
Engineering 5 (2019) 828–832
Contents lists available at ScienceDirect

Engineering

journal homepage: www.elsevier .com/ locate/eng
Views & Comments
Environmental Information Systems: Paving the Path for Digitally
Facilitated Water Management (Water 4.0)
https://doi.org/10.1016/j.eng.2019.08.002
2095-8099/� 2019 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Olaf Kolditz a,b,e, Karsten Rink a, Erik Nixdorf a, Thomas Fischer a, Lars Bilke a, Dmitri Naumov a,
Zhenliang Liao c,e, Tianxiang Yue d,e

aDepartment of Environmental Informatics, Helmholtz Center for Environmental Research (UFZ), Leipzig 04318, Germany
bApplied Environmental Systems Analysis, Technische Universität Dresden, Dresden 01069, Germany
cUN Environment–Tongji Institute of Environment for Sustainable Development & College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
dDepartment for Ecological and Environmental Informatics, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 1000101, China
e Sino-German Research Center for Environmental Information Science (RCEIS), Leipzig 04318, Germany
1. Introduction

The availability of reliable information describing our natural
and anthropogenic environment—and its changes in particular—is
crucial for understanding the complexity of structures and pro-
cesses within environmental systems. Modern remote sensing
and monitoring methods provide an increasing amount of environ-
mental data that can be used for a variety of management purposes
[1,2]. In the past, geographical information systems (GISs) were
widely used to collect and present data within a geographical con-
text for various purposes, particularly in order to combine informa-
tion from different fields, such as the environment and health (see
Refs. [3,4] for two examples). In addition, web-based tools have
been linked to GIS methods for the online availability of data [5].
Attempts to build information systems for various purposes are
not new; for example, in the 1990s, so-called expert systems were
designed for the management of environmental data [6]. Mainly
driven by comprehensive databases, these expert systems were
hampered by missing concepts and tools for collaborative work,
as well as by technical restrictions at that time.

General research on environmental information systems (EISs)
started about a decade ago, underpinned by political commitment
such as the request for shared EIS by the European Commission,
which aimed to facilitate regular environmental assessments and
state-of-the-environment reporting [7]. Gu et al. [8] proposed a vir-
tual environment to support decision-making processes based on
Water Flow Model for Lake Catchment (WATLAC) lake simulation
results. Melville [9] presented a research agenda on information
systems for environmental sustainability scenarios. More recent
works deal with the development of EIS, such as for precision farm-
ing in agriculture [10], the linking of terrestrial andmarine environ-
ments along coastal systems [11], the economy [12], and
investigations on the effect of information uncertainty [13].

Recently, a number of works have appeared concerning exten-
sions of the EIS concept to address socioeconomic aspects and data
policies [14]. Jung E and Jung EJ [15] introduced an EIS for
decision-making and assessing the impact of natural disasters in
Korea. They integrated the EIS through a service-oriented architec-
ture (SOA) in order to use the EIS approach on different scales, such
as nationwide and in selected regions. Moreover, a number of new
comprehensive works on EIS fundamentals have been published
2018 [16–18], underpinning the growing overarching awareness
of this topic within the scientific community.

Most of the approaches mentioned above extend standard GIS
functionality by adding approaches from data management or
information visualization. However, this type of approach ignores
the fact that complex hydrological systems consist of transient
three-dimensional (3D) processes.

In contrast, employing virtual geographic environments (VGEs)
for data exploration, analysis, and decision-making takes the com-
plex nature of the data into account. Su et al. [19] developed a real-
time, dynamic, and interactive 3D visualization framework for
large-scale marine water environmental data. The utilization of
virtual reality (VR) methods to render environmental processes
in a more realistic geographical context [20,21] is a logical conclu-
sion with respect to the nature of the hydrological or atmospheric
input data, the multi-variate nature of the parameter space, and
the need to explore and understand both observational and simu-
lation data in order to design water management concepts. In this
context, scientific visualization plays an important role, particu-
larly for data validation, when integrating and combining hetero-
geneous information from various data sources [22–24]. VGEs
can be applied for operational aspects in hydrology and water
resources management such as water scarcity identification [25],
early flood warnings [26], and water pollution control [27].

The ongoing big data debate is focusing attention on the use of
information science in many domains, including environmental
science and technology. Big data and the associated Industry 4.0
paradigm are, therefore, accelerating the process of building mean-
ingful information systems, and are also invoking concepts such as
machine learning and artificial intelligence in order to further
improve the value of data.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eng.2019.08.002&domain=pdf
https://doi.org/10.1016/j.eng.2019.08.002
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.eng.2019.08.002
http://www.sciencedirect.com/science/journal/20958099
http://www.elsevier.com/locate/eng


O. Kolditz et al. / Engineering 5 (2019) 828–832 829
The concept of EIS goes far beyond the established use of GIS to
present existing data in a geographical context. The EIS concept
includes the ability to predict changes within our environment
using a continuous data stream for model validation. In addition
to conceptual work on EIS, the technical development of tailored
workflows for the optimal usability of available environmental
data for a specific purpose is of great importance.
2. Methodology

The development of a corresponding ‘‘Water 4.0” framework
[28,29] is a somewhat new topic that has been presented at
conferences in both information and environmental sciences
[30,31].

The present work contributes to both ① further developing the
concept of cyber–physical systems (CPSs) and ② demonstrating
their application for two challenging water management case
studies in the Chaohu Lake and Poyang Lake watershed within
Sino-German cooperation projects [32,33].

The concept for digitization in water resources management is
illustrated in Fig. 1. The real water system is represented by a so-
called ‘‘digital twin”—the virtual water system (VWS)—which must
contain all important characteristics and features of the real sys-
tem, depending on the specific purpose for application. As an
example for the first case study (Section 3.1), the VWS includes
the existing infrastructure of the water supply and wastewater
treatment. In order to obtain ongoing information, it is essential
for the virtual system to include interfaces to real-time monitoring
and remote-sensing information. The VWS needs two main
capacities: algorithms for ① continuous data integration (includ-
ing online data) and for ② modeling of hydrological processes
(quantity and quality) to forecast the behavior of the water system.
This includes both short- and long-term predictive algorithms for
fast and slow processes, respectively, such as the sewer network,
flooding, and groundwater. To be specific, the VWS needs to repre-
sent feedback between surface and subsurface aquatic compart-
ments in order to be a meaningful digital twin for both
operational and long-term water management purposes. Auto-
mated control of water infrastructure is one of the practical chal-
lenges of the Water 4.0 concepts. VWSs, which capture all the
important features of a real water system, are an important prereq-
uisite to achieve this goal.

Scientific visualization plays a key role in the VWS concept dur-
ing the integration of large amounts of heterogeneous
Fig. 1. Concept of building an EIS for water-supply purposes. ‘‘>” means affecting.
environmental data within a realistic geographical context [22],
and when addressing aspects of uncertainty in both data and
models [34].
3. Demonstration examples

In order to illustrate the methodology introduced above, we
present two demonstration examples dealing with water resources
management: ① the case of Chaohu Lake, involving water supply
for a fast growing city, and ② the case of Poyang Lake, involving
the safeguarding aquatic ecosystems.

3.1. Chaohu EIS

The EIS for Chaohu Lake (Chaohu EIS) is dedicated to water sup-
ply purposes, as the city fully depends on Chaohu Lake as its main
water resource. The challenge for this EIS was to combine data and
processes for three aquatic compartments: the lake, the urban
water system, and the groundwater. Fig. 2 [32] depicts the corre-
sponding workflow for data collection from the available monitor-
ing devices. Data integration includes both hardware
(SensoMastery [35]) and software components (the AL.VIS� [36]
web interface for data visualization). The entire workflow is embed-
ded into a 3D VR environmentyy [37] (OpenGeoSys DataExplorer,
Fig. 3 [32]).

Visualization is an important tool for realizing EISs. The struc-
ture and complexity of the data requires a realistic geographical
context and the possibility for interactive data exploration
[38,39]. The final product is built using Unity [40], to ensure a fully
functional, interactive, and platform-independent application for
both personal computers and VR environments such as head-
mounted displays or video walls. Detailed information on the
Chaohu EIS can be found in Ref. [32].

3.2. Poyang EIS

The EIS concept is very flexible for addressing several aspects of
water management at different scales. A prototype of an EIS for
Poyang Lake (Poyang EIS) was developed in order to represent
hydrological processes in the Poyang Lake Basin, such as the
seasonal variations of the lake area due to the complex runoff-
generation processes in the catchment and the interaction with
the water-level dynamics of the Yangtze River (Fig. 4) [41].

Forming a highly dynamic lake–river–wetland system of unique
size, Poyang Lake hosts exceptionally high biodiversity and pro-
vides a wide range of habitats supporting species that include rare
migratory birds [42,43]. As a part of the lower Yangtze River Basin,
the lake’s aquatic ecosystems are very sensitive to the water-level
changes of the river itself. Analyzing the lake’s resilience has
become very important with regard to large water construction
measures along the Yangtze River, such as the Three Gorges Dam
or the South-to-North Water Diversion Project. High-precision EISs
can be used for both planning purposes and environmental impact
assessments. The Poyang EIS integrates hydrometrical data on
water quality and quantity from gauging stations in the river net-
work, numerical model results on the water level and flow charac-
teristics of the surface water body and the interacting groundwater
in the wetlands, and remote-sensing-derived hydrological infor-
mation into one system for the scale of the entire Poyang Lake
Basin (162 225 km2). More information on the Poyang EIS can be
found in Refs. [41,44].
y From AMC—Analytik & Messtechnik GmbH Chemnitz.
� From WISUTEC Umwelttechnik GmbH.
yy From Helmholtz Center for Environmental Research (UFZ).



Fig. 2. Chaohu EIS data workflow. Reproduced from Ref. [32] with permission of Springer Nature Switzerland AG, � 2019.

Fig. 3. Chaohu EIS: showing Chaohu City with its infrastructure; for given data
points online photos and simulation results can be interactively displayed.
Reproduced from Ref. [32] with permission of Springer Nature Switzerland AG,
� 2019.

Fig. 4. Poyang EIS: showing water quality aspects (colored water body) as well as
observation and measurement locations (colored spheres) [41].

Fig. 5. EIS perspectives. OGS: OpenGeoSys.
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4. Concluding remarks and perspectives

Water 4.0 mainly focuses on the automatic operational man-
agement of water systems for the control and optimization of
existing infrastructures. The realization of this concept is still in
its infancy. Practical case studies are important in order to prove
and further advance the general concept. The success of Water
4.0 concepts will depend not only on progress in computer
sciences, but also—and mainly—on the involvement of practition-
ers, stakeholders, and policy makers.

The concept of EISs relies on Water 4.0, but goes one step fur-
ther concerning the predictability of hydrological environments
by including established modeling tools as well.

Fig. 5 depicts a perspective from the viewpoint of the analysis
platform OpenGeoSys [45], where workflows have been imple-
mented for various environmental applications, including urban
energy infrastructures (i.e., geothermal systems [46–48]), hydro-
logical applications [49,50], and waste management [51]. Future
applications will benefit from the exploration of modern concepts
from information science and technologies, such as visual data
analytics, machine learning methods, and artificial intelligence.

New developments in computer hardware need to be taken into
account in order to use the available computational power for



O. Kolditz et al. / Engineering 5 (2019) 828–832 831
more refined and precise process simulations (e.g., exascale com-
puting). As such, the development path needs to be guided by both
development- and application-oriented principles.

Combining environmental sciences with information technol-
ogy—through EIS and Water 4.0 concepts and particularly through
application studies—will further pave the way for digitally medi-
ated water management, and is a promising new research field
for the Sino-German cooperation in environmental research [52].
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