多源数据的内在 关联,拓展面向海底CO₂管道全程流动安全的分析 能力,是极具挑战性的课题。例如,通过进/出口 端含水量的差别,精准判断管道内游离水析出或水 合物形成情况,再依据温度、压力等运行参数变 化,可靠研判故障类型并及时发出预警指令。发展 多种软硬件和功能集成的智能管理系统,作为海底 CO2管道运行安全的重要保障。

3. 海底CO2管道全生命周期运行关键技术

影响海底CO2管道寿命的因素有材料腐蚀、降 解、断裂等,主要涉及工艺延寿、材料延寿两类技 术。①工艺延寿技术的难点在于掌握CO,流体内各 类杂质组分与纯化成本之间的关系。将含水量限制 在远低于饱和度的水平,能够避免腐蚀、水合物堵 塞等一系列管道安全问题。发展目标是在确保可靠 性的前提下提高CO2预处理工艺的经济性。还需可 靠评估突发性故障解除后的管道运行状态,如游离 水滞留对腐蚀产物膜的影响、温压波动下水合物形 成与再溶解规律等。② 材料延寿重点考虑材料断裂 韧性与极端CO,输送工况、有机密封材料在密相 CO,中的溶解与老化、关键节点高耐蚀材料选择等 的匹配性。亟待建立针对海底 CO,管道的选材方 案,考察原材料缺陷与焊连接强韧性的适配度,掌 握材料在化学-力学联合作用下的失效机制,为材 料全生命周期安全服役提供全面的理论依据。

4. 在役海底管道改输评估与保障技术

受"双碳"目标驱动,海底碳封存、海洋油气 开发将同步发展,最终在我国近海区域形成包括原 油、天然气、CO₂长距离输送,油、气、水短距离 混输等类型在内的海底管网系统。海底管道建设投 资大、弃置环保风险高,未来海底CO₂管道工程面 临技术挑战:不同类型在役海底管道之间的转输兼 容性与间歇性调配技术,不同类型新建海底管道设 计与建造标准的统筹。鉴于原油输送管道的设计压 力一般低于密相CO₂管道,在改输方案制定过程中 需严格论证可行性;在实际操作中,采用气相CO₂ 输送是折中方案。从材料服役安全的角度看,重点 考察管道的内外腐蚀程度、腐蚀产物及缺陷分布, 制定经济可行、稳定可靠的CO₂输送工艺方案;综 合评估改输管道发生韧性断裂的风险,规范实施止 裂措施。

(二)海洋CO2管道输送发展建议

1. 加快推动我国近海碳封存 CO2 管网规划

我国东部、南部沿海地区开展海底碳封存具有 空间和经济优势,与海上油气开发融合发展是实现 "双碳"目标的重要依托。我国己完成海底碳封存 潜力评估,正在细化形成区域化碳封存与油气储量 的精细谱图,为开展离岸CCUS源汇匹配提供了基 础数据。在300 km 以内的近海碳封存工程中,海 底管道运输具有综合成本优势。鉴于碳达峰任务紧 迫,建议尽快落实相关工作:开展和深化近海碳封 存源汇匹配研究,梳理并规划海底在役油气管道 与新建CO2管道的宏观路由;研发和储备海底CO2 管道输送所需的新工艺、新材料;建立沿海碳捕 集-管道运输-海底注入与地质封存的全链条技术 体系,建设大规模离岸CCUS示范工程。

2. 拓展和深化跨行业、跨机构合作模式创新

我国在海底油气管道输送技术方向拥有较好的 人才基础,为跨领域实现海底碳封存提供了坚实支 撑。着眼加快攻关海底 CO₂管道输送关键技术的目 标,可由行业领军企业牵头,发挥关联领域的人才 与机制优势,以有组织科研的形式开展跨行业、跨 机构的融合运作。较具迫切性的工作有:调研并挖 掘我国在海底管道流动安全、CO₂管道运输、管道 材料与施工、海洋新能源等领域的优势研发力量; 对标国际先进水平,梳理并研讨海底 CO₂管道输送 的关键技术瓶颈,组建阶梯式技术攻关体系;以企 业实际需求为指南,形成若干阶段性专题目标,发 挥专业团队合作攻关优势,尽快形成优化解决方 案;革新现有的科研成果认定方式,推动形成以产 品雏形、解决方案、可行性研究报告等为主要成果 的新型考评机制。

3. 系统建设海陆统筹的标准体系

我国己推行的陆上CO₂输送管道工程设计规范 (SH/T 3202—2018),主要借鉴了油气管道的相关 规范。天然气与CO₂管道输送存在明显的差异性, 需针对性研制CO₂管道标准体系;发达国家的己建 规范也有差异,如美国CO₂管道参照执行液态烃和 其他液体管道输送相关规范,北欧地区参照海底油 气管道相关规范。建议开展国内外现行CO₂输送管 道、油气管道、海底管道等标准规范的比较研究, 引入有价值的CO₂管道设计与操作建议;基于海底 CO₂管道的特点,及时制定或修订我国相关设计与 运行管理规范。离岸CCUS涉及沿海陆上管道输 送、海底管道输送,因而海洋CO₂管道输送还需顾 及陆/海管道标准规范的兼容性,注重与陆上CO₂ 管道规范的有效衔接。

4. 引导专业化技术服务企业深度参与海底 CO₂ 管网建设

海底CO2管网与其他油气管网一样,同属国家

能源类重大基础设施,是实现"双碳"目标的基础 设施保障。相关工程规模庞大,管道设计、建设和 运营任务复杂,需要行业进行长期性的持续投资。 在建设过程中, 应充分调动市场积极性, 吸引更多 的专业技术服务企业参与工程建设;可由行业领军 企业(用户)主导,全面推行"揭榜挂帅"的工程 技术攻关模式。较具迫切性的工作有:领军企业在 项目可行性研究阶段,在充分调研、深化论证的基 础上,提出若干模块化且具有挑战性的技术单元, 公开发布指南;专业化技术服务企业围绕现实技术 需求,单独或联合组建单项技术攻关团队,在约定 周期内完成技术解决方案;鼓励社会资本投资专业 化技术服务企业,丰富技术研发、产品研制所需的 资金来源,按约定分享工程技术成果及收益;领军 企业组织工程实施,优选参与单项技术攻关的技术 服务企业,协同开展技术成果的工程应用转化。

利益冲突声明

本文作者在此声明彼此之间不存在任何利益冲突或财务冲突。

Received date: October 6, 2023; **Revised date:** October 22, 2023 **Corresponding author:** Wang Ziming is an associate professor from the College of Materials, Xiamen University. His major research fields include corrosion protection of marine materials, CO₂ corrosion. E-mail: zmwang@xmu.edu.cn

Funding project: National Natural Science Foundation of China project "Preparation of an Oil-impregnated Surface on Carbon Steel with Superior Corrosion Resistance and Its Dynamic Healing Performance in Multiphase Flow Conditions" (52271075)

参考文献

- 张贤,李阳,马乔,等. 我国碳捕集利用与封存技术发展研究 [J]. 中国工程科学, 2021, 23(6): 70-80.
 Zhang X, Li Y, Ma Q, et al. Development of carbon capture, utilization and storage technology in China [J]. Strategic Study of CAE, 2021, 23(6): 70-80.
- [2] 李清平,周守为.构建自立自强的海洋能源资源绿色开发技术 体系 [J].人民论坛•学术前沿,2022,22(17):12–28.
 Li Q P, Zhou S W. Building a self-reliant technological system for green development of offshore energy & resource [J]. Frontiers, 2022, 22(17): 12–28.
- [3] Zhou D, Li P C, Liang X, et al. A long-term strategic plan of offshore CO₂ transport and storage in Northern South China Sea for a low-carbon development in Guangdong Province, China [J]. International Journal of Greenhouse Gas Control, 2018, 70: 76–87.
- [4] Meckel T A, Hovorka S D, Trevino R, et al. Toward an international program for offshore storage of CO₂: International initiative for CCS sub-sea (iCCSc) [J]. Energy Procedia, 2014, 63: 5015– 5020.

[5] 我国海域二氧化碳地质封存资源家底基本摸清 [EB/OL].
 (2023-01-12)[2023-09-15]. https://www.cgs.gov.cn/xwl/ddyw/202301/
 t20230112_722925.html.
 The carbon dioxide geological storage resources in China's sea area were basically determined [EB/OL]. (2023-01-12)[2023-09-15].

https://www.cgs.gov.cn/xwl/ddyw/202301/t20230112_722925.html.
 Li J H. Accelerate the offshore CCUS to carbon-neutral China [J/OL].

- [6] Li J H. Accelerate the offshore CCUS to carbon-neutral China [J/OL]. Fundamental Research, [2022-11-09]. https://doi.org/10.1016/j.fmre. 2022.10.015.
- [7] 李姜辉, 李鹏春, 李彦尊, 等. 离岸碳捕集利用与封存技术体系研究 [J]. 中国工程科学, 2023, 25(2): 173–186.
 Li J H, Li P C, Li Y Z, et al. Technology system of offshore carbon capture, utilization, and storage [J]. Strategic Study of CAE, 2023, 25(2): 173–186.
- [8] Sweatman R E, Crookshank S, Edman S. Outlook and technologies for offshore CO₂ EOR/CCS projects [C]. Houston: Offshore Technology Conference, 2011.
- [9] 孔艳杰, 隋舵. 海峡两岸合作开发东海、南海油气资源探析 [J]. 学术交流, 2008 (11): 89–92.
 Kong Y J, Sui D. Exploration of cross strait cooperation in developing oil and gas resources in the East China Sea [J]. Academic Exchange, 2008 (11): 89–92.
- [10] Lyu G Z, Li Q, Wang S J, et al. Key techniques of reservoir engineering and injection-production process for CO₂ flooding in China's SINOPEC Shengli Oilfield [J]. Journal of CO₂ Utilization, 2015, 11: 31–40.
- [11] Hornafius K Y, Hornafius J S. Carbon negative oil: A pathway for CO₂ emission reduction goals [J]. International Journal of Greenhouse Gas Control, 2015, 37: 492–503.
- [12] Gondal I A, Masood S A. Synergies in offshore wind and oil industry for carbon capture and utilization [J]. Greenhouse Gases: Science and Technology, 2019, 9(5): 856–871.
- [13] Roussanaly S, Brunsvold A L, Hognes E S. Benchmarking of CO₂ transport technologies: Part II—Offshore pipeline and shipping to an offshore site [J]. International Journal of Greenhouse Gas Control, 2014, 28: 283–299.
- [14] Oosterkamp A, Ramsen J. State-of-the-art overview of CO₂ pipeline transport with relevance to offshore pipelines [EB/OL]. [2023-09-15]. https://www.researchgate.net/profile/Antonie-Oosterkamp/ publication/228688545_State-of-the-Art_Overview_of_CO_2_Pipeline_Transport_with_Relevance_to_Offshore_Pipelines/links/0deec 5270ceae8bb47000000/State-of-the-Art-Overview-of-CO-2-Pipeline-Transport-with-Relevance-to-Offshore-Pipelines.pdf.
- [15] Watt J. Carbon dioxide transport infrastructure—Key learning and critical issues [J]. Journal of Pipeline Engineering, 2010, 9(4): 213–222.
- [16] 黄维和,李玉星,陈朋超.碳中和愿景下中国二氧化碳管道发展 战略 [J]. 天然气工业, 2023, 43(7): 1–9.
 Huang W H, Li Y X, Chen P C. China's CO₂ pipeline development strategy under the strategy of carbon neutrality [J]. Natural Gas Industry, 2023, 43(7): 1–9.
- [17] Svensson R, Odenberger M, Johnsson F, et al. Transportation systems for CO₂—Application to carbon capture and storage [J]. Energy Conversion and Management, 2004, 45(15–16): 2343–2353.
- [18] McKaskle R W, Beitler C, Dombrowski K, et al. The engineer's

guide to CO_2 transportation options [EB/OL]. [2023-09-15]. https://api.semanticscholar.org/CorpusID: 254034977.

[19] 丘惠娴. 海上二氧化碳长输管道成本分析 [J]. 化工设计通讯,
 2023, 49(4): 70-73.
 Qiu H X. Cost analysis of offshore carbon dioxide pipeline [J].

Chemical Engineering Design Communications, 2023, 49(4): 70–73.

[20] 张贤,杨晓亮,鲁玺,等.中国二氧化碳捕集利用与封存(CCUS) 年度报告(2023) [R].北京:中国21世纪议程管理中心,全球碳 捕集与封存研究院,清华大学,2023.
Zhang X, Yang X L, Lu X, et al. Annual review on carbon capture, utilization and sequstration in China (2023) [R]. Beijing: Ad-

ministrative Centre for China's Agenda 21, Global Carbon Capture and Storage Institute, Tsinghua University, 2023.

- [21] Aminu M D, Nabavi S A, Rochelle C A, et al. A review of developments in carbon dioxide storage [J]. Applied Energy, 2017, 208: 1389–1419.
- [22] Ringrose P, Sæther Ø, Equinor A. CO₂ injection operations: Insights from Sleipner and Snøhvit [J]. Aberdeen: SPE CCUS Conference, 2020.
- [23] Iglesias R S, Ketzer J M, Melo C L, et al. Carbon capture and geological storage in Brazil: An overview [J]. Greenhouse Gases: Science and Technology, 2015, 5(2): 119–130.
- [24] 陈荣旗, 雷震名. 中国海底管道工程技术发展与展望 [J]. 油气储运, 2022, 41(6): 667–672.
 Chen R Q, Lei Z M. Progress and outlook of submarine pipeline engineering technologies in China [J]. Oil & Gas Storage and Transportation, 2022, 41(6): 667–672.
- [25] 黄钰,包佳. 深水海底管道铺设发展综述 [J]. 海洋工程装备与 技术, 2017, 4(5): 281-286.
 Huang Y, Bao J. Development in deepwater pipe laying [J]. Ocean

Engineering Equipment and Technology, 2017, 4(5): 281–286.

- [26] 王海涛, 池强, 李鹤林, 等. 海底油气输送管道材料开发和应用现状 [J]. 焊管, 2014, 37(8): 25–29.
 Wang H T, Chi Q, Li H L, et al. Development and application status of submarine pipeline materials for oil and gas transportation [J]. Welded Pipe and Tube, 2014, 37(8): 25–29.
- [27] 金晓剑,陈荣旗,朱晓环.南海深水陆坡区油气集输的重大挑战 与技术创新——荔湾 3-1深水气田及周边气田水下及水上集输 工程关键技术 [J].中国海上油气, 2018, 30(3): 157–163.

Jin X J, Chen R Q, Zhu X H. Major challenges and technical innovations of oil & gas gathering and transporting for the deep water continental slope in the South China Sea: Key technologies for subsea and overwater gathering and transporting project of the LW 3-1 deep water gas field & its surroundings [J]. China Offshore Oil and Gas, 2018, 30(3): 157–163.

- [28] 魏斌,李鹤林,李发根. 海底油气输送用双金属复合管研发现状 与展望 [J]. 油气储运, 2016, 35(4): 343–355.
 Wei B, Li H L, Li F G. Research status and prospects of bimetallic composite pipes for submarine oil and gas transmission [J]. Oil & Gas Storage and Transportation, 2016, 35(4): 343–355.
- [29] 中船工业经研中心. 我国首条不锈钢复合双层海管于南海完成 铺设 [J]. 广东造船, 2017, 36 (3): 92.
 China Shipbuilding Industry Economic Research Center. The first stainless steel composite double layer submarine pipeline in China

has been laid in the South China Sea [J]. Guangdong Shipbuilding, 2017, 36(3): 92.

- [30] 陈晓东,孙锟,张西伟,等. 深水柔性管垂直铺设系统技术现状 及发展趋势 [J]. 海洋工程装备与技术, 2023, 10(2): 22–29. Chen X D, Sun K, Zhang X W, et al. Technical status and developing trend of vertical lay system for flexible pipe laying [J]. Ocean Engineering Equipment and Technology, 2023, 10(2): 22–29.
- [31] 王红红, 刘国恒. 中国海油海底管道事故统计及分析 [J]. 中国海上油气, 2017, 29(5): 157–160.
 Wang H H, Liu G H. Statistics and analysis of subsea pipeline accidents of CNOOC [J]. China Offshore Oil and Gas, 2017, 29(5): 157–160.
- [32] Ho M, El-Borgi S, Patil D, et al. Inspection and monitoring systems subsea pipelines: A review paper [J]. Structural Health Monitoring, 2020, 19(2): 606–645.
- [33] 吴希明, 李江丰, 严谨, 等. 海底油气管道泄漏检测与定位技术研究进展 [J]. 石油工程建设, 2022, 48(3): 1–7.
 Wu X M, Li J F, Yan J, et al. Research progress on leakage detection and location technology of submarine oil and gas pipelines [J]. Petroleum Engineering Construction, 2022, 48(3): 1–7.
- [34] 高峰,朱加雷. 海底油气管道维修工艺研究现状 [J]. 北京石油 化工学院学报, 2012, 20(3): 57–59.
 Gao F, Zhu J L. A survey of the research for the submarine oil and gas pipeline maintenance [J]. Journal of Beijing Institute of Petro-Chemical Technology, 2012, 20(3): 57–59.
- [35] 任晓晶. 海底油气管道维修方式综述 [J]. 化学工程与装备, 2019, 6(2): 117-119.

Ren X J. Review on the maintenance methods for submarine oil and gas pipelines [J]. Chemical Engineering & Equipment, 2019, 6(2): 117–119.

- [36] 刘楚, 王佐强, 韩长安. 海底管道事故类型及维修方法综述 [J]. 中国石油和化工标准与质量, 2012, 33(15): 254–255. Liu C, Wang Z Q, Han C A. Review on the types of submarine pipeline accidents and maintenance methods [J]. China Petroleum and Chemical Standard and Quality, 2012, 33(15): 254–255.
- [37] 陈海龙,孙政策,凌爱军,等. 我国在役海底管道发证现状研究
 [J]. 石油工程建设, 2020, 46(Z1): 273–277.
 Chen H L, Sun Z C, Ling A J, et al. Current status of certifications for in-service submarine pipelines in China [J]. Petroleum Engineering Construction, 2020, 46(Z1): 273–277.
- [38] 郭庆丰. 海底输气管道改输原油的校核 [J]. 压力容器, 2017, 34(9): 68-72.

Guo Q F. Checking of submarine gas pipeline for transportation switchover crude oil [J]. Pressure Vessel Technology, 2017, 34(9): 68–72.

- [39] 孙启冀. 海底输水管道转输油气混合介质可行性研究 [J]. 石油 机械, 2013, 41(11): 70–73.
 Sun Q J. Research on the feasibility of using subsea conduit to pump over oil-gas mixed medium [J]. China Petroleum Machinery, 2013, 41(11): 70–73.
- [40] 钱东良,李长俊,廖柯熹,等.水改气海底管道输送高压天然气 可行性研究 [J]. 中国安全生产科学技术, 2014 (10): 173–178.
 Qian D L, Li C J, Liao K X, et al. Study on feasibility of high pressure natural gas transported by water subsea pipeline [J]. Jour-

nal of Safety Science and Technology, 2014 (10): 173-178.

- [41] Wang Z M, Song G L. An analytical model for the corrosion risk of water alternating gas injection wells in CO₂ enhanced oil recovery [J]. Advanced Theory and Simulations, 2018, 1(7): 1800041.
- [42] Chandel M K, Pratson L F, Williams E. Potential economies of scale in CO₂ transport through use of a trunk pipeline [J]. Energy Conversion & Management, 2010, 51(12): 2825–2834.
- [43] 中华人民共和国工业和信息化部. 二氧化碳输送管道工程设计标准 (SH/T 3202-2018). 北京: 中华人民共和国工业和信息化部, 2018.

Ministry of Industry and Information Technology of the People's Republic of China. Specifications for engineering of carbon dioxide pipeline transportation (SH/T 3202-2018). Beijing: Ministry of Industry and Information Technology of the People's Republic of China, 2018.

[44] 周蒂,张云帆, Haszeldine S. 二氧化碳离岸运输与封存的工程要求:国际经验简介 [EB/OL]. (2014-05-15)[2023-09-15]. https:// www.waitang.com/report/20300308.html.

Zhou D, Zhang Y F, Haszeldine S. Engineering requirements for offshore transport and storage of carbon dioxide: introduction to international experience [EB/OL]. (2014-05-15)[2023-09-15]. https://www.waitang.com/report/20300308.html.

- [45] 张宗標, 吕广忠, 王杰. 胜利油田 CCUS 技术及应用 [J]. 油气藏 评价与开发, 2021, 11(6): 812–822.
 Zhang Z L, Lyu G Z, Wang J. CCUS and its application in Shengli Oilfield [J]. Reservoir Evaluation and Development, 2021, 11(6): 812–822.
- [46] Porter R T J, Fairweather M, Pourkashanian M, et al. The range and level of impurities in CO₂ streams from different carbon capture sources [J]. International Journal of Greenhouse Gas Control, 2015, 36: 161–174.
- [47] Race J M, Wetenhall B, Seevam P N, et al. Towards a CO₂ pipeline specification: Defining tolerance limits for impurities [J]. Journal of Pipeline Engineering, 2012, 11: 173–190.
- [48] Peletiri S P, Mujtaba I M, Rahmanian N. Process simulation of impurity impacts on CO₂ fluids flowing in pipelines [J]. Journal of cleaner production, 2019, 240: 118145.
- [49] Wang J S, Ryan D, Anthony E J, et al. Effects of impurities on CO₂ transport, injection and storage [J]. Energy Procedia, 2011, 4: 3071–3078.
- [50] Sachde D, McKaskle R, Lundeen J, et al. Review of technical challenges, risks, path forward, and economics of offshore CO₂ transportation and infrastructure [C]. Houston: Offshore Technology Conference, 2019.
- [51] 唐翠萍, 赵翔湧, 何勇, 等. 管道内二氧化碳水合物的形成和流动特性研究 [J]. 天然气化工, 2015, 40(4): 37–40.
 Tang C P, Zhao X Y, He Y, et al. Study on CO₂ gas hydrate formation and flow characteristics in pipe [J]. Low-Carbon Chemistry and Chemical Engineering, 2015, 40(4): 37–40.
- [52] 陈兵,张曙旋,郭焕焕. 含杂质 CO₂管道输送水合物形成规律研究 [J]. 石油与天然气化工, 2021, 50(2): 42–47.
 Chen B, Zhang S X, Guo H H. Study on the formation law of hydrate in pipeline containing-impurity CO₂ [J]. Chemical Engineering of Oil and Gas, 2021, 50(2): 42–47.

- [53] Bilio M, Brown S, Fairweather M, et al. CO₂ pipelines material and safety considerations [EB/OL]. (2009-06-15)[2023-09-15]. https:// www.icheme.org/media/9558/xxi-paper-061.pdf.
- [54] Chapoy A, Burgass R, Tohidi B, et al. Hydrate and phase behavior modeling in CO₂ rich pipelines [J]. Journal of Chemical and Engineering Data, 2015, 60(2): 447–453.
- [55] Uilhoorn F E. Evaluating the risk of hydrate formation in CO₂ pipelines under transient operation [J]. International Journal of Greenhouse Gas Control, 2013, 14: 177–182.
- [56] Prah B, Yun R. CO₂ hydrate slurry transportation in carbon capture and storage [J]. Applied Thermal Engineering, 2018, 128: 653–661.
- [57] Nesic S. Key issues related to modelling of internal corrosion of oil and gas pipelines—A review [J]. Corrosion Science, 2007, 49(12): 4308–4338.
- [58] Wei L, Pang X L, Gao K W. Effect of flow rate on localized corrosion of X70 steel in supercritical CO₂ environments [J]. Corrosion Science, 2018, 136: 339–351.
- [59] Dugstad A, Morland B, Clausen S. Corrosion of transport pipelines for CO₂-effect of water ingress [J]. Energy Procedia, 2011, 4: 3063–3070.
- [60] 高怡萱,潘杰,张建,等.超临界二氧化碳输送管道内腐蚀研究 进展 [J/OL]. 材料导报, [2023-08-07]. http://kns.cnki.net/kcms/ detail/50.1078.TB.20230804.1447.002.html.
 Gao Y X, Pan J, Zhang J, et al. Research progress on the corrosion of the inner surface of pipeline used for transporting supercritical carbon dioxide [J/OL]. Materials Reports, [2023-08-07]. http://kns.cnki.net/kcms/detail/50.1078.TB.20230804.1447.002.html.
- [61] Liu A Q, Bian C, Wang Z M, et al. Flow dependence of steel corrosion in supercritical CO₂ environments with different water concentrations [J]. Corrosion Science, 2018, 134: 149–161.
- [62] Knauer S, Quynh-Hoa L, Baessler R, et al. Contact angle and corrosion of a water–CO₂ system on X70 and S41500 at 278 K and pressures up to 20 MPa [J]. International Journal of Greenhouse Gas Control, 2019, 89: 33–39.
- [63] Cole I S, Corrigan P, Sim S, et al. Corrosion of pipelines used for CO₂ transport in CCS: Is it a real problem? [J]. International Journal of Greenhouse Gas Control, 2011, 5: 749–756.
- [64] 王伟杰. 海底管道内腐蚀监测技术研究现状与发展 [J]. 涂层与 防护, 2021, 42(12): 37-42.
 Wang W J. Progress in corrosion monitoring technology in submarine pipeline [J]. Coating and Protection, 2021, 42(12): 37-42.
- [65] 韩立锋,刘达,尚确,等.混合干涉型分布式光纤天然气管道泄漏 检测及定位对策分析 [J]. 中国石油和化工标准与质量, 2022, 42(24): 44-46.

Han L F, Liu D, Shang Q, et al. Hybrid interferometric distributed optical fiber used for leakage detection and localization measures for natural gas pipelines [J]. China Petroleum and Chemical Standard and Quality, 2022, 42(24): 44–46.

[66] 张伟, 武齐永, 张忠霞, 等. 分布式光纤管道监测技术在长距离 输水工程中的应用 [J]. 给水排水, 2022, 48(6): 124–129.
Zhang W, Wu Q Y, Zhang Z X, et al. Application of distributed opticalfiber pipeline monitoring technology in long-distance water conveyance project [J]. Water & Wastewater Engineering, 2022, 48(6): 124–129. [67] 李志强. 分布式光纤测温在海底管道泄漏监测中的应用 [J]. 工 业生产, 2023, 30(4): 10–12.
 Li Z Q. Application of distributed optical fiber temperature mea-

surement in submarine pipeline leakage monitoring [J]. Petrochemical Industry Technology, 2023, 30(4): 10–12.

- [68] 丁小勇, 宋保强, 吕永强. 次声波技术在管道泄漏检测中的应用 [J]. 油气田地面工程, 2015, 34(10): 101–103.
 Ding X Y, Song B Q, Lyu Y Q. Application of infrasound wave technology in pipeline leakage detection [J]. Oil-Gas Field Surface Engineering, 2015, 34(10): 101–103.
- [69] 刘良果, 梅茜迪. 次声波的输气管道泄漏监测技术综述 [J]. 石 化技术, 2018, 25(12): 203.
 Liu L G, Mei X D. Overview of infrasound monitoring technology for gas pipeline leakage [J]. Petrochemical Industry Technology, 2018, 25(12): 203.
- [70] Oldenburg C M, Pan L H. Major CO₂ blowouts from offshore wells are strongly attenuated in water deeper than 50m [J]. Greenhouse Gases: Science and Technology, 2019, 10(1): 15–31.
- [71] Clausen S, Oosterkamp A, Strøm K L. Depressurization of a 50 km long 24 inches CO₂ pipeline [J]. Energy Procedia, 2012, 23: 256–265.
- [72] Guo X L, Yan X Q, Yu J L, et al. Pressure responses and phase transitions during the release of high pressure CO₂ from a largescale pipeline [J]. Energy, 2017, 118: 1066–1078.
- [73] Koeijer G M, Borch J H, Jakobsen J, et al. Experiments and modeling of two-phase transient flow during CO₂ pipeline depressurization [J]. Energy Procedia, 2009, 1: 1683–1689.
- [74] Han S H, Kim J, Chang D. An experimental investigation of liquid CO₂ release through a capillary tube [J]. Energy Procedia, 2013, 37: 4724–4730.
- [75] Onyebuchi V E, Kolios A, Hanak D P, et al. A systematic review of key challenges of CO₂ transport via pipelines [J]. Renewable and Sustainable Energy Reviews, 2018, 81: 2563–2583.
- [76] Barker R, Hua Y, Neville A. Internal corrosion of carbon steel pipelines for dense-phase CO₂ transport in carbon capture and storage (CCS)—A review [J]. International Materials Reviews, 2017, 62: 1–31.
- [77] Kling G W, Tuttle M L, Evans W C. The evolution of thermal structure and water chemistry in Lake Nyos [J]. Journal of Volcanology and Geothermal Research, 1989, 39(2–3): 151–165.
- [78] Little M G, Jackson R B. Potential impacts of leakage from deep CO₂ geosequestration on overlying freshwater aquifers [J]. Environmental Science and Technology, 2010, 44(23): 9225–9232.
- [79] Blackford J, Stahl H, Bull J M, et al. Detection and impacts of leakage from sub-seafloor deep geological carbon dioxide storage [J]. Nature Climate Change, 2014, 4(11): 1011–1016.
- [80] de Visser E, Hendriks C, Barrio M, et al. Dynamics CO₂ quality recommendations [J]. International Journal of Greenhouse Gas Control, 2008, 2(4): 478–484.
- [81] Leperi K T, Snurr R Q, You F Q. Optimization of two-stage pressure/ vacuum swing adsorption with variable dehydration level for postcombustion carbon capture [J]. Chemical and Biological Engineering, 2016, 55(12): 3338–3350.
- [82] Vitali M, Corvaro F, Marchetti B, et al. Thermodynamic challenges for CO₂ pipelines design: A critical review on the effects of impu-

rities, water content, and low temperature [J]. International Journal of Greenhouse Gas Control, 2022, 114: 103605.

- [83] Aursand E, Dumoulin S, Hammer M, et al. Fracture propagation control in CO₂ pipelines: Validation of a coupled fluid-structure model [J]. Engineering Structures, 2016, 123: 192–212.
- [84] 陈磊, 闫兴清, 胡延伟, 等. 二氧化碳管道意外泄漏减压过程的 断裂控制研究进展 [J]. 化工进展, 2022, 41(3): 1241–1255.
 Chen L, Yan X Q, Hu Y W, et al. Research progress on fracture control of accidental leakage and decompression in CO₂ pipeline transportation [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1241–1255.
- [85] Guo X L, Xu S Q, Chen G J. Fracture criterion and control plan on CO₂ pipelines: Theory analysis and full-bore rupture (FBR) experimental study [J]. Journal of Loss Prevention in the Process Industries, 2021, 69(1): 104394.
- [86] Ahmad M, Lowesmith B, Koeijer G D, et al. COSHER joint industry project: Large scale pipeline rupture tests to study CO₂ release and dispersion [J]. International Journal of Greenhouse Gas Control, 2015, 37: 340–353.
- [87] Cosham A, Eiber R J. Fracture control in carbon dioxide pipelines: The effect of impurities [C]. Calgary: Proceedings of the 7th International Pipeline Conference, 2008.
- [88] Mahgerefteh H, Brown S, Denton G. Modelling the impact of stream impurities on ductile fractures in CO₂ pipelines [J]. Chemical Engineering Science, 2012, 74: 200–210.
- [89] 刘建武. 二氧化碳输送管道工程设计的关键问题 [J]. 油气储运, 2014, 33(4): 369–373.
 Liu J W. Key issues related to engineering design of CO₂ transportation pipeline [J]. Oil & Gas Storage and Transportation, 2014, 33(4): 369–373.
- [90] Paul S, Shepherd R, Woollin P. Selection of materials for high pressure CO₂ transport [C]. Gateshead: The First International Forum on the transportation of CO₂ by Pipeline, 2010.
- [91] 蒋秀, 宋晓良, 屈定荣. CO₂输送相态对管道密封材料性能的影响 [J]. 弹性体, 2019, 29(5): 33–38. Jiang X, Song X L, Qu D R. Effect of CO₂ phase state on performances of seal materials used for CO₂ pipeline [J]. China Elastomerics, 2019, 29(5): 33–38.
- [92] Cole I S, Paterson D A, Corrigan P, et al. State of the aqueous phase in liquid and supercritical CO₂ as relevant to CCS pipelines [J]. International Journal of Greenhouse Gas Control, 2012, 7: 82–88.
- [93] Xiang Y, Wang Z, Yang X X, et al. The upper limit of moisture content for supercritical CO₂ pipeline transport [J]. The Journal of Supercritical Fluids, 2012, 67: 14–21.
- [94] Hua Y, Barker R, Neville A. Effect of temperature on the critical water content for general and localised corrosion of X65 carbon steel in the transport of supercritical CO₂ [J]. International Journal of Greenhouse Gas Control, 2014, 31: 48–60.
- [95] Sun W, Nešic S, Woollam R C. The effect of temperature and ionic strength on iron carbonate (FeCO₃) solubility limit [J]. Corrosion Science, 2009, 51: 1273–1276.
- [96] Yang Y, Brown B, Nešić S, et al. Mechanical strength and removal of a protective iron carbonate layer formed on mild steel in CO₂ corrosion [C]. San Antonio: CORROSION 2010, 2010.

- [97] Nesic S, Lee K-L J. A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films—Part 3: Film growth model [J]. Corrosion, 2003, 59(7): 616–628.
- [98] Berntsen T, Seiersten M, Hemmingsen T. Effect of FeCO₃ supersaturation and carbide exposure on the CO₂ corrosion rate of carbon steel [J]. Corrosion, 2013, 69: 601–613.
- [99] Hua Y, Barker R, Charpentier T, et al. Relating iron carbonate morphology to corrosion characteristics for water-saturated supercritical CO₂ systems [J]. The Journal of Supercritical Fluids, 2015, 98: 183–193.
- [100] 向勇, 原玉, 周佩, 等. 碳捕集利用与封存中的金属腐蚀问题研究: 进展与挑战 [J]. 中国工程科学, 2023, 25(3): 197–208.
 Xiang Y, Yuan Y, Zhou P, et al. Metal corrosion in carbon capture, utilization, and storage: Progress and challenges [J]. Strategic Study of CAE, 2023, 25(3): 197–208.
- [101] Choi Y-S, Nešić S. Determining the corrosive potential of CO₂ transport pipeline in high CO₂-water environments [J]. International Journal of Greenhouse Gas Control, 2011, 5: 788–797.
- [102] Carpenter M, Aarnes J, Coleman D, et al. Guideline for the risk management of existing wells at CO₂ geological storage sites [R]. Oslo: DNV, 2011.
- [103] Feng J N, Wang Z M, Zheng D J, et al. The localized corrosion of mild steel in carbonated cement pore solution under supercritical carbon-dioxide in a simulated geothermal environment [J]. Con-

struction and Building Materials, 2021, 274: 122035.

- [104] Bachu S, Bennion D B. Experimental assessment of brine and/or CO₂ leakage through well cements at reservoir conditions [J]. International Journal of Greenhouse Gas Control, 2009, 3(4): 494–501.
- [105] Winograe I J, Robertson F N. Deep oxygenated ground water: Anomaly or common occurrence? [J]. Science, 1982, 216(4551): 1227–1230.
- [106] Bo Y, Liu C L, Jiao P C, et al. Hydrochemical characteristics and controlling factors for waters' chemical composition in the Tarim Basin, Western China [J]. Geochemistry, 2013, 73(3): 343–356.
- [107] Miao X X, Zhang L W, Wang Y, et al. Characterisation of wellbore cement microstructure alteration under geologic carbon storage using X-ray computed micro-tomography: A framework for fast CT image registration and carbonate shell morphology quantification [J]. Cement and Concrete Composites, 2020, 108(10): 103524.
- [108] Kutchko B G, Strazisar B R, Dzombak D A, et al. Degradation of well cement by CO₂ under geologic sequestration conditions [J]. Environmental Science & Technology, 2007, 41(13): 4787–4792.
- [109] Carey J W, Wigand M, et al. Analysis and performance of oil well cement with 30 years of CO₂ exposure from the SACROC Unit, West Texas, USA [J]. International Journal of Greenhouse Gas Control, 2007, 1(1): 75–85.
- [110] Gale J, Davison J. Transmission of CO₂—Safety and economic considerations [J]. Energy Conversion & Management, 2004, 29 (9–10): 1319–1328.