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Brain encoding and decoding via functional magnetic resonance imaging (fMRI) are two important
aspects of visual perception neuroscience. Although previous researchers have made significant advances
in brain encoding and decoding models, existing methods still require improvement using advanced
machine learning techniques. For example, traditional methods usually build the encoding and decoding
models separately, and are prone to overfitting on a small dataset. In fact, effectively unifying the encod-
ing and decoding procedures may allow for more accurate predictions. In this paper, we first review the
existing encoding and decoding methods and discuss the potential advantages of a ‘‘bidirectional” mod-
eling strategy. Next, we show that there are correspondences between deep neural networks and human
visual streams in terms of the architecture and computational rules. Furthermore, deep generative mod-
els (e.g., variational autoencoders (VAEs) and generative adversarial networks (GANs)) have produced
promising results in studies on brain encoding and decoding. Finally, we propose that the dual learning
method, which was originally designed for machine translation tasks, could help to improve the perfor-
mance of encoding and decoding models by leveraging large-scale unpaired data.

� 2019 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The relationship between human visual experience and the
evoked neural activity is central to the field of computational neu-
roscience [1,2]. Brain encoding and decoding via functional mag-
netic resonance imaging (fMRI) are important in gaining an
understanding of the visual perception system [3–5]. An encoding
model attempts to predict brain response based on a given visual
stimulus [6,7], whereas a decoding model attempts to predict the
corresponding visual stimulus by analyzing a given brain response
[8–22]. Brain encoding and decoding (Fig. 1) have thus become two
significant ways of promoting the development of sensory neuro-
science because they provide many insights into brain function.

1.1. Encoding models

In the previous literature, most encoding models have been
established based on specific computational rules. Neuroscientists
believe that these computational rules may be the mathematical
basis for the brain’s response to specific visual stimuli. For exam-
ple, Kay et al. [1] used pyramid-shaped Gabor wavelet filters to
build an encoding model. Based on this encoding model, the
authors successfully identified the preferred natural images for
given human brain activities. Later, Kay et al. [6] further proposed
a two-stage cascade encoding model based on the well-established
local oriented filters, divisive normalization, compressive spatial
summation, and variance-like nonlinearity. Recently, St-Yves and
Naselaris [7] constructed a feature-weighted receptive field model
based on the intermediate feature maps of a pre-trained deep neu-
ral network (DNN); this model can be used to predict the voxel
response and study the shape of the receptive field of each voxel.
Furthermore, Zeidman et al. [23] built a Bayesian population recep-
tive field (pRF) model for interpretable brain encoding studies. In
recent years, DNNs have achieved great success in computer vision,
and researchers have begun to use DNNs to construct more com-
plex brain encoding models [7,20,24]. In addition to encoding mod-
els for visual information, researchers have studied how semantic
information is expressed in the brain. For example, Huth et al.
[25] established the mapping relationship between text semantic
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Fig. 1. Brain encoding and decoding in fMRI. The encoding model attempts to
predict brain responses based on the presented visual stimuli, while the decoding
model attempts to infer the corresponding visual stimuli by analyzing the observed
brain responses. In practice, encoding and decoding models should not be seen as
mutually exclusive. Effectively unifying encoding and decoding procedures may
permit more accurate predictions and facilitate our understanding of information
representation in the human brain.
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vectors and cerebral cortex activities, thereby providing a detailed
semantic map of the cerebral cortex.

1.2. Decoding models

Previous studies have demonstrated the feasibility of decoding
the identity of binary contrast patterns [12–14], handwritten char-
acters [15,16], human facial images [17–19], natural picture/video
stimuli [2,20], and dreams [12,21] from the corresponding brain
activation patterns. For example, Miyawaki et al. [12] constructed
a multiscale neural decoding model to reconstruct perceived bin-
ary contrast patterns from brain responses. Schoenmakers et al.
[15] proposed a linear decoding model to reconstruct handwritten
characters from brain responses. Güçlütürk et al. [19] proposed the
combination of probabilistic inference with adversarial training for
reconstructions of perceived faces from brain responses. Horikawa
and Kamitani [2] showed that the hierarchical features of visual
stimuli calculated by a computer vision model could be predicted
by utilizing the responses of multiple brain regions. These findings
indicate that there is a close relationship between the hierarchical
visual cortex and the complex visual features obtained by the com-
puter vision model. Furthermore, Wen et al. [20] proposed a
dynamic neural decoding method based on deep learning that
can reconstruct the dynamic visual scenes perceived by a human
and predict their semantic labels. Horikawa and Kamitani [21]
even showed that brain activity could be used to predict the
objects in humans’ dreams.

Most of the aforementioned decoding studies are based on the
multi-voxel pattern analysis (MVPA) method [8]. However, brain
connectivity patterns are also a key feature of the brain state and
can be used for brain decoding. Previous decoding studies [26–
30] have shown that brain connectivity information can been uti-
lized as distinguishing features in decoding procedures. For exam-
ple, by employing brain connectivity information in brain
decoding, Yargholi and Hossein-Zadeh [29] were able to success-
fully reconstruct two handwritten digits—namely, 6 and 9—from
human brain activities. Manning et al. [30] proposed a probabilistic
model for extracting dynamic functional connectivity patterns in
brain activity. The proposed functional connectivity patterns can
be used in brain decoding studies.

1.3. Hybrid encoding–decoding with bidirectional models

Although recent developments in brain encoding and decoding
[3–21,29,31–33] have shown promising results, many challenges
remain in constructing an accurate decoding model in order to
reconstruct the corresponding visual stimuli from fMRI data.
From the Bayesian machine learning perspective, an encoding
model can be acquired with a generative model that accounts
for the measured brain activity. When this encoding model is
combined with prior knowledge about the stimuli, a posterior
probability distribution of the stimuli—that is, a predictive distri-
bution for decoding—could be obtained, given a brain activity pat-
tern. Therefore, encoding and decoding models should not be
seen as mutually exclusive. Effectively unifying encoding and
decoding procedures may permit accurate predictions and facili-
tate an understanding of information representation in the
human brain [13,34]. For example, Fujiwara et al. [13] proposed
a ‘‘bidirectional” approach to visual image reconstruction, in
which a set of latent variables was assumed to relate image pixels
and fMRI voxels; this approach allowed predictions for both
encoding and decoding to be generated. These scholars employed
the Bayesian canonical correlation analysis (BCCA) framework,
which computed multiple correspondences, via latent variables,
between image pixels and fMRI voxels. Since the pixel weights
for each latent variable can be thought to define an image basis,
training the BCCA model using measured data leads to automatic
extraction of image bases. Although it is premature to speculate
on functional implications of the estimated image bases, this
data-driven ‘‘bidirectional” approach could be extended to dis-
cover the modular architecture of the brain in representing com-
plex natural stimuli, behavior, and mental experience defined in
high-dimensional space.
2. Correspondence between DNNs and the human visual system

Deep learning [35,36] is a large class of machine learning meth-
ods that extract hierarchical representations from input data. The
architectures of DNN were first inspired by the structure and com-
putational principles of the biological nervous system [37].
Recently, DNN-based deep learning methods have achieved great
success in image recognition, speech recognition, natural language
understanding, and other aspects. In terms of architecture, the
hierarchical layers of DNNs are very similar to those of the ventral
visual system of the human brain [7,35,38] (Fig. 2). In terms of
function, existing research on neural encoding and decoding based
on deep learning has shown that the shallow representation of
DNN is similar to the function of the primary visual area, while
the deep representation of DNN is similar to the back end of the
ventral visual system [2,24,39,40].

Humans can perceive complex objects quickly and accurately
through the ventral visual stream, a system of interconnected
brain regions that processes increasingly complex features in
hierarchical structures [41,42,43]. However, the automated dis-
covery of early visual concepts from visual images with no super-
vised information is a major open challenge in machine
perception research. On the one hand, it would be helpful or
the representations extracted from the image to perform well in
real-world tasks. On the other hand, it would be desirable to be
able to interpret these representations, and for them to be useful
for tasks beyond those that are explicit in their initial design.
From a traditional standpoint, it is difficult to use a pre-trained
DNN model to learn such representations from visual images,
because the semantic meaning of each dimensionality in the rep-
resentation vector automatically extracted from the input image
by that DNN model is unknown. Without disentangled represen-
tations, it is difficult to interpret these representations across dif-
ferent tasks. Fortunately, Higgins et al. [44] have shown that
specially designed deep generative models are capable of learning
disentangled representations.



Fig. 2. The ventral visual system and a deep convolutional neural network (CNN). (a) Forward and backward projections between four Brodmann areas (V1, V2, V4, and IT);
(b) an illustration of a simple feedforward deep CNN, whose hierarchical structure is used to simulate the hierarchical representation of the ventral visual system. LGN: lateral
geniculate nucleus. (a) Reproduced from Ref. [38] with permission of Elsevier, � 2014; (b) reproduced from Ref. [7] with permission of Elsevier, � 2017.
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3. Brain decoding with deep generative models

A promising research direction involves the integration of deep
learning methods into brain decoding research. Deep generative
models such as variational autoencoders (VAEs) [45,46] and
generative adversarial networks (GANs) [47] have achieved great
success in the field of image generation. An increasing amount of
attention has recently been focused on research on visual image
reconstruction using deep generative models [19,31–33,48,49].

3.1. VAE-based methods

VAEs—which were originally presented in Refs. [45,46]—are a
probabilistic extension of the autoencoder model. A VAE has a
bottom-up encoding network and a top-down decoding network.
These two networks are jointly trained to maximize the lower
bound of the data likelihood, thereby reformulating the autoen-
coder model as a variational inference problem. Recent works have
demonstrated that VAE-based models are capable of learning dis-
entangled representations that correspond to distinct factors of
variation in the input data [43,50,51]. This is very important for
brain encoding and decoding tasks, since some of the visual con-
cepts learned by VAE-based models are also perceived by the
human brain. Inspired by this fact researchers have explored the
use of VAE-based models in image reconstruction from brain activ-
ities [31,32].

For example, Du et al. [31] proposed a deep generative multi-
view model (DGMM) for reconstructing the perceived images from
brain fMRI activities (Fig. 3). The DGMM can be viewed as a nonlin-
ear extension of the linear BCCA. Under the DGMM framework, the
encoding and decoding procedures are simultaneously formulated
by two distinct generative models:

phðXjZÞ ¼
YN
i¼1

N xi lx zið Þ; diag r2
x zið Þ� ���� � ð1Þ
p Y jZð Þ ¼
YN
i¼1

N yijBTzi;w
� �

ð2Þ

where N denotes the normal distribution, X 2 RDx�N denotes the
visual images, Y 2 RDy�N denotes the evoked fMRI activities,
phðXjZÞ is the likelihood function of the visual images with neural
network parameters h, p yjzð Þ is the likelihood function of the evoked
fMRI activities, w denotes the full covariance matrix, B denotes the
projection weights of the fMRI activities, and Z 2 RDz�N denotes the
shared latent variables between the visual images and the evoked
fMRI activities. The lx and r2

x denote the mean and covariance of
that normal distribution, respectively, and they are obtained by dif-
ferent nonlinear transformations with respect to the latent vari-
ables. The training set consists of N paired samples, which can be
denoted by x1; y1ð Þ; :::; xn; ynð Þ, where xi 2 RDx and yi 2 RDy for
i ¼ 1; :::; N. Specifically, the DGMM uses a DNN-based generative
process to model the distribution of visual images, while using a
sparse linear generative process to model the distribution of brain
response data. On the one hand, the DNN used here can effectively
capture the hierarchical features of the visual image, which are sim-
ilar to the structure of the ventral visual system of the human brain
[2,24,39,40]. On the other hand, the sparse linear generative model
used here not only conforms to the sparse expression principle of
the human brain, but also avoids overfitting of brain response data
[52]. Note that these two generative processes share the same
latent variables. Therefore, in the test phase, the use of these pro-
cesses makes it possible to infer the corresponding visual image
from the brain response through the shared latent variables. In fact,
the DGMM framework can capture ‘‘bidirectional” mapping rela-
tionships between the visual images and the corresponding fMRI
activities. Thanks to its autoencoding variational Bayesian architec-
ture, the DGMM can be optimized efficiently by means of mean-
field variational inference, which is similar to the classical VAE solu-
tion. Compared with non-probabilistic deep multi-view learning



Fig. 3. Illustration of the deep generative multi-view framework for neural decoding. (a) Model training: view-specific generative models are used for data generation;
specifically, a DNN is adopted to model visual images, while a linear regression model is used to model brain activities. (b) Image reconstruction: brain activities that are
independent of those used for training are decoded into visual images.
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methods, the DGMM’s Bayesian framework makes it naturally more
flexible and adaptive.

3.2. GAN-based methods

GANs were first proposed in Ref. [47]. The basic GAN is an unsu-
pervised model that generates images from a noise vector. The idea
of adversarial training comes from game theory, in which two
competitors compete in order to make progress together. The typi-
cal configuration of a GAN includes a generator and a discrimina-
tor. The task of the generator is to synthesize images from noise
in order to deceive the discriminator into believing that the syn-
thesized images are real-world scenes. Meanwhile, the discrimina-
tor attempts to distinguish between the synthesized data and real
data. When the Nash equilibrium is reached, the generator learns
the distribution of real-world images, and the discriminator is sen-
sitive to capturing the difference between real and fake data. GANs
have been widely used in various applications, including image
generation [53], image-to-image translation [54], and text-to-
image synthesis [55,56].

Unlike a VAE, a GAN is a likelihood-free model—that is, it does
not make any prior assumptions regarding the data distribution,
and the data distribution is totally learned through adversarial
training. This is a favorable characteristic in neural encoding and
decoding tasks. A GAN often requires exact semantic information
flow in its generator and discriminator. However, the useful
semantic information in the blood-oxygen-level-dependent
(BOLD) signal is merged deep in noise, which is a great challenge
for model training. Recent brain decoding research [19] has pro-
posed the combination of probabilistic inference with adversarial
training for the reconstruction of perceived faces from brain activa-
tions (Fig. 4). Assume that x 2 Rh�w�c is the visual image, z 2 Rp is
its latent features, y 2 Rq is the corresponding brain response, and
u 2 Rh�w�c ! Rp is a latent feature model such that z ¼ u xð Þ and
x ¼ u�1 zð Þ. Then, the perceived visual images can be reconstructed
from brain responses by means of the following equation:

x̂ ¼ u�1 argmax
z

p zjyð Þ
	 


ð3Þ

where p zjyð Þ is the posterior distribution of the latent variables.
Eq. (3) can be reformulated through Bayes’ theorem:

x̂ ¼ u�1 argmax
z

p yjzð Þp zð Þ½ �
� �

ð4Þ

where p yjzð Þ is the likelihood function and p zð Þ is the prior distribu-
tion of the latent variables. The authors first intuitively decode the
observed brain responses to the latent features with maximum a
posteriori estimation. Next, they generate the perceived images
according to the decoded latent features using adversarial learning.
This two-step brain decoding method can accurately generate
reconstructions of perceived faces from brain responses. More
recently, researchers have attempted to reconstruct natural images
from measured fMRI signals [33,48,49] by utilizing GANs that have
been pre-trained on large-scale image datasets.

4. Improving brain encoding and decoding with dual learning

Data-driven brain encoding and decoding methods often
require the acquisition of a large number of paired (stimulus-
response) data instances in order to train a model that is cus-
tomized to an individual subject. In many encoding and decoding
studies, however, it is possible to gather a few thousand noisy
paired data instances—at most—from a single subject. To improve
the generalization ability of the encoding and decoding models, it
is therefore necessary to make good use of large-scale unpaired
data instances (e.g., visual images).

Inspired by recently proposed dual learning for machine trans-
lation [57,58], we suggest that it is possible to train encoding and



Fig. 4. Illustration of deep adversarial neural decoding. By combining probabilistic inference with adversarial learning, this method can clearly reconstruct the corresponding
image of a face from brain activity. PCA: principal component analysis. Reproduced from Ref. [19] with permission of Neural Information Processing Systems Foundation, Inc.,
� 2017.

Fig. 5. Improving brain encoding and decoding with dual learning. Dual loss measured over unpaired data (either visual images or brain responses) generates informative
feedback to train the bidirectional mapping model. Under this dual learning framework, it is possible to leverage large-scale unpaired data to improve the models’
generalization ability.
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decoding models simultaneously by minimizing the reconstruction
loss resulting from the bidirectional mapping model. The encoding
and decoding models represent a primal-dual pair and form a
closed loop, allowing the application of dual learning (Fig. 5).
Specifically, the reconstruction loss measured over unpaired data
(e.g., visual images) would generate informative feedback to train
the bidirectional mapping model. Under this dual learning frame-
work, it is possible to leverage large-scale unpaired visual images
to improve the generalization ability of the encoding and decoding
models. In fact, dual learning is a general framework for learning
the bidirectional mappings from one data domain Md to another
data domain Nd [59,60]. For Md ? Nd, the goal is to learn an enco-
der mapping E such that the distribution E(Md) is indistinguishable
from the distribution Nd using an adversarial loss. Similarly, for
Nd ?Md, the goal is to learn a decoder mapping D such that the
distribution D(Nd) is indistinguishable from the distribution Md

using another adversarial loss. In particular, for the paired data,
it is possible to combine these two adversarial losses and the cycle
consistency losses (dual losses) to push D[E(Md)] �Md and
E[D(Nd)] � Nd.
5. Conclusions

In conclusion, brain encoding and decoding are central to the
field of computational neuroscience and have the potential to cre-
ate better brain-machine interfaces. The architecture and compu-
tational rules of DNNs share some similarity with human visual
streams. The use of deep generative models (e.g., VAEs and GANs)
in brain encoding and decoding studies holds promise for provid-
ing deeper insight into relationships between human visual expe-
rience and the evoked neural activity. By leveraging large-scale
unpaired data, dual learning is expected to play an important role
in developing neural encoding and decoding models.
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