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Safe, efficient, and sustainable operations and control are primary objectives in industrial manufacturing
processes. State-of-the-art technologies heavily rely on human intervention, thereby showing apparent
limitations in practice. The burgeoning era of big data is influencing the process industries tremendously,
providing unprecedented opportunities to achieve smart manufacturing. This kind of manufacturing
requires machines to not only be capable of relieving humans from intensive physical work, but also
be effective in taking on intellectual labor and even producing innovations on their own. To attain this
goal, data analytics and machine learning are indispensable. In this paper, we review recent advances
in data analytics and machine learning applied to the monitoring, control, and optimization of industrial
processes, paying particular attention to the interpretability and functionality of machine learning mod-
els. By analyzing the gap between practical requirements and the current research status, promising
future research directions are identified.
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1. Introduction

Process industries are playing a dominating role in promoting
the growth of the global economy and safeguarding social benefits.
This is demonstrated by the fact that the list of the world’s top 500
enterprises includes many process industrial companies such as
Sinopec, Shell, and ExxonMobil, to name just a few. With the devel-
opment of chemical engineering, equipment manufacturing, and
information technology, the spatial scale and functional complexi-
ty of production processes in modern process industries are
increasing rapidly. This trend also gives rise to significant chal-
lenges for optimal and safe operations at different levels. At the
lower level of control, due to dense connections between various
plants and processes, multi-loop and multiscale coupling phenom-
ena commonly exist, presenting direct obstacles to the efficient
design of plant-wide control strategies. Furthermore, because pro-
cesses tend to be exposed to disturbances and fault sources, which
are difficult to take into account in the design phase, the risk of
abnormal events increases enormously. At the higher level of
scheduling and planning, decisions must be made in a real-time
and flexible manner in response to varying factors in the external
environment; such decisions are imperative to save operational
costs and improve economic profits under increasing global
competition.

To meet stringent requirements on safety, efficiency, and sus-
tainability in modern process industries, cutting-edge technologies
and innovations for smart manufacturing are urgently needed.
These needs concurrently present both challenges and opportuni-
ties for the so-called Fourth Industrial Revolution, which is also
known as Industry 4.0. The Third Industrial Revolution, which is
now approaching its end, arose from the development of informa-
tion technology, whereas the prosperity of process industries in the
past 30 years is largely due to the wide application of automatic
control strategies. In the presently occurring Fourth Industrial
Revolution, it has been commonly recognized that machines
should not only be capable of relieving humans from intensive
physical work—which was a key focus of preceding industrial rev-
olutions—but also be effective in taking on intellectual labor and
even producing innovations on their own. In process industries,
all manufacturing devices and processes should be ‘‘smart” so that,
as a whole, they can intelligently sense the environment, discover
new knowledge, and make rational decisions. Furthermore,
machine intelligence could be classified into lower-level
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intelligence and higher-level intelligence, where lower-level intel-
ligence would be able to functionally resemble humans, while
higher-level intelligence would go well beyond the human level,
as an ultimate goal to continually pursue in future.

A salient feature of the Fourth Industrial Revolution is the
explosive availability of data, which has penetrated nearly all dis-
ciplines and motivated renewed inspections of traditional method-
ologies for problem-solving. As useful tools to model, interpret,
process, and utilize data, and eventually achieve machine intelli-
gence, data analytics and machine learning have been well estab-
lished in the past decades, and have also played a central role in
continually pushing beyond traditional boundaries in process sys-
tems engineering. The earliest success can be traced back to the
late 1980s, arising from the gigantic upsurge of neural networks
and back-propagation algorithms [1,2]. Later, statistical learning
approaches, including principal component analysis (PCA), partial
least squares (PLSs), and support vector machines (SVMs) have
received increasing attention thanks to their clear statistical inter-
pretations, ease of model training, and desirable capabilities in
handling small sample problems. These have been primarily
applied to descriptive modeling tasks, including multivariate sta-
tistical process monitoring (MSPM) and soft sensing. Due to the
increasing power of machine learning, data information can be
leveraged effectively, resulting in significant improvements based
upon generic system identification techniques [3].

The current era of big data has witnessed a much broader spec-
trum of the application of data analytics and machine learning in
process industries. As depicted in Fig. 1, these methods penetrate
into various hierarchies in process industries, in terms of both pas-
sive applications in low-level control loops such as process moni-
toring and soft sensing, and active applications such as optimal
control and high-level decision-making [4]. The former aims to
assist industrial practitioners to better observe and manipulate
the process and identify variations of importance, without straight-
forwardly influencing processes. In contrast, decisions obtained
through active applications exert a direct effect on industrial
processes.

In this work, we seek to revisit recent advances, point to rele-
vant literature, and offer our views on future research directions.
We do not intend to provide a systematic and thorough literature
review of versatile methodologies; rather, we concentrate on two
issues. For passive applications, the literature review provided here
is streamlined by a focus on the interpretability of data analytics
and machine learning models—that is, the physical meanings
behind models and their correspondence with our task-
dependent understanding of processes. As for active applications,
Fig. 1. Hierarchical applications of data analytics and machine learning in process
industries.
a focal point is the new functionality of data analytics and machine
learning, which refers to the relationships or phenomena that
machine learning models aim to describe. By analyzing bottlenecks
in current research progress, we point out some promising direc-
tions for future investigations.

The outline of this article is as follows. In Sections 2 and 3, we
revisit representative data-driven methods with passive applica-
tions (process monitoring and soft sensing) and active applications
(optimal control and high-level decision-making), respectively. In
Section 4, an outlook on future research directions is provided, fol-
lowed by concluding remarks in the last section.
2. Passive applications: Multivariate statistical process
monitoring and soft sensing

2.1. Representation learning: A new road toward data analytics and
machine learning

It has been commonly accepted that modeling tasks can gener-
ally be classified into unsupervised learning and supervised learn-
ing. In unsupervised learning, descriptive models are built to
characterize the underlying structure within input data; these
are primarily used in monitoring to describe the distribution of
process data. In supervised learning, including both regression
and classification, a functional mapping between input and output
is established, with the prediction accuracy of the output being of
special concern. This is most used in the soft sensing of crucial
quality variables in industrial processes using fast-rate process
variables. Recently, more research attention has been focused on
representation learning or feature learning [5], in which the incor-
poration of domain-specific knowledge when building the model is
particularly important. As such, the interpretability of models can
be significantly enhanced, which further improves model perfor-
mance. An example of representation learning is the application
of neural networks with piecewise linear units in computer vision.
Since abstract features in a figure possess local invariance, which
can be described as piecewise linearity, using piecewise linear
units as a domain-specific knowledge can be helpful in improving
the model performance [6].

Representation learning provides a unified viewpoint of unsu-
pervised learning and supervised learning. Unsupervised learning
methods can be regarded as ‘‘feature detectors” that are used to
extract interpretable underlying features from input data. These
features are then used as inputs for a classifier or regressor,
thereby significantly enhancing the performance of supervised
learning. This is the exact enabling technology used in the deep
learning technique [7]. In other words, unsupervised learning and
supervised learning are not isolated from each other; rather, the
former can greatly benefit the latter.

All in all, a desirable model, no matter how complicated it is,
should be endowed with clear physical interpretations. The natural
question then follows: What prior knowledge can well fit the char-
acteristics of process data? In fact, this is a common yet implicit
focal point of many MSPM studies. To clarify this issue, we review
some recent advances in MSPM, and then turn to soft sensing
methodologies.
2.2. Feature learning-based MSPM

The effect of a tiny malfunction could be drastically enlarged
due to the large size and strong coupling of modern process indus-
tries. Therefore, continually monitoring the operation status and
taking necessary maintenance actions are crucial to ensure the
safety of manufacturing processes, although doing so entails a
heavy manual workload [8]. Since the 1980s, MSPM has
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established itself as an answer to this conundrum, and a great vari-
ety of classic machine learning algorithms have been applied,
which well exemplify the intelligence of industrial manufacturing.
Some review articles have already provided good summaries of
this topic [9,10].

Recent attempts have aimed to utilize prior knowledge that is
tailored to continuous manufacturing processes in order to build
effective MSPM models. Because the settling time of manufactur-
ing processes is typically long, the entire system to be monitored
shows some inertia characteristics. This can be described as the
underlying states of processes tending to have slow variability.
Therefore, slowness has been suggested as a meaningful attribute
to induce underlying features, and thus to appropriately capture
process dynamics and yield better descriptions [11]. This perspec-
tive motivates the usage of slow feature analysis (SFA) to model
process data and to achieve effective process monitoring and diag-
nosis [12,13]. In comparison with classic MSPM methods such as
PCA, independent component analysis (ICA), and canonical variate
analysis (CVA), SFA has its unique properties in that it enables
separate descriptions of the steady states and temporal behaviors
of industrial processes [12]. As such, by designing monitoring
statistics tailored to process dynamics anomalies, more meaningful
information can be provided; hence, nominal operating point
switches can be clearly distinguished from real faults that incur
dynamic anomalies. It is shown in the Tennessee Eastman bench-
mark process that such a strategy can reduce false alarm rates by
one order of magnitude [12]. Motivated by the slowness principle,
a number of monitoring approaches have been proposed, including
recursive SFA for adaptive monitoring [14] and probabilistic
monitoring [15]. Successful applications have also emerged in
managed pressure-drilling processes [16] and batch production
processes [17–19].

An alternative dynamic process data analytics approach called
dynamic-inner PCA (DiPCA) has been put forward in Refs.
[20,21], in which principal time series as latent variables are
sequentially extracted based on predictability. In the work of these
scholars, auto-regressive (AR) models are used to build regression
models, based on which the predictability of different principal
time series is defined. In our opinion, DiPCA is similar to SFA, in
that both methods maximize the dynamic contents of latent vari-
ables. Roughly speaking, predictability can be seen as a special case
of slowness, because time-series data that can be well described by
AR models tend to have slow variations. For processes with non-
negligible dynamics, the aforementioned methods can provide bet-
ter descriptive models than traditional dynamic statistical models
such as dynamic PCA (DPCA) [22] and dynamic ICA (DICA) [23].

Classic machine learning models are commonly designed to be
unimodal. For large-scale industrial processes, multiple operating
conditions are present and switches between different modes fre-
quently occur. Therefore, multi-modality should be conceptualized
as a domain-specific feature in devising machine learning models
for MSPM. The simplest model for multi-mode process monitoring
is the Gaussian mixture model (GMM) [24]. Unfortunately, the
GMM does not provide information about transition probabilities
between different modes, which further motivates the use of the
hidden Markov model (HMM) in multi-model monitoring [25]. In
both the GMM and HMM, distributions of process data at a single
mode are assumed to be Gaussian, although this assumption is
quite restrictive in practice. Therefore, more general models are
designed to alleviate this assumption [26].

In Ref. [27], a different approach to process monitoring is sug-
gested, which is also in line with the idea of feature learning. This
approach regards generic process monitoring charts, such as T2 and
squared prediction error (SPE) charts, as types of low-level fea-
tures, which then serve as inputs for a high-level process monitor-
ing model (e.g., PCA). In this way, effective fusion of information
from multiple process monitoring models can be achieved, thereby
systematically accounting for different characteristics of process
data. Because the extracted features tend to be Gaussian dis-
tributed in a statistical sense, it is rational to use PCA as the
high-level process monitoring model.

2.3. Feature learning-based soft sensing

The history of soft sensing can be traced back to the inferential
control strategy proposed by Brosilow and Tong [28] in 1978. As an
intelligent-sensing technology, soft sensing uses easy-to-measure
process variables to furnish online estimates of hard-to-measure
but important indices, such as product quality and other environ-
ment indices. It is worth mentioning that the key performance
indicator (KPI) forecast is another rising application of soft sensors
[29]. Some important performance indices must be evaluated
based on time-consuming experimental tests, and predictive soft
sensors can be developed to provide real-time estimations of these
indices, which are useful in assisting operators’ decision-making.
In principle, the development of soft sensors can be regarded as
a regression problem, so various supervised machine learning algo-
rithms have been applied, as is comprehensively documented in
Ref. [30].

The promise of utilizing representation learning in building soft
sensors was first pointed out in Ref. [11], where probabilistic SFA
(PSFA) is employed to induce slowly varying features, based on
which a simple least squares regression model is built. Because
the slowly varying features well represent underlying variations
of the process, some of them tend to be highly correlated to quality
indices. Compared with traditional dynamic PLS (DPLS), this
approach shows much better dynamic prediction accuracies. Fur-
thermore, it enables a desirable synthesis of fast-rate process data
and irregularly sampled quality data, thereby providing a semi-
supervised learning scheme. A number of extensions were devel-
oped later on. Ref. [31] proposes a Bayesian learning approach to
extract dynamic features with shifting dynamics, where the slow-
ness of slow features is assumed to have gradual alterations. In Ref.
[32], another layer of flexibility is introduced to tackle the varying
number of useful slow features. A modified regularized SFA is later
proposed for the quality prediction of industrial terephthalic acid
hydropurification processes [33].

The notable deep learning technique itself well exemplifies the
spirit of representation learning. The first attempt to apply the
deep learning technique to soft sensing was made in Ref. [34], in
which soft sensors are built with a deep neural network (DNN)
to predict the cut-point temperature of heavy diesel in a crude dis-
tillation unit. The training procedure of a DNN involves two dis-
tinct steps: an unsupervised learning step to initialize the
weights of the DNN, and a supervised learning step to fine-tune
the weights based on input–output data. Therefore, the unsuper-
vised learning step can be deemed to be extracting nonlinear
underlying features that induce nonlinear correlations between
process variables, which further benefit the development of the
regression model. Along this line, the deep learning technique
has been further applied to crude oil classification [35] and carbon
dioxide (CO2)-capture process modeling [36], both of which
demonstrate the advantages of using the deep learning technique
in modeling ‘‘big process data.” Based on inherent features
extracted in the unsupervised learning step, DNNs can also be
applied to process monitoring and fault diagnosis [37,38].

Needless to say, soft sensing models can also be built based on
other features, such as correlations within a low-dimensional sub-
space. The earliest method in this regard is principal component
regression (PCR), in which feature extraction is performed based
on simple PCA. The use of low-dimensional latent variable models
in soft sensing has been comprehensively summarized in Ref. [39].
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In Ref. [40], neighborhood preserving embedding is used to first
learn the intrinsic nonlinear structure of data, based on which pre-
dictors are established.
3. Active applications: Optimal control and high-level decision-
making

3.1. Data analytics and machine learning for optimal control

In advanced control of industrial processes, model predictive
control (MPC) is a notable and well-established approach, which
is based on a precisely knownmathematical model to describe sys-
tem behaviors and to plan optimal control sequences in the near
future [41]. However, the underlying assumption of MPC may be
ideal in practice, and unknowns such as model mismatch, unmea-
sured disturbances, and random noises commonly exist. In these
cases, a promising approach is to integrate mechanistic models
with data analytics and machine learning, which show great
potential to deal with the unknowns [42]. According to functionali-
ties, their applications can be classified into two categories.

The first application category involves the establishment of pre-
diction models for the unknowns by fitting existing past data, such
that the uncertainty can be decomposed into the deterministic part
that is known in advance, and the stochastic part that represents
prediction errors. For example, in the operations and control of
smart grids, estimates of electricity generation from renewable
energy sources, including wind energy and solar energy, can be
derived based on other sources of information, such as weather
forecasts and climatic factors [43]. Likewise, if product quality
and other indices that cannot be measured online are involved in
the optimal control problem, soft sensor models can be built to
provide real-time estimates, which are indispensable for executing
closed-loop control. In both cases, machine learning models such
as SVM and neural networks have been extensively applied. The
usefulness of developing a good prediction model lies in the oppor-
tunity to noticeably reduce the magnitude of uncertainty that is
involved in the optimal control problem, which results in the
attainment of better control performance. In this sense, the accu-
racy of prediction models is a critical issue.

The second category of applying data analytics and machine
learning in MPC involves the description of the distribution of
uncertainty in an unsupervised manner. In practice, the system is
inevitably prone to uncertain disturbances, which may drive sys-
tem states away from the nominal trajectory. To address the effect
of uncertainty, robust MPC (RMPC) [44] and stochastic MPC (SMPC)
[45] have been proposed and applied, where different mathemati-
cal tools are utilized to delineate uncertainty. In RMPC, uncertainty
sets are responsible for representing the possible region of uncer-
tainty realizations, while probability distributions are directly used
in SMPC. A recent promising direction in RMPC and SMPC is to
appropriately model the uncertainty by taking an active learning
viewpoint. In RMPC, traditional norm-based sets are commonly
adopted as uncertainty sets, which lack sufficient flexibility to
nicely delineate the distribution of uncertainty. Therefore, data-
driven uncertainty sets constructed with unsupervised learning
methods can well address this issue. For example, by actively
learning a compact high-density region from available data in the
form of a polytope based on support vector clustering (SVC), the
resulting optimal control problem can be cast as a classic robust
optimization (RO) problem that is easy to solve [46]. A novel
strategy has also been developed to tune the size of the polytope;
this strategy provides an appropriate probabilistic guarantee for
the solution of RMPC, thereby indicating that an approximate solu-
tion of SMPC will eventually be obtained [46]. The theoretical
bound of the established sample size is much lower than that of
the classic results in SMPC, thereby enhancing the practicability
and reducing the conservatism of SMPC. This approach has been
applied to irrigation control [47], which shows that the safety
and closed-loop performance of systems can be considerably
improved by mining meaningful information from data. In
Ref. [48], a learning-based scheme is adopted in MPC to deal with
repetitive control tasks in autonomous systems.

3.2. Data analytics and machine learning for high-level decision-
making

Generic optimization techniques under uncertainty can be clas-
sified into stochastic programming (SP) [49], RO [50], and distribu-
tionally RO (DRO) [51]; these three methods have found extensive
applications in energy system operations and supply-chain design
[52,53]. Data-driven decision-making is a recently emerging para-
digm that integrates model-based and data-driven systems for
optimization under uncertainty. This organic integration of
machine learning and mathematical programming leads to funda-
mentally more powerful and efficient data-driven optimization
frameworks that close the loop between data analytics and deci-
sion support [54].

Scenario programs yield data-driven approximation to classic
chance-constrained SPs, where scenarios collected from past expe-
riences are directly adopted to transform chance constraints into a
great number of deterministic constraints [55]. The key to ensuring
the quality of scenario programs is to select a sufficient number of
important scenarios. Some theoretical results have been estab-
lished in this regard [56]. However, induced optimization problems
always include massive constraints, which pose significant compu-
tational challenges. Because of the decomposable structure of sce-
nario programs, many decomposition algorithms such as the
L-shaped method have been developed [49,57,58]. Recent research
efforts have focused on employing distributed optimization tech-
niques [59,60], in which the original large-scale problem is first
decomposed into several subproblems, and then multiple proces-
sors are used to solve the subproblems in parallel with limited
communications.

In data-driven RO, uncertainty sets are typically constructed
directly based on uncertainty data. From a machine learning point
of view, this can be understood as an unsupervised learning task.
However, not all unsupervised learning methods can be applied
to this end, mainly because it is necessary to account for the
tractability of induced optimization problems. On the one hand,
the unsupervised learning method must be powerful enough to
accurately capture the distribution of uncertainty; on the other
hand, an over-complicated uncertainty set could make the opti-
mization problem difficult to tackle or even intractable. Therefore,
data-driven uncertainty sets must be meticulously devised in order
to achieve a desirable balance between two conflicting objectives.
Based on such motivation, a number of unsupervised learning
methods have been developed recently, which are dedicated to
data-driven constructions of uncertainty sets. In Ref. [61], piece-
wise linear kernel-based SVC is proposed as a new approach tai-
lored to data-driven RO. By solving a quadratic program, the
distributional geometry of massive uncertain data can be effec-
tively captured as a compact convex uncertainty set, which consid-
erably reduces the conservatism of RO problems. In addition, the
fraction of data coverage of the data-driven uncertainty set can
be easily selected by adjusting only one parameter, which fur-
nishes an interpretable and pragmatic way to control conservatism
and exclude outliers. In Ref. [62], data-driven uncertainty sets are
established by using PCA and kernel density estimation, which
can systematically handle correlations and asymmetry. In Refs.
[63,64], the use of data-driven uncertainty sets in multi-stage
adaptive RO (ARO) is investigated and demonstrated on
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industrial-scale scheduling and planning problems in process
industries. The results show that significant reduction of conser-
vatism can be obtained in a multi-stage setting thanks to the
power of machine learning. In particular, by actively learning the
support of uncertain demands, more than 20% higher net present
value can be achieved in a planning application, in contrast to gen-
eric RO strategies. This approach was later applied to unit commit-
ment [65], optimal operations of industrial steam systems [66],
and the resilient design of supply chains [67]. To utilize label infor-
mation within multi-class uncertainty data, a data-driven stochas-
tic RO framework is proposed in Ref. [68]. In Ref. [69], conventional
robustness and minimax regret criteria are simultaneously opti-
mized in data-driven ARO to yield rational decisions.

Data-driven DRO has been a popular topic in operations
research in the past decade. It can be regarded as a combination
of RO and SP, in that the worst-case performance on a set of
probability distributions is optimized [51]. In data-driven DRO,
ambiguity sets play a key role, and are typically determined based
on data analytics. It is typical for the distribution of uncertainty to
not be precisely known in nature; such inexactness is referred to
as distributional ambiguity. To hedge against distributional
ambiguity, a set of candidate probability distributions is employed.
The most-used strategy to characterize the ambiguity is to extract
first-order and second-order moment information from past data.
The issue of determining the size of ambiguity sets is formally
addressed based on hypothesis testing in Ref. [70]. In process
industries, DRO has been first applied to process planning and
scheduling [71], and to optimal operations of a shale gas supply
chain [72].
4. An outlook on future research directions

4.1. Process monitoring

Although a variety of feature selection methods have been used
to design process monitoring models, it is worth noting that the
extracted features must be closely related to prior knowledge that
is tailored to process characteristics. At present, although a great
number of process monitoring models are designed based on com-
binations of different feature extraction methods, nonlinear mani-
folds and non-Gaussianity, which underpin many monitoring
models, are essentially not unique to process data. Typically, a
good process model should not only be powerful enough to
describe process properties, but also allow for clear interpretations
that can be easily accepted by industrial practitioners [73]. At pre-
sent, however, this issue has not been given sufficient considera-
tion. In this sense, it is worth concentrating future efforts on
high-level features such as slowness, non-stationarity, and
causality [3,74]. In addition, feature design could be based on prior
knowledge from industrial practitioners, such as monotonicity and
range information, since interpretable models are helpful for root-
cause diagnosis and maintenance after the detection of potential
faults [75].

Based on certain feature characteristics, transfer learning can be
further adopted to synthesize data information collected under dif-
ferent operating conditions or from different manufacturing
devices. Current research has focused on building individual mod-
els for each operating condition or each device. Despite their dis-
crepancy, some similarities exist, so such models can be formally
expressed as bearing some common information. Borrowing the
idea from transfer learning [76], features should be discovered as
a common knowledge that describes the fundamental principle
underlying manufacturing processes, thereby potentially improv-
ing the modeling performance as well as human understanding
of it.
Another useful direction is to develop user-friendly visualiza-
tion strategies in data-based process monitoring in order to better
assist decision-making, since visualization can make it possible to
better understand high-dimensional process data [77].

4.2. Soft sensing

Due to the time-varying characteristics of industrial processes,
the performance of soft sensors can easily degrade over time,
which calls for a significant workload to maintain and update the
model. Therefore, quality prediction is not merely a regression
problem, and more research attention should be paid to the adap-
tive mechanism of prediction models, especially under the pres-
ence of frequent operating condition deviations [78]. Moreover,
the inaccuracy of laboratory data caused by human could be con-
sidered, such as uncertain time delay, large and varying sampling
interval, and sampling habits of various operators.

Traditional supervised models are commonly under a strong
premise that data samples are independent and identically dis-
tributed. Nevertheless, the underlying mechanism of the process
variables affecting product quality may be much more compli-
cated. The burgeoning theory of online learning offers new solu-
tions to modeling tasks without specific assumptions regarding
data [79]. For example, online learning could systematically handle
data that are generated deterministically, stochastically, or even
adversarially. Therefore, attempts to use online learning tech-
niques to address quality-control problems are worth making in
the era of big data.

Meanwhile, with the rapid development of imaging technolo-
gies, more image and spectral data are being collected in indus-
tries, providing meaningful information for the establishment of
high-fidelity prediction models. However, a challenge arises from
the high-dimensionality and strong correlations between different
dimensions. Image processing and object recognition have already
been playing a leading role in fields such as remote sensing and
autonomous driving [80]. Although these technologies have been
applied in process industries [81,82], their development is still in
its infancy. Hence, it would be a viable direction to embrace the
power of advanced image-processing techniques—especially con-
volutional neural networks—to make full use of image and spectral
data from process industries.

4.3. Data-driven optimal control

Future research efforts can be undertaken in incorporating
domain-specific knowledge into devising uncertainty sets in RMPC.
For example, in Ref. [47], a new concept of a conditional uncer-
tainty set is proposed to describe the dependence of the distribu-
tion of rainfall forecast errors on forecast values. For other types
of uncertainty, the question of how to devise the associated condi-
tional uncertainty set is worth further case-by-case investigation.

Reinforcement learning (RL),which is a prevalentmachine learn-
ing approach, is particularly useful for deriving action policies with
no model information [83]. This approach is data-driven in nature
and can adapt to time-varying environments intrinsically. There-
fore, RL-based control has great potential to tackle optimal control
tasks in complicated manufacturing plants, whose high-fidelity
mathematical models are difficult to establish in practice [84,85].

4.4. High-level decision-making

In comparison with the other applications, high-level decision-
making is the most important, since it directly affects the economic
profits and environmental impacts of a process industrial com-
pany. On the one hand, high-level decisions are typically made
under uncertainty according to the experiences of business leaders,
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leaving much room for improvement; hence, more applications of
data-driven RO and DRO for decision-making in process industries
are anticipated in the future. On the other hand, there is value in
future study to further improve the solution quality and computa-
tional efficiency of data-driven RO and DRO. Current DRO method-
ologies exploit moment information to describe the ambiguity of
probability distributions. In principle, different kinds of moment
information could be regarded as the outcomes of simple data ana-
lytics approaches. This situation provides motivation to use
advanced unsupervised learning methods to extract high-level
information such as the distribution within high-dimensional fea-
ture space, based on which ambiguity can be further considered.
By utilizing the power of machine learning, the ambiguity of prob-
ability distributions can hopefully be reduced, thereby leading to
less conservative solutions. For example, the ambiguity set pro-
posed in Ref. [86] involves the probabilities of a series of nested
sets; however, there are no results regarding a systematic investi-
gation on the construction of these nested sets. In fact, kernel-
based machine learning algorithms with varying regularization
parameters could be utilized to derive nested sets, which capture
the majority of data samples.
5. Concluding remarks

In modern process industries, an increasing amount of data
embodying valuable information can be collected and archived. By
making use of data, data analytics and machine learning can help
sense the environment, discover knowledge, and make decisions
automatically and intelligently. Oriented to data-drivenmonitoring,
prediction, control, and optimization, this paper reviews the current
status of research in this field and analyzes the knowledge gaps to be
filled in. In particular, we differentiate passive applications of data-
driven methods, which include monitoring and soft sensing, from
active applications, which include control and optimization. For
the former, the interpretability of models has been suggested as a
major concern, while for the latter, special attention has been paid
to functionality. It is worth noting that although big data is enor-
mously reshaping the process industries, a majority of data-driven
methods have not yet been applied in practice. Data analytics and
machine learning are by nomeans the answer to every conundrum.
Most importantly, it is necessary to incorporate a priori knowledge
of plants and processes in order to achieve successful applications,
which leaves both challenges and opportunities for future research.
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