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Industrial big data integration and sharing (IBDIS) is of great significance in managing and providing data
for big data analysis in manufacturing systems. A novel fog-computing-based IBDIS approach called Fog-
IBDIS is proposed in order to integrate and share industrial big data with high raw data security and low
network traffic loads by moving the integration task from the cloud to the edge of networks. First, a task
flow graph (TFG) is designed to model the data analysis process. The TFG is composed of several tasks,
which are executed by the data owners through the Fog-IBDIS platform in order to protect raw data pri-
vacy. Second, the function of Fog-IBDIS to enable data integration and sharing is presented in five mod-
ules: TFG management, compilation and running control, the data integration model, the basic algorithm
library, and the management component. Finally, a case study is presented to illustrate the implementa-
tion of Fog-IBDIS, which ensures raw data security by deploying the analysis tasks executed by the data
generators, and eases the network traffic load by greatly reducing the volume of transmitted data.
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1. Introduction

With the development of the Internet of Things (IoT), multiple
sensors, and other data-sensation technology, an exponentially
growing volume of data is being captured in industry practices
[1,2]. This captured big data can help manufacturers to improve
their production efficiency [3,4], system resilience and sustainability
[5,6], and product quality [7], and to achieve better customer expe-
rience through precision marketing and design. Moreover, the
models [8], approaches [9,10], and platforms [11] that have
emerged enable big data to be used to achieve dramatic improve-
ments in the operation of complex manufacturing systems [12,13].
Hence, big data analytics is now becoming prevalent and is
expected to become a widely used method in the operation of com-
plex manufacturing systems [14]. Communicating, aggregating,
storing, analyzing, and visualizing collected data are now all part
of the operation of an advanced manufacturing system [15], as
realized through the cyber–physical system (CPS). Within a CPS,
data, information, and knowledge are combined to form an inte-
grated environment for system optimization. Data integration is
the basis for system integration, as data serves as the information
and knowledge of a CPS [16]. Thus, industrial big data integration
and sharing (IBDIS) determines the efficiency of big data
analysis and plays a key role in the operation of manufacturing
systems. IBDIS provides massive industrial data that can be
analyzed by defining, extracting, transforming, and loading [17].
However, big data integration in manufacturing systems remains
a difficult task due to two challenges: heavy network traffic load
and privacy concerns regarding original industrial big data.

1.1. Heavy network traffic load

The first challenge is the heavy network traffic load that results
from the long-distance transmission of massive raw data for big
data analysis. In modern manufacturing systems, the number of
intelligent machines and IoT devices generating massive data has
been growing, so as to empower Industry 4.0 [18]. The volume of
data generated by sensors embedded in machine tools, cloud-
based solutions, and business management has already reached
more than 1000 EB annually, and is expected to increase in the
years to come [19]. As a result, expansion of an industrial cloud-
based data center is required in order to support data integration
and storage for the operation of manufacturing systems [17,20].
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However, the cloud-computing framework transmits massive raw
data into a remote cloud-based data center for further analysis
[21,22], which results in a heavy network traffic load. Industrial
big data has the characteristic of being multi-sourced, which
means that the collected data (containing order requirements, pro-
duct process routes, machine statuses, and plan solutions) comes
from product data management (PDM) systems, manufacturing
execution systems (MES), supervisory control and data acquisition
(SCADA) systems, and so forth [23]. Hence, multiple data
exchanges occur frequently during IBDIS, increasing the network
traffic load. At present, existing commercial cloud-computing
models upload original industrial big data using a batch-
processing mode (once/twice per day at midnight) in order to ease
the network load; however, this cannot satisfy the requirement of
real-time optimization in the industrial field.
1.2. Privacy concerns regarding original industrial big data

The second challenge involves the privacy of original industrial
big data, as shared data can be copied and secondary traded by the
customer during data exchange. In industry, big data is usually
classified and is only accessible within the local company network
[24]. In the majority of manufacturing organizations, raw data is
not allowed to be transmitted to a remote commercial cloud center
directly, since private raw data can easily be copied during storage
and transmission. In some high-technology enterprises, data is the
core of the company’s assets, and data leakage is likely to bring
incalculable losses to the enterprise. For example, the recipes, cus-
tomer data, and process parameters are closely guarded in wafer
manufacturing, as they are vital to a semiconductor foundry.
Therefore, the privacy of original industrial big data should be care-
fully considered in IBDIS.

To address these two issues, this paper puts forward a
fog-computing architecture named Fog-IBDIS, which takes full
advantage of the computing power of edge devices in the network
to preprocess the original industrial big data. In Fog-IBDIS, the data
integration and sharing tasks are moved to the edge devices, such
as industrial personal computers and application servers. With
Fog-IBDIS, the volume of data is reduced during preprocessing in
order to improve the time latency and network traffic load in the
integration of big data. In addition, data that has been processed
through standardization or other data-transformation technologies
is far less sensitive for enterprises than raw data. With the pro-
posed Fog-IBDIS, the intermediate result is transmitted and
uploaded in the big data analytical task in order to protect the pri-
vacy of the original data.

The rest of this article is structured as follows. First, related
studies about big data integration and fog computing are reviewed.
Next, Fog-IBDIS is proposed, with a task flow graph (TFG) and a
schematic diagram, as an approach to model and manage the inte-
gration process of industrial big data. The function of Fog-IBDIS is
then organized into five modules to realize the integration and
sharing of industrial big data. Subsequently, a case study is per-
formed to illustrate the implementation and performance of Fog-
IBDIS, and the differences between IBDIS with cloud computing
and Fog-IBDIS are discussed. Finally, the conclusion and future
directions are detailed.
2. Related works

Since industrial big data is characterized by the ‘‘three Vs” of vol-
ume, variety, and velocity, and by the ‘‘three Ms” of multi-source,
multi-dimension, andmulti-noise, big data integrationmust extract
and transform raw data with complex schemas in order to manage
and organize the massive data. This process is of great importance,
and has received a significant amount of consideration in past dec-
ades. Xiang et al. [25] proposed a hybridmanufacturing cloud archi-
tecture to centralize and share manufacturing data in the product
life-cycle. This designed big data integration approach is supported
and promoted by a flexible private cloud-computing platform.
Ma’ayan et al. [26] developed a centralized data management
method to integrate the data from large-scale projects in systems
biology and systems pharmacology into a single unified data pool.
Mezghani et al. [27] designed a generic semantic big data architec-
ture to manage the diversity and variety of wearable data related to
healthcare. They also implemented and evaluated a wearable Kaas
platform to smartly manage and centralize heterogeneous data
coming fromwearable devices in order to assist physicians in super-
vising patient health evolution and to keep the patient up to date
about his or her status. In the data management of IoT data, Jiang
et al. [28] proposed a data storage framework that involved combin-
ingmultiple databaseswith a Hadoop platform in order to store and
manage diverse types of data collected bymassive IoT devices.With
the cloud-computing platform, rapidly generated IoT data could be
stored and processed effectively. Chang et al. [29] integrated several
kinds of big data warehouse platforms, and selected the best one to
manage big datasets. With this optimized big data platform, the
data could be centralized and processed with high performance,
high availability, and high scalability.

Previous works in big data integration have attempted to move
all computing tasks to the cloud, as an efficient way to integrate
industrial big data due to the super-computing power of the cloud
[17]. However, the bottleneck of big data integration emerges in
data transmission [30]. At present, most information saved in com-
panies is in the form of unstructured models; for example, process-
ing requirements are saved as documents. The retrieval and
extraction of this information are essential tasks in industrial data
analysis. Text mining and natural language processing are two
techniques used for knowledge discovery from textual context in
documents. Moreover, machine vision algorithms can be applied
for the information extraction of graphic data, such as product
inspection images, computer-aided design drawings, and so forth.
In general, unstructured files take up more storage space than
structured data, and are generated at high speed. With traditional
integration approaches (e.g., the semantic integration approach
proposed by Liu et al. [31]), all unstructured and structured data
are uploaded into the cloud application servers for processing. This
results in a heavy network traffic load that will influence the every-
day operation of manufacturing systems.

Since a heavy network traffic load is raised by frequent big data
transmutation in the cloud application [16], there has been a need
to extend the cloud-computing framework to the edge of networks,
in an approach called fog computing, also known as edge comput-
ing or cloudlet computing [32]. Fog computing moves computing
tasks to edge devices [33] such as smart phones, wearable devices,
and game controllers. With the fast-growing development of sen-
sors and chip technology, some pilot applications have emerged
to evaluate the effectiveness of fog computing. Zhang et al. [34]
investigated a new computing framework for big data sharing
and processing in a collaborative edge environment. The designed
framework was able to improve the response latency by processing
data at edge devices close to the data sources in order to reduce
data transmission to the cloud. Tang et al. [35] presented hierarchi-
cal distributed fog computing in smart cities to support the
integration of massive data generated by infrastructure
components. With the fog-computing technology, anomalous and
hazardous events in cities could be identified and responded to
in different time latencies. Compared with cloud computing, fog
computing has a more flexible architecture and a higher speed
response, as has been demonstrated recently in many works
[36–38]. Although some applications have already been made,
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fog computing is restrictive in many domains due to the limited
computing ability of edge devices. In manufacturing systems,
industrial big data is collected, stored, and managed by the various
industrial servers of an enterprise’s information system; the data is
then uploaded to the remote cloud center for analyzing. For this
reason, industrial data is referred to as ‘‘server-attached.” These
industrial servers have much higher computing abilities than other
commercial edge devices (e.g. Android devices), making it possible
to deploy simple data-processing tasks to the edge nodes in man-
ufacturing systems.

Inspired by previous fog-computing studies, we herein propose
a solution for IBDIS in manufacturing systems in order to address
the aforementioned network traffic load and privacy issues. Using
fog-computing technology, we designed the Fog-IBDIS paradigm,
which moves the algorithms and models to the data generator
instead of transmitting the data to the cloud for analysis. In this
paradigm, the data is processed in the edge servers, which can
extract data directly from the data sources to support data analysis
and optimization in low-time latency. In this way, Fog-IBDIS shares
only the extracted knowledge with the data customer, and thereby
protects data privacy by helping to prevent raw data leakage, since
the data customer can hardly infer the raw data from the processed
data. In addition, the output volume after data processing is at least
two to three orders of magnitude smaller than that of raw data,
which eases the network traffic load. For example, only 1 TB of pro-
cessed data is obtained after correlative analysis with 1 PB of raw
data. Thus, Fog-IBDIS uses fog computing to move big data analysis
to the data source in order to address the problems caused by cloud
computing in IBDIS and improve the data integration efficiency.
3. Fog-IBDIS framework in manufacturing systems

IBDIS manages all the industrial big data emerging from the pro-
duct life-cycle, including product design data, manufacturing data,
marketing data, and so forth. Based on the data source, industrial
big data can be divided into two types: system data and IoT data,
as shown in Fig. 1. Systemdata refers to data generated fromvarious
types of enterprise information systems, such as e-commerce
platforms (EPs), social networking platforms (SNPs), product life-
cycle management (PLM), enterprise resource planning (ERP),
maintenance repair and overhaul (MRO), and supply-chain man-
agement (SCM). These information systems accumulate massive
Fig. 1. Industrial big data for the product life-cycle. CRM: customer relationship managem
maintenance repair and overhaul; PLM: product lifecycle management; RFID: radio freq
product research and development (R&D) data,manufacturing data,
supply-chain data, sales data, customer feedback, and more. IoT
data refers to data captured by sensors, such as radio frequency
identification (RFID) readers and barcode readers. Through sensors
such as these that are embedded in intelligent equipment, an enor-
mous amount of production-process data can be automatically col-
lected regarding the equipment in theworkshop and the state of the
products.

Given that industrial big data is acquired frommultiple sources,
data integration can be classified into three types: single-source
IBDIS (S-IBDIS), cooperative IBDIS (C-IBDIS), and multisystem IBDIS
(M-IBDIS). In S-IBDIS, all the data for analysis comes from a single
data source, such as the MES. In this mode, the data can be easily
integrated through the simple Fog-IBDIS framework. In the C-
IBDIS mode, data is acquired from more than two data sources in
a manufacturing system. The raw data can be aggregated using
data synchronization/asynchronous replication, data federation,
or interface-oriented, through middleware, virtual databases, and
data warehouse technology. In this mode, raw data can be aggre-
gated directly, since the data exchange is secure within the private
industrial Internet of the manufacturing system. M-IBDIS involves
data integration from data sources in different manufacturing sys-
tems, and is suitable for data analysis in the supply chain or for a
multi-plant company. In this mode, raw data is not allowed to be
transmitted between manufacturing systems, in order to protect
data privacy. Therefore, the M-IBDIS model applies the analytical
algorithms to the data sources individually, aggregates the inter-
mediate results, and uploads the final results to the data
customers.

In Fog-IBDIS, the integration process is defined as an IBDIS task,
which is abstracted as a TFG. The TFG is a graph that represents an
IBDIS task described by a number of task nodes including dataset
nodes, operation nodes, and transmission nodes. The dataset node
refers to the virtual data needed in the data processing; it provides
the dataset name, data structure, and feed path. The dataset node
provides a view of the integrated data for data consumers, which
contains the data structure, feed path, and some interpretative
samples. With the data view, a potential data customer can under-
stand the data easily. The operation node is a unit for data process-
ing that defines the input, the output, and the specific algorithms
used in the data analyzing. Industrial big data analyses contain sev-
eral kinds of operation nodes, such as the data-cleaning node, the
data transformation node, the prediction node, and the clustering
ent; ERP: enterprise resource planning; MDC: manufacturing data collecting; MRO:
uency identification; SCM: supply-chain management.
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node. The data transmission node transfers the intermediate
results between two manufacturing systems in order to relay the
operation process. To illustrate how to make use of the TFG, a
sample TFG is shown in Fig. 2 containing three IBDIS tasks. Task
1 contains a dataset node (D) and operation node (O), which is
an S-IBDIS task processing data from a single data source, D1.
The output of the operation node O1 in Task 1 is sent to the
operation node O2, which belongs to Task 2. Task 2 is a C-IBDIS
processing data from two data sources (D1 and D2) in the same
manufacturing system. The output of operation node O2 is
uploaded by Fog-IBDIS to Task 3, which is an M-IBDIS task finished
in another manufacturing system. Hence, the output of Task 2 is
transmitted by the transmission node T1 to Task 3. With the data
provided by T1 and D3, three operation nodes are developed to fin-
ish Task 3. With the TFG, the integration process can be clearly
described through the three kinds of nodes.

In Fog-IBDIS, all tasks are finished by the data owner, and only
the analysis result is uploaded to the data customer; this protects
data privacy and eases the network traffic load. To finish the IBDIS
task, Fog-IBDIS contains one fog server and several fog clients on
the hardware. The fog server helps to control the IBDIS process,
and clients running on the edge nodes of the network execute
the tasks defined in the TFG. As shown in Fig. 3, the fog server first
issues the operation task, Task 1, to the fog client through the
operation instruction I1. This task contains two operation nodes,
O1 and O2, which process datasets from two data sources (output
Fig. 2. A TFG for data integration with Fog-IBDIS. IBDI: industrial big data
integration.

Fig. 3. Schematic diagram of Fog-IBD
of D1 and D2). Next, the processed result is transmitted to the
subsequent fog client through the data flow DF4–T1–DF5. The
fog client in data generator 2 analyzes the data from T1 and D3
according to Task 2, and subsequently uploads the result to the
fog server through the data flow DF6. The fog server then transmits
the analysis result to the data customer. During the analysis, all the
raw data-processing tasks are finished in the fog client, which is
implemented in the data generator company, in order to protect
data privacy. Only the intermediate results are transferred
between the fog clients, in order to ease the network traffic load.

4. The functional modules of Fog-IBDIS

To meet the requirements of fog-computing-based big data
integration, the functional modules (Fig. 4) of Fog-IBDIS are
presented in this section, and include: TFG management,
compilation and running control, the data integration model, the
basic algorithm library, and the management component.

4.1. TFG management

TFG management is the core function of Fog-IBDIS, as it edits
the flow graph of the integration task. This module contains four
parts: dataset node management (DNM), operation node manage-
ment (ONM), transmission node management (TNM), and edge
management (EM). DNM maintains the dataset node in the TFG,
which consists of data structure definition, data formatting, and
feed path definition. Through the DNM module, the data generator
can edit and release the data through a data view, which describes
the information of a dataset in detail. This allows the data to be
easily accessible through the Fog-IBDIS platform; the data
customer can search and take the data for analysis through the
provided data view. The ONM provides the editing, packaging,
and checking functions for operations in IBDIS, such as data clean-
ing, data transformation, analyzing, and so forth. Through the ONM
module, all the operations for an analytical case are packaged into
several nodes by the data customer. Furthermore, all operation
nodes are checked by the data generators to ensure raw data
security. The TNM manages the transmission process in the data
analysis, including data encoding, decoding, uploading, and
offloading. Since all computing tasks are finished by the data
generator, a large analytical case is usually distributed after being
finished by several data generators. To increase transmission
security, the data is encoded as cipher text with private keys dur-
ing transmission. The EM module defines and checks the data
structure that is automatically transferred during two adjacent
nodes to ensure the validity of the TFG.
IS. DF: data flow; I: instruction.



Fig. 4. The functional modules of the Fog-IBDIS platform.
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4.2. Compilation and running control

The Fog-IBDIS platform provides a python application program-
ming interface for compilation and running. All the debug tasks are
finished by the data customer with the sample datasets. After the
debugging, the IBDIS tasks are compiled by the python compiler
and sent to the data generator through the Fog-IBDIS platform.
The compiled files are distributed within several Fog-IBDIS servers
belong to different manufacturing systems, based on the TFG. The
running environment and configuration parameters are deter-
mined and adjusted by the Fog-IBDIS platform.

4.3. Data integration model

The big data integration model defines the transformation of
the data to get it ready for loading into the operation node. The
data items defined in the operation are diverse in terms of data
source and structure. To convert the data for operation, the data
integration model has four layers of components: target data
items, entities, systems, and source data items (Fig. 5).

� Target data item. This contains a collection of data items to
support the specific big data analysis case in the data model.

� Entity. This is used to identify the target data items. All the
data items belonging to an entity are one-to-one correspon-
dent with the entity ID. The data items belong to different
entities are correlated with each other through the entity
relationship chain.

� System. This defines the access path of the data item, includ-
ing the systems managing the data items, the data integration
mode, and so forth. With the system component, the data
item can easily be extracted through the different interfaces
from the information systems.

� Source data item. This defines the source field in the database
and interface. With the source data item, the data integration
unit can accurately pinpoint the location to extract the raw
data.
If the source data items belong to two different domains, the
entity relationship chain should be defined to specify the relation-
ship of these source data items. For example, the data items named
‘‘quality” and ‘‘cycle time” are both the properties of the product
entity. As another example, the data item named ‘‘OEE” belongs
to the ‘‘machine” and the data item name ‘‘quality” belongs to
the ‘‘product.” In the data analysis scenario, the two data items
are correlated together with the entity relationship chain ‘‘product
process route–machine.”

4.4. Basic algorithm library

The basic algorithm library provides the underlying support for
simple data analysis in the data transformation in Fog-IBDIS. Data
customers can invoke and modify the basic algorithm to meet the
requirements of data processing such as outlier analysis, missing
value interpolation, and other functional requirements. Basic
machine learning methods such as neural networks, regression
analysis, support vector machines, and other advanced machine
learning algorithms can be applied in data analysiswith themodule.

4.5. Management component

Themanagement componentensures that the far-edgecomputing
architecture can run effectively in different kinds of environments. In
general, a complete management component contains three main
parts: the context monitor, the resource monitor, and the adaptation
engine. The context monitor and resource monitor are used to
monitor the status information of the devices, including resource
availability and real-time task-executing information. Theadaptation
engine can realize data reduction and system compatibility.

5. Case study

To illustrate the effectiveness of Fog-IBDIS, we present a case
study involving integration of the big data of a commercial



Fig. 5. Data integration model for IBDIS with fog computing. OEE: overall equipment effectiveness; QMS: quality management system.

J. Wang et al. / Engineering 5 (2019) 662–670 667
aircraft-manufacturing group in Shanghai. In this company, one
type of plane is assembled with a sub-assembly manufacturing
system and is designed by the advanced R&D center, which belongs
to two individual companies. During the plane assembly, different
processes have different impacts on the stress of the positioner,
which is a key piece of equipment for fixing and supporting the
plane. The status of a plane can be estimated through an analysis
of the positioner status. In this case, the advanced R&D center
wants to optimize the process route by monitoring the pose defor-
mation of the wing with the assembly processing. This case
requires the pose data (including the position of several key points
on the wing) and the process transaction data (containing the exe-
cution time of each process step). The pose data can be exported
from the manufacturing data collecting (MDC) system belonging
to the sub-assembly manufacturing system, and is the data
generator. The process transaction data belongs to the MES
managed by the planning and scheduling group in the advanced
R&D center, and plays the role of both data generator and data
customer in this case.

5.1. Fog-IBDIS-based data integration for process route optimization

To integrate the data for the process route optimization, a TFG
with two tasks is designed with two dataset nodes, three operation
nodes, and one transmission node (Fig. 6). The first operation node
preprocesses the position of several key points of the wing, includ-
ing data cleaning and transformation. The second operation node
detects abnormal pose deformation by the position analysis of
the key points of the wing. The abnormal data fragments are then
transferred to the third operation node in Task 2 through the Fog-
IBDIS platform. In this operation node, these data fragments are
mapped to the process transaction data in order to diagnose the
root assembly process causing the abnormal pose deformation.

The first operation node O1 preprocesses the pose status of the
wing, which is measured by the force feature of the three joint
points shown in Fig. 7(a). The force data is sensed by the sensors
embedded in the positioner, and is collected by the SCADA system
through open platform communications technology. First, the null
value and abnormal values in the data records are detected and
restored in the data cleaning, as shown in Fig. 7(b). Next, according
to the data integration model, the data items are transformed
through the data cube, which is designed to customize the raw
data into the structure of the target data (data transformation in
business) with operations such as drill-down, roll-up, slice, dice,
and pivot. For example, we have a dataset containing transaction
data about the status of a positioner. The dataset contains records
in three dimensions: machine, field, and time. Each cell (M, F, T) of
the cube contains the value of the field F of the machine M at the
time T. In this example, the z-axis force of the positioners LWA,
LWF, and LWO at time T4 is needed in the big data analysis. The
operation ‘‘dice–slice–slice–roll-up” is designed to obtain the tar-
get data in this case, as shown in Fig. 7(c).

The second operation node O2 detects the abnormal pose defor-
mationof thewingand sends the abnormaldata fragments to Task2.
During the data analysis of the position of the three key points, the
deviation of the wing’s setting angle (described by the E1, E2, and
E3), the deviation of the positive-dihedral angle (described by E4
and E5), and the deviation of the sweep angle (described by E6)
are estimated using the status analysis model (Fig. 7(a)). The abnor-
mal deviation of the wing status is detected by a control chart for
detecting abnormal situations. Data points are regarded as anoma-
lous when errors exceed the upper and lower control limits
(e.g., errorwithin 5%). The unusual data are detected and transferred
to Task 2 through Fog-IBDIS. The deviation data is then mapped to
the third operation node ‘‘O3,” which diagnoses the root cause of
the unusual deviation through a combined analysis of the deviation
data and the assembling process by special experts. As a result, rec-
ommendations for improvement are obtained in order to improve
the assembly process and reduce the degree of pose deformation.

Within this case, Fog-IBDIS manages the industrial big data
emerging from the aircraft-manufacturing system and distributes
the data integration tasks to the fog clients to provide data for anal-
ysis to optimize the process route. As can be seen in Fig. 7(d), the
wing posture has undergone great changes from September 10 to
September 14. It is inferred from the data analysis that this change
is caused by irrationality of the process route: a fixture connection
was removed before the deburring cleaning of the joint hole in the
left wing of the plane. In this case, the volume of the collected raw
data from August 1 to September 30 in 2016 is 1.7 TB, whereas the
volume of the transmitted intermediate results is 160 kB. In the



Fig. 6. The Fog-IBDIS task for process route optimization. The LWF and LWO are the positioners for the left wing.

Fig. 7. Positioner status monitoring and analysis through Fog-IBDIS. (a) Status analysis model; (b) data cleaning; (c) data cube model for data preprocessing; (d) the analyzed
deviation of the three angles. Fwl: the bearing reaction from the body to the left wing; Mfbl: the moment of force around the transverse; Mfst: the moment around the
spanwise; Rlwf: the bearing reaction from the positioner LWF to the left wing; Rlwa: the bearing reaction from the positioner LWA to the left wing; Rlwo: the bearing reaction
from the positioner LWO to the left wing; Ww: the gravity of the left wing; E1, E2, E3: deviation of the wing’s setting angle; E4, E5: the deviation of the positive-dihedral
angle; E6: the deviation of the sweep angle.

668 J. Wang et al. / Engineering 5 (2019) 662–670
data transmission of this case study, the volume of the transmitted
data is only 9.1 � 10�8 of the original data volume, which indicates
that Fog-IBDIS can greatly reduce the volume of transmitted data
to ease the network traffic load.

5.2. Implementation of Fog-IBDIS

In this case, Fog-IBDIS is implemented to integrate industrial
big data. The implementation process (Fig. 8) is divided into five
steps, as follows:

Step 1: model design. In the Fog-IBDIS, the big data integration
model is first described to define the data structure for the trans-
formation. With the data model, all data items for the same analy-
sis subject are linked together with the semantic triples, and the
relationships between the target data items and the raw data items
are defined.
Step 2: TFG design. According to the big data integration model,
all nodes are defined in the TFG to finish the big data integration
and sharing. These nodes are packaged into two tasks, and each
task is programmed with python by the data customer.

Step 3: task debugging. The tasks are compiled and debugged
according to the specific TFG by the data customer with the sample
data instances contained in the data view. The compiled applica-
tions are launched in the fog clients for testing and debugging in
order to verify the design of the TFG and codes through the Fog-
IBDIS platform.

Step 4: task review. After program debugging and revision, the
tasks are submitted to the data generator to obtain permission for
task operation.

Step 5: task execution. After the task review, the tasks are
implemented in the fog clients coordinated by the Fog-IBDIS plat-
form in order to integrate the industrial big data.



Fig. 8. The implementation process of Fog-IBDIS.
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5.3. Discussion

To further demonstrate the effectiveness of Fog-IBDIS, a careful
comparison of Fog-IBDIS and IBDIS with cloud computing is pro-
vided. Fog-IBDIS differs greatly from IBDIS with cloud computing
in terms of the data integration framework and integration perfor-
mance (time latency, data privacy, and network traffic load).

Decentralization. In IBDIS with cloud computing, the data gen-
erated by IoT devices and information systems wait for passive
extraction by the big data center, and all data extraction, transfor-
mation, and loading tasks are completed by the centralized big
data platform. Although the big data center has immense comput-
ing power, it is quite challenging to segregate, index, store, and
clean a large amount of industrial big data. With fog computing,
Fog-IBDIS decentralizes the massive data-processing tasks of an
analytic case into the edge nodes, which effectively relieves the
pressure of a big data platform in manufacturing systems.

Latency. In contrast to cloud computing, fog computing paral-
lelizes data processing at the edge of the network, which satisfies
the requirements of real-time data analysis for industrial control.
With Fog-IBDIS, industrial big data is processed at the generative
side, then transmitted into the cloud side to enable further analy-
sis; this supports data analysis at different levels of time latency.

Data privacy. In a data-sharing service with cloud computing,
the shared data can easily be copied, shared, and secondary traded.
Original data privacy cannot be guaranteed, since the service
shares original data directly. In industry, original data is usually
strictly confidential, and is only allowed to be used within manu-
facturing systems. Unlike the cloud-computing-based IBDIS, which
transfers all raw data to the cloud data center, Fog-IBDIS only
transmits the intermediate results to the next fog client and
uploads the analytical results to the data customer. In addition,
Fog-IBDIS introduces the task review mechanism, which allows
the data generator to check the raw data security; this protects
the data privacy in the data integration.
Network traffic load. In cloud computing, all raw data are
transmitted to the big data center, which is equipped with a dis-
tributed storage platform such as a Hadoop distributed file system.
Some of the raw data in manufacturing systems is very large in
size, such as massive images scanned by laser scanning, and a great
deal of bandwidth is required to upload all these images. With Fog-
IBDIS, only the intermediate processed results are selected and
uploaded through the network. The size of most of the raw data
is reduced through data cleaning, resampling, and transformation,
so the cost of network communication is effectively reduced.
Moreover, unlike the batch processing of cloud computing, the
decentralization that occurs as Fog-IBDIS uploads data to different
data points reduces the peak load of the networks.

6. Conclusions

This paper investigates Fog-IBDIS, a big data integration and
sharing framework with fog computing, from three aspects: its
operation principle, functional modules, and implementation.
Unlike previous big data integration studies with cloud computing,
this study constructs the Fog-IBDIS platform using fog computing,
which splits the IBDIS task into several sub-tasks run by the data
generators. Regarding data processing, all raw datasets are prepro-
cessed and analyzed by the data owners to protect the raw data
privacy. In addition, Fog-IBDIS applies the data processing in the
fog clients within the manufacturing systems, thereby changing
the centralized data-processing mode into distributed task execu-
tion. Accordingly, only the analyzed results are transferred
between the distributed fog clients, which reduces the volume of
transmitted data and eases the network traffic load. To the best
of our knowledge, this is the first attempt to combine IBDIS with
fog-computing technology in manufacturing systems.

In future research, we will address industrial big data analysis
with fog computing and the control of edge devices in manufactur-
ing systems.
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