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Flow transition from laminar to turbulent mode (and vice versa)—that is, the initiation of turbulence—is
one of the most important research subjects in the history of engineering. Even for pipe flow, predicting
the onset of turbulence requires sophisticated instrumentation and/or direct numerical simulation, based
on observing the instantaneous flow structure formation and evolution. In this work, a local Reynolds
number equivalence c (ratio of local inertia effect to viscous effect) is seen to conform to the Universal
Law of the Wall, where c = 1 represents a quantitative balance between the abovementioned two effects.
This coincides with the wall layer thickness (y+ = 1, where y+ is the dimensionless distance from the wall
surface defined in the Universal Law of the Wall). It is found that the characteristic of how the local
derivative of c against the local velocity changes with increasing velocity determines the onset of turbu-
lence. For pipe flow, c � 25, and for plate flow, c � 151.5. These findings suggest that a certain combina-
tion of c and velocity (nonlinearity) can qualify the source of turbulence (i.e., generate turbulent energy).
Similarly, a re-evaluation of the previous findings reveals that only the geometrically narrow domain can
act locally as the source of turbulence, with the rest of the flow field largely being left for transporting and
dissipating. This understanding will have an impact on the future large-scale modeling of turbulence.

� 2019 THE AUTHOR. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

At present, predicting the onset of turbulence, even for pipe
flow, requires sophisticated instrumentation and/or direct numer-
ical simulation (DNS) [1–4], based on observations of the detailed
instantaneous flow structure formation and evolution. However,
all of this modern research is conducted around the classical criti-
cal Reynolds number (Rec). Osborne Reynolds (1842–1912) carried
out thorough laboratory investigations on the behavior of Newto-
nian fluids [5,6]. His most remarkable discovery was the identifica-
tion of the two modes of flow phenomena: laminar flow and
turbulent flow [5–7]. The experimental methodology and theory
proposed by Reynolds to investigate the transition from one type
of flow to another have inspired numerous researchers over gener-
ations. The transition between these two types of flow is marked
by a dimensionless parameter attributed to Reynolds—that is, the
Reynolds number (Re):

Re ¼ qUd
l

ð1Þ
where q is the fluid density (kg�m ), l is the fluid viscosity (Pa�s), U
is a characteristic velocity (m�s�1), and d is a characteristic dimen-
sion of the object with which the fluid is in contact (m). In a pipe,
d is the inner pipe diameter; however, if the fluid flows around
the pipe outside (cross-flow), d becomes the outer diameter. This
number has often been said to represent the ratio of the inertia
forces to the viscous forces. As the most important parameter, the
Re, together with other fluid-related dimensionless parameters,
provides a powerful foundation for many friction, heat, and mass-
transfer correlations in fluid flow-related problems. These are par-
ticularly useful in designing process equipment and process opti-
mizations [7]. While appreciating the experiments carried out by
Reynolds, it is notable that the diameter of the pipe was limited;
hence, a large Re might be obtained mainly by changing the fluid
viscosity and/or increasing the fluid velocity. Flow visualization
took place in the central region of the pipe (the ink fluid was
injected at the center location), so it would have been the result
of the integrated or cumulative effect of turbulence generation
along the pipe wall, transport, and dissipation. These three aspects
would have been intertwined in the visualization in the experi-
ments, and the Re should be viewed as a global parameter. In
1952, measurements in the proximity of the pipe wall showed a
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very significant result: that using the friction velocity (ur) and the
product of the kinematic viscosity and the friction velocity (vur)
to scale velocity and distance, respectively, away from the wall, a
unique dimensionless velocity profile in the near-wall region was
obtained. As calculated, based on the measurements, the rate of tur-
bulence generation reaches a sharp maximum at the sub-layer
thickness (y+ � 11.5, where y+ is the dimensionless distance from
the wall surface defined in the Universal Law of the Wall (ULW))
[8]. From a rational perspective, the broad peak as shown may be
better qualified as y+ � 11.5 ± 5. The commonly acknowledged
divide between the laminar sub-layer and the buffer layer is marked
at y+ = 5 for a fully developed turbulent wall layer [8,9].

Micro-transient details of how a fluid transitions from being
disturbed by localized perturbation into full-blown turbulence in
a (long) pipe have only been captured very recently [1,2]. Sampling
stations for local behaviors have been set up, facilitated by
advanced computing power and modern experimental techniques.
Experiments have been conducted below and above the well-
known Rec for pipe flow—that is, Rec = 2300, where the subscript
c represents critical.

In a small-diameter pipe in a laboratory setting, turbulence that
is transient at low Re becomes sustained after a distinct Rec; how-
ever, this phenomena was captured locally (unlike the general type
of observation originally made by Reynolds) [1,2]. The critical point
for transiting to sustained turbulence is decided when the local
proliferation of puffs outweighs their decay. Experimentally artifi-
cial puffs were generated at precision to trigger turbulent behavior.
Two timescales were captured (partly established through DNS) for
the decay and spreading of the puffs. Plotting the Re dependence of
the mean time until a second puff is nucleated and the turbulence
fraction increases (declining with increasing Re), and the Re depen-
dence of the mean time until the turbulence decays and the flow
relaminarizes (increasing with increasing Re), creates a very sharp
intersect at Rec = 2040 ± 10, marking the onset of laminar-to-
sustained turbulence in pipe flow [1].

To explain this transition from laminar flow to turbulence, a bi-
stability analysis with nonlinear propagation (advection) of turbu-
lent fronts has been executed [2]. The interesting phenomena of
destabilizing turbulence in pipe flow were subsequently studied
using the same experimental strategies and DNS [3,4].

It is worth noting that most practical problems in this field,
including airplane design, are simulated with semi-empirical tur-
bulent models for turbulent kinetic energy and the Reynolds stres-
ses. These models make computation more efficient. Although DNS
is seen to be the ultimate way to directly generate images of turbu-
lence, our knowledge about turbulence still mostly comes from
intuitive prospects, whether reported or taught in classes.

In the present work, a dimensionless number is reported that is
deduced intuitively from the concept of Re but applied to the local
fluid flow. This dimensionless number is the ratio of the inertia
effect to viscous effect, and its definition allows for an alternative
analysis of the onset of turbulence, which has not previously been
seen. Three classical cases in fluid mechanics are employed to
show the effectiveness of the approach: the ULW, flow in a smooth
circular pipe, and parallel flow on a smooth plate [9]. The analytical
velocity profiles of these cases are well known [9–13], allowing
derivations to be made to demonstrate the intended arguments
precisely. This philosophy is in line with what Churchill [11]
reported in his famous American Institute of Chemical Engineers
Institute Lecture—that is, elucidating the fundamentals of trans-
port phenomena without computational fluid dynamics.

Given this new number, beyond capturing the onset of turbu-
lence, the author points to a significant possibility that turbulence
(i.e., turbulent energy) originates from a very narrow domain(s)
(defined by c (ratio of local inertia effect to viscous effect) and
velocity), leaving the rest of the flow field for transporting and
dissipating turbulent energies. This perspective creates consider-
able scope for controlling turbulent flow and provides an idea for
future improvements in turbulence-modeling effectiveness on
large scales.
2. Main analyses

2.1. Defining the local ratio of inertia effect to viscous effect

To introduce the new dimensionless number, for simplicity, a
semi-infinite Cartesian (x, y) parallel flow scheme, with one side
bounded by a smooth flat solid wall (the smooth plate) is consid-
ered. Taking u as the local velocity in the x-direction (parallel to
the plate), and recognizing that the predominant velocity gradient
occurs in the y-direction, the prominent shear stress can be
expressed as s ¼ �l@u=@y. The no-slip condition is applied at the
plate surface; hence, the scaling consideration leads to
s � �lðuch � 0Þ=Dch. Here, Dch is a characteristic distance corre-
sponding to the representative velocity change of interest and uch
is a characteristic velocity, where the subscript ch represents the
characteristic value of the system. Taking the above to represent
the viscous effects, a new dimensionless number is deduced:
c ¼ ql2=ðluch=DchÞ. As Dch ? 0, the new local dimensionless num-
ber can be expressed locally:

c ¼ qu2

l @u=@yj j ð2Þ

In Eq. (2), the absolute value is employed to avoid any confu-
sion. Based on the derivation, it can be seen that this number is
conceptually similar to the Re. It is argued that this number holds
important physical meaning when interpreting fluid behavior at a
finite point (x, y). If c becomes very large, the viscous effect
becomes negligible, and the fluid at that point should be able to
maintain its pathway without changing direction. If the fluid flow
becomes turbulent, the instantaneous velocity u in Eq. (2) may be
replaced with the time-averaged local velocity �u, according to con-
ventional wisdom. An appropriate value of c must be attained in
order to produce an eddy or eddies. On the other hand, the flow
must be energetic enough to begin with, if turbulence can be sus-
tained (i.e., u must be large). When the two effects are comparable,
it should be found that c � 1. It is envisaged that for different direc-
tions in a general flow domain, c is directionally dependent. It is
further noted that c is in fact different from Re, because when
the Re increases over a critical value, turbulence must occur. On
the other hand, c can vary from zero to infinity, even for laminar
flows.

2.2. Conforming c to the ULW

First, it is found that c conforms to the ULW, thus demonstrat-
ing significant physical meaning. For a large Re, the wall-bounded
turbulent flows exhibit boundary layers that fall within the dimen-
sionless velocity distribution of an approximately universal nature.
Many measurements have demonstrated the ULW [7–9]. Large-
scale (industrial) turbulence modeling often takes advantage of
the ULW to create a wall function in order to avoid detailed com-
putations near the wall and thereby reduce the computing effort.
In the ULW, the fluid boundary layer is divided into three regions:
a (pure) viscous sub-layer (also called the wall layer), a buffer
layer, and an overlap layer [9]. For the viscous sub-layer,
0 � y+\5 and u+ = y+, where y+ = y/dv. The wall layer thickness
(y+ = 1) is dv = v/ur. The friction velocity ur is defined as
ur ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
�sw=q

p
, where �sw is the time-averaged shear stress at the wall

(N�m�2). u+ is defined as u+ = �u=ur.



Fig. 1. Mean lifetime of a puff before decaying (solid line) or splitting (dashed line),
plotted using the mean lifetime functions of the Re created previously [1].
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This leads to the following:

c ¼ y
dv

� �2

¼ yþð Þ2 ð3Þ

Eq. (3) presents a significant finding that, in essence, when y is
equal to the wall layer thickness, c = 1, the inertia forces are com-
parable to the shear forces. It is also interesting to note that y+ = 5
is the conventional divide for the viscous sub-layer and the buffer
layer, at which c = 25. y+ = 11.5 may also be important, as this is
where turbulence production has been reported to peak in the
ULW. At this point, it is intuitive to think that there may be a crit-
ical c that corresponds to the range marked by the above number
moving from laminar to turbulence, provided that the fluid in this
location has sufficient energy (or sufficiently high velocity). As
mentioned above, in both laminar and turbulent flows, c can vary
from zero to infinity. Therefore, it is obvious that a single c value
cannot be a sole marker for generating turbulence.

2.3. Pipe flow

The strategy, then, is to seek the relationship between c and
changing velocity. As shown in Appendix A in the Supplementary
data, c can be obtained as a function of r/R (r is the radial coordi-
nate and R is the radius of pipe) first for different Re(s), where Re
is defined using the mean velocity um. Then, via the relationship
between u and r in this classic case, c can be further obtained as
a function of u/um. Differentiating this u/um dependence function
against u/um, for both the fully developed laminar and the fully
developed turbulent regimes, yields a useful characteristic of c
varying with velocity. For laminar flow, it is the parabolic velocity
profile; for turbulent flow, it is the 1/7th power velocity profile. It
can be shown that at point cxx � 25 (corresponding to y+ = 5),
where the subscript xx indicates that the inertia effects in the
x-direction interact with the shear effects applied in the
x-direction as well, the crossover of the two derivatives against
u/um yields Re � 2083. At this point, u/um � 0.597 (see Fig. S1 in
the Supplementary data, which demonstrates the obtainment of
this result). When the time-averaged velocity profile for turbulence
is generalized to be of the 1/Nth order, where N is the power of the
classic approximation of the time-averaged velocity distribution in
turbulence regime (dimensionless), especially with N = 11, it can
be shown that Re = 2005.75 is critical (see Appendix A in the Sup-
plementary data). Here, the velocity at cxx = 25 and �u=um = 0.650
(see Fig. S2 in the Supplementary data). This analysis indicates that
when cxx = 25, if the fluid flow at that location has sufficient power,
turbulence occurs.

2.4. Plate flow

In contrast to the flow in a pipe, the flow parallel to and above a
flat plate is at least two-dimensional. It is well known that the
solution to a laminar velocity distribution in the plate boundary
layer can be obtained accurately through similarity solution proce-
dures [9]; that is, �u=U1 = f(g), where g is the dimensionless trans-
formation variable g ¼ y=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qU1=2lx

p
and U1 is the velocity of the

bulk fluid. The laminar velocity profile can also be expressed in a
parabolic format, while the turbulent profile can be expressed
approximately as a 1/7th power format when scaled using the
boundary layer thickness (see Appendix B in the Supplementary
data). Once again, dcxx/d(�u=U1) can be obtained for both flow
modes, respectively. The crossover is set at Rex,c = 5.5 � 105, which
is the oft-mentioned Rec for the onset of turbulence in plate flow. It
is found that cxx � 154.6 (y+ � 12.4) (see Appendix B in the Supple-
mentary data). At this point, �u=U1 = 0.441. The obtainment of the
critical parameter is shown in Fig. S3 in the Supplementary data.
In fact, the literature tends to suggest a range for the onset Re for
turbulence of 105–106. The low estimate, Rex,c = 105, yields
cxx = 89.24 (y+ = 9.45), for which �u=U1 = 0.487. This result actually
aligns well with the critical condition for pipe flow.
2.5. Reversing back from turbulence to laminar flow

If the velocity profile is changed while the flow rate is kept the
same in a smooth and straight pipe, it is interesting to see whether
Rec for the onset of turbulence changes or not. It is possible to pre-
fix c to be 25, and then see whether Rec is influenced by altering the
velocity profile. It is shown that when the law of 1/7th for
turbulence is changed to the 1/20th law for turbulence, where
the velocity profile becomes flatter, Rec becomes 2485, in contrast
to 2083 for the 1/7th law. In other words, it is possible to reverse
the already turbulent situation ‘‘back” to the laminar situation if
the velocity profile is somehow forced to be flatter in the gap of
Re = 2485–2083. In general, when N becomes greater than 7, Rec
also increases. This result aligns well with the original work
reported recently [3].
3. Further remarks

It has been successfully shown that the onset of turbulence can
be interpreted through the introduction of c, which is the ratio of
local inertia effect to viscous effect. Based on the well-established
velocity profiles, it is possible to evaluate the critical transition Re
through the relationship of how the local derivative of c against
velocity changes with velocity. The sensitive region for flow transi-
tion is narrow, based on the analyses given in this work (see
Figs. S1–S3 in the Supplementary data; beyond the crossover
points, the change in the local derivative of c against velocity (as
well as that of c) increases rapidly with increasing velocity, and
no further crossover can be found). Increasing cwould dam the tur-
bulence, even it was already generated. It is probable that only a
very thin or narrow geometrical region (i.e., a line or a shell) is cap-
able of sustaining turbulence generation. Upon a further analysis of
previous results [1], albeit not elaborated in that study (see Fig. 5 in
Ref. [1]), where the mean time of a puff from the wall before decay-
ing or splitting as a function of Re in the pipe is shown, the occur-
rence of a very sharp critical phenomena is suggested. A lesser or
greater Re than the Rec has a much lower chance of producing sus-
tained randomness (Fig. 1). A previous work [2] (see Fig. 3 in Ref.
[2]) also shows that the level of turbulence reflected by the cross-
stream velocity fluctuations v0/U does not actually increase much
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with increasing Re, once past the Rec. It is thus highly probable that
the source of (strongest) turbulence is located in a narrow region
(s); furthermore, if this were true, then the rest of the flow field
would largely be left for the transportation and dissipation of tur-
bulence energy. This perspective would have a profound influence
on the modeling of turbulence.

In future studies, it will be helpful to visualize and compare the
c distribution for both laminar and turbulent regimes with the
same flow arrangement and in the same device. Finally, it is
emphasized again that despite the vast difference between the
Rec found for pipe flow and for plate flow, respectively, the current
dimensionless parameters under critical conditions for the two
cases are not that different.
s,
Acknowledgements

The author is grateful to his father, Prof. Naixing Chen (1933–
2018), who was the first to introduce him to the field of fluid
mechanics over 35 years ago; the author had discussed the initial
ideas of this paper with him not long before he fell terminally ill.
Some 17 months were spent working on and off as a research assis-
tant in Prof. Lixing Zhou’s laboratory at Tsinghua University in
1985–1987, on a code for simulating a two-dimensional multi-
phase flow in a sudden-expansion combustion chamber. The per-
sonal knowledge of Dr. Tuoc Trinh of Canterbury University and
later of Fonterra New Zealand in the late 1980s to early 1990s,
respectively, was a real inspiration in thinking about wall turbu-
lence. Dr. Trinh wrote a remarkable PhD thesis in the early 2000s
on his original ideas on boundary layer turbulence.
Nomenclature
d
Re
U
u,

U
um
ur
v
r
R
N

characteristic dimension of the object (m)

Reynolds number (dimensionless)

characteristic velocity (m�s�1)
�u
 local velocity and time-averaged local velocity,
respectively (m�s�1)
1
 velocity of the bulk fluid in plate flow (m�s�1)

mean velocity (m�s�1)

friction velocity (m�s�1) as defined in the ULW [8–12]

kinematic viscosity (m2�s�1)

the radial coordinate (m)

the radius of pipe (m)

the power of the classic approximation of the
time-averaged velocity distribution in turbulence regime
(dimensionless)
h
 a characteristic velocity (m�s�1)

x-coordinate in the Cartesian system

y-coordinate in the Cartesian system

dimensionless distance from the wall surface defined in
the ULW

wall layer thickness (m) [8,13]
c
 characteristic distance corresponding to the representative
velocity change (m)

ratio of local inertia effect to viscous effect (dimensionless)

dimensionless transformation variable in the classic
similarity solution of plate flow

fluid viscosity (Pa�s)

fluid density (kg�m�3)
�s
 shear stress and time-averaged shear stress,
respectively (Pa)
Appendices A and B. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.eng.2018.09.013.
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