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Structural health monitoring (SHM) is a multi-discipline field that involves the automatic sensing of
structural loads and response by means of a large number of sensors and instruments, followed by a diag-
nosis of the structural health based on the collected data. Because an SHM system implemented into a
structure automatically senses, evaluates, and warns about structural conditions in real time, massive
data are a significant feature of SHM. The techniques related to massive data are referred to as data
science and engineering, and include acquisition techniques, transition techniques, management tech-
niques, and processing and mining algorithms for massive data. This paper provides a brief review of
the state of the art of data science and engineering in SHM as investigated by these authors, and covers
the compressive sampling-based data-acquisition algorithm, the anomaly data diagnosis approach using
a deep learning algorithm, crack identification approaches using computer vision techniques, and condi-
tion assessment approaches for bridges using machine learning algorithms. Future trends are discussed
in the conclusion.

� 2019 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

By imitating the self-sensing and self-diagnosis abilities of
humans, structural health monitoring (SHM) deals with the
real-time sensing, identification, and assessment of the safety
and performance evolution of structures. In general, an SHM
system consists of various sensors, data-acquisition devices, a data
transmission system, a database for data management, data analy-
sis and modeling, condition assessment and performance predic-
tion, alarm devices, a visualization user interface, and a software
and operating system. SHM systems have been widely imple-
mented in the fields of aerospace, civil engineering, and mechani-
cal engineering [1–9].

Data have recently become crucial in society, as their availabil-
ity and effectiveness create value. Data are a core part of the field of
SHM; the field dealing with data is termed data science and
engineering [10].

Data science and engineering includes algorithms and applica-
tions of data acquisition, abnormal data diagnosis and reconstruc-
tion, data transmission and lost-data recovery, data management,
data mining, and data modeling.
Until a few decades ago, data were commonly sampled follow-
ing the Shannon–Nyquist sampling theorem. However, this sam-
pling strategy leads to mass data [11]. In 2005 and 2006, a
compressive sampling (CS) technique was proposed [12,13], which
breaks through the limitations of the traditional sampling theorem.
If the data signal is sparse in a certain domain, CS randomly collects
much less data, rather than sampling the data with two times the
highest frequency of the signal. This signal-sampling technique is
able to dramatically reduce data volume. Bao et al. [14] have inves-
tigated the application of CS in data acquisition in SHM, with the
aim of reducing data volume. Peckens and Lynch [15] have
proposed a bio-inspired CS technique to acquire data for SHM.
O’Connor et al. [16] have implemented CS theory into a wireless
sensor node in order to perform random data sampling for power
consumption reduction. In CS theory, data sparsity is very
important; however, many signals are only approximately sparse
in reality. Huang et al. [17] have proposed a robust Bayesian
compressive sensing method to reconstruct approximately sparse
signals in SHM. To further increase the data-reconstruction accuracy
of CS in SHM, Bao et al. [18] have proposed a group sparse optimiza-
tion algorithm that considers the group sparsity of the structure
vibration signal (the measured vibration data at different locations
of a structure has a very similar sparse structure in the frequency
domain) for CS data reconstruction; this algorithm will be
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discussed in Section 2. Using the idea of random data sampling and
the data reconstruction of CS theory, Bao et al. [19] and Zou et al.
[20] have proposed CS-based data-loss recovery methods for
wireless sensors and sensor networks. The CS method has also
been utilized for system identification tasks, such as structural
modal identification, structural damage identification, and load
identification [21–30]. For structural modal identification, modal
parameters are directly identified from the compressed measure-
ments [21,22]; however, for structural damage identification and
load identification, the spatial sparsity of structural damage and
load distributions is utilized to solve optimization problems
involved in the identification [23–30].

Because SHM systems are operated in harsh and noisy environ-
ments, abnormal data are inevitable. Monitored data with outliers,
trends, saturation, and missing data have frequently been
observed; this presents a barrier for the automatic warning of
SHM systems because it becomes difficult to distinguish which
abnormal data are caused by out-of-order SHM systems or by dam-
age to instrumented structures. Outlier detection approaches have
been extensively investigated [31–35], whereas the research on
abnormal data detection is still insufficient [36–38]. In actual
application, the large variation in extracted features from massive
SHM data causes conventional anomaly detection techniques to
perform poorly. Even with expert intervention, the parameter tun-
ing associated with multiple data preprocessing methods is still a
challenge, and makes the procedure expensive and inefficient. In
addition, anomaly detection techniques that are focused on a sin-
gle type of anomaly frequently mis-detect other types of anomaly.
More intelligent approaches are needed to deal with the massive
data collected by multiple sensors from actual SHM systems. Deep
learning (DL)-based approaches may be potential alternatives to
diagnose various kinds of abnormal data through learning from
big data containing abnormal data. Imputation algorithms for
addressing missing data or anomaly data have also been exten-
sively investigated [39–45].

Damage detection is a classic issue in SHM. A number of modal-
based damage-detection approaches have been proposed [46].
However, practical experience has indicated that modal-based
damage-detection approaches are insensitive to minor local dam-
age and are readily influenced by temperature. Computer vision
(CV) is a critical technology in artificial intelligence (AI); it uses
computers to process visual information and enables a computer
to see and interpret the real world as a human does. Specific prob-
lems in CV include measurement, detection, and recognition of
objects, features, or actions, and the use of image or video data
in computational processes. Damage or change on the surface of
a structure can be automatically identified by means of a CV tech-
nique (e.g., when taking pictures of a structure, image-processing
algorithms or DL algorithms can be employed to automatically
identify any damage or change in the picture). Many recent studies
on structural damage detection have been performed using the CV
technique, in which the pictures can be obtained by unmanned
aerial vehicles, robots, or wearable devices [47].

Structural responses vary with the external loads and structure
models; this makes it difficult to distinguish whether the variation
in structural response is caused by the loads or by the structural
parameters themselves, because loads are very difficult to monitor
exactly. Complex correlations between responses can be obtained
through machine learning (ML) algorithms or DL algorithms; as
the correlation of responses is free from loads, it can be used as an
indicator of structural performance. A condition assessment can be
further performed based on variation in the indicators [48,49].

The structure of this paper is arranged as follows: Section 2
introduces the CS-based data-acquisition algorithm; Section 3
discusses the DL-based anomaly data diagnosis approach; and
Section 4 presents the CV-based crack identification algorithm.
Condition assessment approaches for bridges using ML algorithms
are proposed, followed by the conclusions.

2. CS-based data-acquisition algorithm

The Shannon–Nyquist sampling theorem is a criterion that
must be obeyed in traditional data acquisition; it requires a signal
to be sampled at least two times at the highest frequency in the
signal. Thus, the data recorded by an SHM system will be huge if
this theorem is used. Compressive sensing, also known as CS,
which was first proposed by Donoho [12] and Candès [13],
provides a new sampling theory for signals with sparse features
in a certain domain. In CS theory, the signal is randomly collected.
The sample size is much smaller than the sample of recorded
signals obtained when following the Shannon–Nyquist sampling
theorem. The original signal can then be reconstructed exactly
with sparse optimization algorithms.

In CS theory, a signal x 2 Rn can be sensed using a linear mea-
surement as follows:

y ¼ Uxþ e ð1Þ
whereU is a measurement matrix or sampling operator in anm � n
matrix and e is the measurement noise.

AsU is an m � n matrix with m << n, the problem of recovering
the signal x is ill-posed. However, in CS theory, if signal x is sparse
(i.e., the signal has a sparse representation in some basis W,
where x = aW) and the U matrix satisfies the restrictive isometry
property, then the coefficient a can be reconstructed by the l1
(norm of k a� k1) optimization problem:

â ¼ min k a� k1 such that k Ha
� �y k2 � e ð2Þ

where e is the bound on the level of the measurement error,
k e k2 � e; the matrix H is H =UW; â is the optimal solution of

the coefficient; a
�

represents all possible solutions; and the defini-

tion of l1 norm of k a� k1 is k a� k1 ¼ Pn
i¼1 a

�
i

���
���, where a

�
i is the element

of a
�
.

The sparsity of the signal is the basic premise in CS theory. For-
tunately, most of the vibration signals of civil infrastructure have
this characteristic (i.e., the vibration is dominated by a few modes
only). Therefore, the vibration data of most structures are usually
or almost always sparse in the frequency domain or time-
frequency domain. Bao et al. [14] found the sparsity of structural
vibration signal and first used the CS for acceleration data acquisi-
tion of a bridge SHM system.

Furthermore, the vibration data measured by sensors placed at
different locations on a structure have almost the same sparse
structure in the frequency domain. Based on the group sparsity
of the structural vibration data, a group sparse optimization algo-
rithm based on CS for wireless sensors has been proposed [18].
Supposing that there are K sensors implemented in the structure,
the signal matrix U can be expressed as follows, considering the
measurement noise:

U ¼ WXþ e ð3Þ
where e 2 RM�K is the Gaussian noise matrix, U is the collected data
matrix with M � K, W is a Fourier matrix, and X is a Fourier
coefficients matrix. The Fourier coefficients matrix X can then be
recovered by solving the following optimization problem:

min
X2CM�K

k X k2;1 þ
l
2
k PX WXð Þ � PXU k22 ð4Þ

where PX : RM�K ! RM�K is the zero padding operator and l is the
penalty weight. Once the optimal solution Xrec has been obtained,
the recovered signal matrix can be obtained by the following:
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Urec ¼ WXrec ð5Þ
The augmented Lagrange multiplier algorithm is proposed to

solve the sparse optimization problem given in Eq. (4) [18]. Fig. 1
shows an example of data-reconstruction results from 10% and
20% measured samples from an actual long-span bridge. Using
the reconstructed data, the first two mode shapes can be well iden-
tified, as shown in Fig. 2, from the reconstruction signal with 10%
samples.
3. DL-based anomaly data diagnosis approach

Practical experience with a large number of SHM systems has
shown that SHM data always contain multiple types of anomalies
Fig. 1. Data-reconstruction results from (a

Fig. 2. The first two identified mode shapes from

Fig. 3. Framework of the proposed d
caused by sensor faults, system malfunctions, and environmental
effects. The most common data anomalies in SHM are missing data,
minors, outliers, squares, trends, and drifts. These anomalies will
seriously shield the real information contained in the data, result-
ing in a risk of warning misjudgment. Therefore, data preprocess-
ing or data cleaning is important for SHM.

Inspired by actual manual inspection, Bao et al. [50] have pro-
posed a CV- and DL-based anomaly detection method that first
visualizes and converts a raw time series into image data, and then
trains a deep neural network (DNN) for anomaly classification. The
framework of the proposed approach is shown in Fig. 3. This
method includes two main steps: ① data conversion by data
visualization, in which the time series signals are piecewise
represented in the image vector space; and ② DNN training via
) 10% and (b) 20% measured samples.

the reconstruction signal with 10% samples.

ata anomaly detection method.
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techniques known as stacked auto encoders and greedy layer-wise
training. The trained DNN can then be used to detect potential
anomalies in large amounts of SHM data.

Acceleration data from a long-span cable-stayed bridge was
employed to illustrate the performance of the proposed method.
Fig. 4 shows the data anomaly distribution identification results
over a year. The results in Fig. 4 indicate that the multi-pattern
anomalies of the data can be automatically detected with high
accuracy, resulting in a global accuracy of 87.0%.
4. CV-based crack identification algorithm

CV carries the advantages of less incorporation of expensive
professional instruments and sensors, and independence from sub-
jective human experience. By virtue of DL, which automatically
trains end-to-end models and generates high-level features of
input images, DL-based CV can overcome the limitations of
conventional CV, such as the requirement for predesigned filter-
based detectors, assumptions about crack geometry, and robust-
ness for complicated real-world images.

Restricted Boltzmann machines (RBMs) and deep convolutional
neural networks (CNNs) are two representative DL architectures
that have been investigated for image-based crack identification
Fig. 4. A comparison between (a) the detection results and (b) the ground truth of th

Fig. 5. Schematic of proposed RBM model. (a) RBM with a single visible and hidden lay
vector v and the hidden vector h, respectively, and Wij is the weight related to the unit
tasks. Xu et al. [51] have established a crack identification frame-
work using RBM for cracks on steel structure surfaces. The pro-
posed RBM model is stacked with an input layer, three hidden
layers, and an output layer, as shown in Fig. 5.

RBMs are generative learning modules that can be stacked to
form deep networks. An RBM is energy function based and is
generally defined as follows:

PðxÞ ¼ 1
Z
exp½�EðxÞ�; Z ¼

X

x

exp½�EðxÞ� ð6Þ

where x is the input variable of interest, P(x) is the probability dis-
tribution with regard to the energy function E(x), and Z is the par-
tition function by traversing all possible inputs. Under some
circumstances, the input x can be categorized into the visible and
hidden parts (denoted by v and h, respectively). In a Boltzmann
machine, the energy function is defined with a second-order poly-
nomial as follows:

Eðv;hÞ ¼ �
X

i

biv i �
X

j

cjhj �
X

i;j

v iWijhj �
X

i;j

v iUijv j �
X

i;j

hiVijhj

ð7Þ
where bi and cj are the offsets and biases associated with the visible
vector v and the hidden vector h, respectively, and Wij, Uij, and Vij
e anomaly distribution of acceleration data from a cable-stayed bridge in 2012.

er; (b) stacked RBMs. bi and cj are the offsets and biases associated with the visible
pair (vi, hj).
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are the corresponding weights related to the unit pairs (vi, hj), (vi,
vj), and (hi, hj). An RBM is defined with its binary units—that is,
v i;hj 2 f0;1g. In addition, hj is independent of hi ði– jÞ conditional
on v and vi is independent of v j ði– jÞ conditional on h. Therefore,
Uij = 0 and Vij = 0. The energy function of RBM can then be written
as follows:

Eðv;hÞ ¼ �P
i
biv i �

P
j
cjhj �

P
i;j
v iWijhj

Pðv;hÞ ¼ 1
Z
exp½�Eðv;hÞ�; Z ¼

X

v

X

h

exp½�Eðv;hÞ�
ð8Þ

The original images, including complex background informa-
tion, were taken by a consumer-grade camera (Nikon D7000, reso-
lution: 3264 � 4928) inside the steel box girder of the bridge. Some
of the cracks in the original images are very small, with a width of
only a few pixels. Complex disturbance information is also present,
such as the edges of steel plates and U-ribs, handwriting by inspec-
tors, electric wires, and corrosion areas. The greyscale 3264 � 4928
pixel images were reshaped into an image with the dimensions of
3264 � 3264 pixels, and then cut into sub-images with the dimen-
sions of 24 � 24 pixels. In total, a complete sub-image set of
240 448 elements was built up. The output label [1 0]T was
assigned to crack elements and [0 1]T was assigned to background
elements. The input to the deep network was a 576 � 1 vector
Fig. 6. Results of the training process and crack identification. (a

Fig. 7. Proposed FCNN architecture and training results. (a) Architecture of the modified
normalization; ReLU: rectified linear unit; MP: max pooling; FC: fully convolution.
reshaped from the corresponding sub-image of 24 � 24 pixels
and normalized by 255 in the grayscale. A contrastive divergence
learning algorithm [52] was applied to all the RBM layers in
sequence from bottom to top in order to update the weights,
biases, and offsets of the stacked network based on the sigmoid
function, as follows:

Wij ¼ aWij þ gW ½v irðcj þ
P
i
Wijv iÞ � v 0

irðcj þ
P
i
Wijv 0

iÞ�

bi ¼ abi þ gbðv i � v 0
iÞ

cj ¼ acj þ gc½rðcj þ
P
i
Wijv iÞ � rðcj þ

P
i
Wijv 0

iÞ�
ð9Þ

where a and g are the momentum and learning rate hyper-
parameters. Fig. 6(a) indicates that the reconstruction error ratio
decreased to 4.8% after 1000 iterations. Fig. 6(b) shows that the crack
elements could generally be differentiated from the disturbance
edges, despite the existence of complicated background information.

Inspired by the richer CNN [53], Xu et al. [54] further proposed a
modified fusion CNN (FCNN) to handle the multi-level convolu-
tional features for crack identification, as shown in Fig. 7. Unlike
the conventional input-hidden-output structure of chain-like
CNN, bypass stages are added in FCNN in order to handle the
multi-level features. Softmax loss function with a regularization
term to penalize large weights was adopted for classification as
follows:
) Reconstruction error ratio; (b) crack identification results.

FCNN; (b) training and validation recognition errors. Conv: convolution; BN: batch
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L ¼ � 1
m

Xm

i¼1

XC

j¼1

1fyðiÞ ¼ jglog eW
T
j x

ðiÞþbj

PC
c¼1eW

T
c xðiÞþbc

þ k
2

XC

j¼1

W2
j ð10Þ
where 1fyðiÞ ¼ jg returns 1 if the prediction is correct; otherwise, it
returns 0. k is the weight decay parameter and m represents the
mini-batch size. Wj and bj denote the weights and biases in the pre-
vious layer, respectively. C represents the total number of cate-
gories, and c is the index number ranging from 1 to C; xðiÞ

represents the ith input of the classification layer; WT
j and bj repre-

sent the weights and biases acting on the ith input xðiÞ; WT
c and bc

represent the indexes of weights and biases in the internal summa-
tion recycle in case of confusion. The recognition error is element-
based and represents the proportion of the predictions missing
the ground-truth labels for the input sub-images (i.e., represents
whether the prediction of an input element is correct or not). If
the predicted label of an input sub-image is different from the
ground-truth target label, the number of incorrect predictions is
increased by 1 and the recognition error is changed accordingly.
Fig. 7(b) shows the training and validation errors during the train-
ing process with minimum values of 3.62% and 4.06%, respectively.

Fig. 8 shows the crack identification results of original images
taken with different focal distances, in order to validate the perfor-
mance of the trained network on multiscale images. The figure
shows that crack elements are differentiated from the background
and from handwriting, even though the latter has crack-like
features and acts as a major disturbance for crack identification.
The mean value and standard deviation of precision are 88.8%
and 6.7%, respectively. The mean value and standard deviation of
precision are the statistical results computed over test images
under different conditions. The precision is computed in an
element-based manner, in terms of whether an input sub-image
is correctly categorized as crack, handwriting, or background.
Fig. 8. Identification results of multiscale images. (

Fig. 9. Monitored tension force of a pair of stay cables. Tvu and Tvd are the vehicle-in
5. ML-based condition assessment approaches for bridges

ML-based condition assessment involves the establishment of a
statistical representation of a structure by means of monitored
data and assessing whether the condition is normal or not based
on changes in the probability density function. For this reason,
these methods are also known as pattern-recognition methods.

5.1. Condition assessment approach for stay cables using ML
algorithms

Stay cables are crucial members for bridges. However, stay
cables suffer from the coupled effects of fatigue and corrosion.
Therefore, the condition assessment of stay cables is very
important.

The tension force of a stay cable can be monitored by means of a
load cell incorporated into the anchorage end of the stay cable.
Fig. 9 shows the representative cable tension monitored by load
cells in an actual cable-stayed bridge [48].

The ratio of the tension force of a pair of stay cables (i.e., the
upriver side and downriver side) has been proposed to be as fol-
lows [48]:

a yð Þ ¼ Tvd=Tvu ¼ W
W

� gvd yð Þ
gvu yð Þ ð11Þ

where Tvu and Tvd are the vehicle-induced cable tension of the upri-
ver and nearest downriver cables, respectively; W denotes the total
weight of the loading vehicle, which is assumed to be equivalent to
the force loading on the bridge; y is the transverse vehicle position
(center of mass); and gvu(y) and gvd(y) are the transversal influence
lines.

The tension forces of a pair of cables were analyzed using a clus-
tering algorithm [48]; the clustering results are shown in Fig. 10
[48]. It can be seen from Fig. 10 that the ratio of the tension force
a) A zoomed-out crack; (b) a zoomed-in crack.

duced cable tension of the upriver and nearest downriver cables, respectively.



Fig. 10. Patterns of the tension force of a pair of stay cables. (a) Short cable pair; (b) moderate cable pair.
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of the pair of cable is recognizable as six patterns (with different
colors denoted).

Further analysis indicates that these patterns are dependent on
the transverse locations of vehicles on the bridge only, and are
independent of vehicle weight. Once the cables in a cable pair
are damaged, the slope (tension ratio) will change. Therefore, the
slope of each pattern can be used as an indicator of the condition
of the stay cable pair. Cable tension ratio is defined as
f ¼ ln a yð Þ½ �. A Gaussian mixture model (GMM) is established, and
the parameters of the GMM can be fitted by monitored tension
force of a pair of stay cables [48]:

f fmn
��0

� � ¼
XK

k¼1

wkf fmn
��hk

� � ð12Þ

where f fmn
��0

� �
is the probability density function of the ratio of the

tension force of a pair of stay cables m under vehicle n,
0 ¼ h1; h2; � � � ; hK ;wf g, w ¼ w1;w2; � � � ;wKf g represents the weight

coefficients, and
PK

k¼1wk ¼ 1.
A fitted GMM example is shown in Fig. 11(a), and Fig. 11(b) illus-

trates the damage detected in an example pair of stay cables [48].

5.2. Condition assessment approach for a girder using ML algorithms

The variable of strain links directly to structural safety. How-
ever, the welding of a steel girder leaves residual strain and faults
in the girder, making it impossible to evaluate the safety of the gir-
der or predict its fatigue life directly using monitored strain. Fortu-
nately, it has been observed that the strain on the top plate of a
Fig. 11. Condition assessment results for stay cables. (a) Fitted GMM of a short pair of
function; CDF: cumulative distribution function; ECDF: empirical cumulative distributio
steel girder has local effects; that is, the amplitude of the strain
underneath the wheel of a vehicle on the bridge is very large,
and decays sharply with distance. These local effects mean that
the strain underneath a wheel is only determined by the wheel
load, and is independent from other vehicles on the bridge. The
ratio of strains at the same transverse locations, while different
sections are independent from the vehicle load, with a time lag
(i.e., a vehicle first crosses over one section, and then crosses over
another section with a certain time lag). Therefore, the ratio of the
strains is related to girder parameters only, and can be used as an
indicator of girder condition. The ratio of the strains is defined as
follows [49]:

eik tð Þ ¼ aikWðtÞ ejk tð Þ ¼ ajkW tð Þ ð13aÞ

Rij ¼ max eik tð Þð Þ �min eik tð Þð Þ
max ejk tð Þ� ��min ejk tð Þ� � ¼ aik

ajk
ð13bÞ

where eik(t) and ejk(t) are respectively the strains at the same trans-
verse location (monitored by the kth sensor) of cross-sections i and j
when vehicle with the weight ofW(t) passing by; and aik and ajk are
coefficients that relate to girder parameters only. Thus, the strain
ratio Rij is only dependent on the structural parameters, can be used
as a condition indicator of the girder.

Fig. 12(a) shows the monitored strains at the same transverse
locations but at two different sections along a bridge [49]. The sim-
ilarity of these two strain time histories can be seen. The probabil-
ity of the ratio of monitored strains at two different sections on the
same lane is shown in Figs. 12(b) and (c) [49]. In Fig. 12(b), the
parameters of the probability of the ratio of the monitored strain
stay cables; (b) contour of a moderate pair of stay cables. PDF: probability density
n function.



Fig. 12. Monitored strain and statistics of the strain ratio. (a) Monitored strain at the same transverse location of two different sections; (b) statistics of the strain ratio
without damage; (c) statistics of the strain ratio with fatigue cracking.
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do not change, implying that there is no damage on the girder. In
Fig. 12(c), however, the parameters of the probability of the ratio
of monitored strain change, indicating the occurrence of damage
at these two sections.

6. Conclusions

This paper provides a brief review of the state of the art of data
science and engineering in the field of SHM. Conclusions and future
trends are provided below.

A CS-based data-acquisition algorithm is able to randomly sam-
ple dynamic signals and reduce the volume of the dynamic signal
(e.g., the acceleration, dynamic strain, displacement, etc.) because
the dynamic signal in civil structures is sparse in the frequency
domain and in the frequency-time domain.

ML, DL, and CV techniques provide efficient algorithms to auto-
matically diagnose anomaly data and perform crack identification
and condition assessment using big data from monitoring; they
can be extensively applied in SHM.

The concepts of the ‘‘automatic AI scientist” and the ‘‘automatic
AI engineer” are gaining considerable scholarly interest in the field
of AI, as they can learn and create theorems, theories, and designs.
AI, virtual realization or augmented realization, wearable devices,
crowd smart-sensing technology, and their combinations will
make it possible to collect more data and information at a low cost,
and will lead to novel theories on structural health diagnosis and
prognosis by overcoming many challenging issues in traditional
damage detection, model updating, safety evaluation, and reliabil-
ity analysis. These technologies will help us identify a new intrinsic
evolution in the long-term performance of full-scale structures in
real operational surroundings and under real loads.
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