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Holography, which was invented by Dennis Gabor in 1948,
offers an approach to reconstructing both the amplitude and phase
information of a three-dimensional (3D) object [1]. Since its inven-
tion, the concept of holography has been widely used in various
fields, such as microscopy [2], interferometry [3], ultrasonography
[4], and holographic display [5]. Optical holography can be divided
into two steps: recording and reconstruction. A conventional holo-
gram is recorded onto a photosensitive film as the interference
between an object beam carrying the 3D object information and
a reference beam. Thereafter, the original object wavefront is
reconstructed in the 3D image space by illuminating the reference
beam on the recorded hologram.

Digital holography was invented by Brown and Lohmann in
1966, marking a milestone breakthrough in optical holography
based on computer-generated holograms (CGHs) [6]. Instead of
performing complex two-step optical holography, CGHs provide a
simple way to obtain the amplitude and phase information of a
digital hologram based on various computational algorithms.
CGH-based digital holography has recently been realized through
both passive [7] and active photonic devices [8].

The advent of the computer-addressed spatial light modulator
(SLM) opens up the possibility of dynamic digital holography that
is capable of rapidly switching holograms within only a few
microseconds [9]. SLM-assisted digital holography has been
applied in 3D displays [10], holographic encryption [11], digital
holographic microscopy [12], optical data storage [13], optical
trapping [14], and so forth. However, several compelling chal-
lenges still remain for digital holography, including a small field
of view, low resolution, narrow bandwidth, optically thick holo-
grams, and multiple diffraction orders.

To overcome these challenging issues, high-resolution and opti-
cally thin metasurfaces have been put forward in order to digitalize
CGHs [15]. Unfortunately, the formidable complexity and high cost
of the fabrication methods—namely, electron-beam lithography
and focused ion-beam lithography—limit the practical applications
of small metasurface holograms. Optically digitalized holography
(ODH) has recently been proposed and demonstrated [16–18],
opening up the possibility of using optical methods to generate
high-resolution, large-scale, and cost-effective holograms [19–21].
The new method is based on the vectorial Debye diffraction theory
[22] in conjunction with inversed Fourier transform [23–25].

The 3D direct laser writing technique has been experimentally
used in ODH to optically digitalize CGHs in different photosensitive
materials. A tightly-focused femtosecond laser beam is scanned on
a photosensitive material to print 3D nanostructures, where
different-sized nanostructures correspond to multilevel amplitude
and/or phase modulation in the CGHs. It is notable that the recent
development of super-resolution direct laser writing techniques
holds great promise for digitalizing ultrahigh-definition CGHs with
extremely small pixels [26]. On the other hand, galvo scan mirrors
and diffraction-limited two-dimensional (2D) [23,24] and 3D [25]
multifocal arrays have enabled fast and parallel direct laser writing
with a throughput that is increased by orders of magnitude. As a
result, ODH-based holograms with high resolution and a large size
enable floating displays of holographic images with an ultra-wide
viewing angle and a high spatial bandwidth product. In this con-
text, an ODH hologram with a resolution of 550 nm was fabricated
in graphene oxides [16,17] and photoresist [18], resulting in a 3D
display with an ultra-wide viewing angle of 52� [17]. Moreover,
an ultra-thin ODH hologram with an optically thin thickness of
20 nm was fabricated by exploiting multi-reflection phase accu-
mulation in a topological insulator thin film [27].

Recently, artificial intelligence has attracted a surge of interest,
due to its widespread application in medical image analysis [28],
molecular and material science [29], speech recognition [30], and
so forth. It is envisioned that optical holography can provide great
advantages to artificial intelligence. Pioneering work extending
optical holography to artificial neural networks dates back to the
1990s [31]; in that work, the activity of each neuron was coded in
the amplitude or intensity of optical beams. Due to the angle
selectivity in Bragg diffraction, a complex mapping relationship in
neurons can be represented by a 3D volume hologram based on
themultiplexing of holographic gratings. However, the lack of prac-
tical devices at that time that could implement a holographic device
acting as complex neurons prevented the advancement of this idea.
Recently, ODH has enabled the fabrication of high-resolution
holographic devices performing the function of artificial neural net-
works. All-optical machine learning using diffractive deep neural
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Fig. 1. (a) All-optical machine learning based on a multilayered ODH chip. (b) A monolithic design combines four different holographic layers that work collectively to
perform image classification. In this example, the multilayered chip can classify the animal images, recognizing the butterfly as an insect. (c) Each layer of the chip consists of
an ODH. (d) Schematic illustration of an ODH fabricated by high-resolution 3D direct laser writing, which enables the extension of the operation wavelength from the THz to
visible region for a diverse range of applications.
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networks has been successfully demonstrated to perform image
classification in the terahertz (THz) band [32]. To achieve the learn-
ing function, multilayer holograms were computationally designed
based on advanced deep-learning algorithms and were experimen-
tally fabricated by 3D printing.

Extending 3D printing [32] to 3D high-resolution laser printing
[26,33] can provide an all-optical machine learning chip ranging
from the THz to visible regions (Fig. 1). The merging of ODH with
artificial intelligence will lead to significant breakthroughs in both
fundamental research and practical holographic applications in
future. We envisage that extending the working wavelength from
the THz to visible frequency range will open up new perspectives
for applications such as a smarter imager [34], light fidelity (Li-Fi)
[35], and security access. However, the implementation of a
high-definition holographic display based on artificial intelligence
presents a formidable task for computation that lies significantly
beyond current capabilities; therefore, new computational algo-
rithms must be developed to mitigate this challenge. We have thus
embarked on an exciting journey to explore new artificial
intelligence-based ODH. Alternatively, optical machine leaning can
be implemented on on-chip nanophotonic circuits [36]. The combi-
nationof these twoapproachesmayprovide anentirelynewplatform
for neural technology and engineering in brain-like exploration that
can benefit the development of new medical procedures for curing
mental disorders—which currently demand an approximate annual
cost of $1 trillion around the world and $90 billion in China.
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