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Human noroviruses (HuNoVs) are major foodborne pathogens that cause nonbacterial acute gastroenteri-
tis worldwide. As the tissue-culture system for HuNoVs is not mature enough for routine detection of the
virus, detection is mainly dependent on molecular approaches such as reverse transcription polymerase
chain reaction (RT-PCR) and reverse transcription quantitative real-time polymerase chain reaction (RT-
qPCR). The widely used primers and probes for RT-qPCR were established in the early 2000s. As HuNoVs
are highly variant viruses, viral genome mutations result in previously designed primers and/or probes
that were perfectly matched working less efficiently over time. In this study, a new duplex RT-qPCR
(ND-RT-qPCR) was designed for the detection of genogroup I (GI) and genogroup II (GII) HuNoVs based
on an analysis of viral sequences added in the database after 2010. Using long transcribed viral RNAs,
the results demonstrate that the sensitivity of ND-RT-qPCR is as low as one genomic copy for both GI
and GII HuNoVs. The performance of ND-RT-qPCR was further evaluated by a comparison with the com-
monly used Kageyama primer/probe sets for RT-qPCR (Kageyama RT-qPCR) for 23 HuNoV-positive
clinical samples. All five GI samples were registered as positive by ND-RT-qPCR, whereas only two sam-
ples were registered as positive by Kageyama RT-qPCR. All 18 GII samples were registered as positive by
ND-RT-qPCR, while 17 samples were registered as positive by Kageyama RT-qPCR. The sensitivity
reflected by the quantification cycle (Cq) value was lower in ND-RT-qPCR than in Kageyama RT-qPCR.
Our data suggest that ND-RT-qPCR could be a good fit for the detection of current strains of HuNoVs.

� 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Human noroviruses (HuNoVs) are major causes of nonbacterial
gastroenteritis in all age groups worldwide, and are responsible for
nearly half of all gastroenteritis cases globally [1,2]. Norovirus
(NoV) belongs to Caliciviridae and possesses a linear, single-
stranded positive-sense RNA genome approximately 7500 nucleo-
tides in length [3]. The genome is divided into three open reading
frames (ORFs). The ORF1 codes for non-structural viral proteins
include RNA-dependent RNA polymerase (RdRp); the ORF2 codes
a major viral capsid protein (VP1); and the ORF3 codes a minor
viral structural protein [4]. NoVs are classified into ten genogroups
(GI–GX) encompassing more than 40 genotypes, with multiple
strains in the same genotype [5]. Viruses with less than 14.1% dif-
ference in VP1 are considered to be at the same subtype level (i.e.,
different strains in the same genotype), those with 14.3%–43.8%
difference in VP1 are considered to be at the same cluster level
(i.e., different genotypes), and those with 44.9%–61.4% difference
in VP1 are considered to be at the same genogroup level [6]. GI
and GII NoVs are major causes of acute gastroenteritis in humans
[7], with GII.4 being the most common genotype for NoV gastroen-
teritis worldwide.

Due to the lack of an easy and reliable in vitro cultivation
method, many other approaches have been utilized for the detec-
tion of HuNoVs, including electron microscopy (EM) [8], enzyme-
linked immunosorbent assay (ELISA) [9], and molecular
approaches such as reverse transcription polymerase chain reac-
tion (RT-PCR) and reverse transcription quantitative real-time
polymerase chain reaction (RT-qPCR) [10–12]. Among these, RT-
qPCR has been widely used as a gold standard for the detection
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of HuNoVs due to its high sensitivity and specificity [13–15]. In
previous reports, primers were derived from the sequence at the
ORF1–ORF2 junction, which is considered to be the most conserved
region in the genome of HuNoVs [13,16]. Kageyama et al. [13]
reported on the first of such primer/probe sets for GI and GII in
2003. Several similar primer/probe sets for HuNoVs were subse-
quently reported from 2003 to 2007 [13,16–19]. These sets of
primers and probes remain in wide use for the detection of
HuNoVs, despite the absence of updates. Due to the RNA nature
of noroviral genomes, mutations occur frequently and result in
potential mismatches between once-perfectly matched primers/
probes and changed viral sequences. In addition, more sequence
data is available now than ten years ago, when all these primers/
probes for RT-qPCR were developed. An increasing number of
strains and genotypes have been discovered with the rapid devel-
opment of sequencing technology, many of which have been mis-
matched with the primer/probe sequences designed ten years ago
to produce false-negative results. Therefore, it is necessary to rede-
sign new primer/probe sets using an updated sequence database in
order to optimize the detection of current strains of HuNoVs. In
this study, new genomic sequences of GI and GII HuNoVs that have
been identified since 2010 were collected from the GenBank and
analyzed by Molecular Evolutionary Genetics Analysis (MEGA)
7.0. Primer/probe sets for GI and GII HuNoVs were redesigned,
evaluated, and compared with the prototype Kageyama primer/
probe in a set of clinical samples with representative genotypes
of HuNoVs.
2. Materials and methods

2.1. Target sequence collection

A total of 132 new GII HuNoVs complete genomes that have
been added since 2010 were retrieved from the National Center
for Biotechnology Information (NCBI)y on 1 May 2018. As there
were few new complete sets of genomic data within GI, all complete
sequences of GI (a total of 57) were retrieved from the NCBI on 1
May 2018 and were aligned to identify the conserved regions for
GI according to the method described in Section 2.2. In addition,
using a fragment of GI.2 sequence (GenBank No. KF306212.1)
5288–5427 as a template for a Basic Local Alignment Search Tool
(BLAST) search, a total of 90 newly added GI partial sequences iden-
tified after 2010 and located in the conserved region genome with a
high quality of assemblies (a cutoff of 80%) were retrieved from the
NCBI.
Table 1
Primers/probes designed in this study to detect GI and GII HuNoVs.

Genotype Name Sequence (50–30) Position Polarity

GI LZIF GGAGATCGCRATCTCCTGCCCGA 5323–5344 +
LZIR-A CTCYGGTACCAGCTGGCC 5407–5426 �
LZIR-B CCTCYGGHACCAGCTGACC 5407–5427 �
LZIP HEX–CGTCCTTAGACGCCATCATC

ATTTAC–MGB
5349–5374 �

GII LZIIF-A GTGGGATGGACTTTTACGTGCCAAG 4971–4995 +
LZIIF-B GGTGGMATGGATTTTTACGTGCCCAG 4970–4995 +
LZIIR CGTCAYTCGACGCCATCTTCATTCAC 5075–5100 �
2.2. Multiple alignments and redesign of primer/probe sets

The complete sequences of GI (57) and GII (132) HuNoVs that
were downloaded, as mentioned above, were analyzed with Sim-
plot version 3.5.1 [20] to generate similarity plots and to identify
conserved regions used for redesigning new primers and probes.
Two strains with a complete genomic sequence, GI.2 (GenBank
No. KF306212.1) and GII.6 (GenBank No. KU870455.1), were used
as roots in this study. The maximum likelihood (ML) phylogenetic
trees of each genogroup were constructed by MEGA 7.0 software�

based on 90 (GI) and 132 (GII) newly added (since 2010) sequences
located in the conserved region. The reliability of the clustering
results was evaluated using a bootstrap test (1000 replications).

After analyzing the conserved regions and the frequency of each
nucleotide at each position of the GI and GII HuNoVs, two sets of
y https://www.ncbi.nlm.nih.gov/.
� https://www.megasoftware.net/.
primers/probes were named as follows: LZIF, LZIR-A, LZIR-B, and
LZIP for GI; and LZIIF-A, LZIIF-B, LZIIR, and LZIIP for GII (Table 1).

2.3. Viral RNA extraction from clinical samples

HuNoV-positive clinical samples were kindly provided by Dr.
Zhiyong Gao at the Beijing Center for Disease Control and Preven-
tion (CDC), Dr. Ningbo Liao at the Zhejiang CDC, and Dr. Huiying Li
at the Chinese CDC. Stool samples were suspended (10%, w/v) in
phosphate-buffered saline (PBS, pH = 7.4), vortexed, and cen-
trifuged at 4378 r�min�1 for 5 min. The supernatants were stored
at �80 �C in aliquots until used.

Viral RNAs were extracted from 140 lL of 10% stool suspension
with a HiPure Viral RNA Kit (Magen, China) according to the man-
ufacturer’s instructions. RNAs were eluted with 60 lL of RNase-
free double-distilled water (ddH2O) and kept at �80 �C until used.

2.4. In vitro transcription of RNA as positive controls

Plasmid DNAs for GI and GII HuNoVs were constructed by
amplifying fragments from a GI.5 HuNoV (sample 57565) using
the primers GI-4610-F(50-TGATGCWGAYTATACAGCWTGGGA-30)
and GI-5704R(50-CATYTTYCCAACCCARCCATTATACAT-30), and by
amplifying fragments from a GII.17 HuNoV (sample 15651202)
using P290 [21] and GIISKR [22]. The amplified fragment was
4558–5675 (GenBank No. KF306212.1) for GI and 4298–5383
(GenBank No. KU870455.1) for GII. RT-PCR was carried out in a
total volume of 20 lL using the One-Step RT-PCR kit (Takara,
China) according to the manufacturer’s protocol. Polymerase chain
reaction (PCR) products were cloned into the pMD18-T vector
(Takara, China). The recombinant plasmids were transfected into
Escherichia coli TOP10 (GENEWIZ, China). After being double
digested by Hind III and BamH I, the fragments were inserted into
pET-28a (+) (ThermoFisher, China) under a T7 promotor to create
recombinant plasmids pET28-GI-M and pET28-GII-M. The final
recombinant plasmids were sequenced by GENEWIZ (China) for
confirmation and determination of the orientation of the inserted
viral sequence.

The inserted viral DNA was transcribed by a T7 RNA polymerase
(Beyotime, China) according to the manufacturer’s protocol. The
purified RNAs were stored at �80 �C in aliquots.

2.5. One-Step RT-qPCR assay

Reactions of the new duplex RT-qPCR (ND-RT-qPCR) were con-
ducted using a single-tube One-Step RT-qPCR kit (Takara, China)
and a CFX96 recycler (Biorad, USA). The redesigned primers and
probes were synthesized with modified fluorophores and quench-
ers (GENEWIZ, China). Each 10 lL reaction mixture was consisted
of 5 lL 2 � One-Step RT-qPCR Buffer III (Takara, China), 0.2 lL Ex
LZIIP FAM–AGCCAGATTGCGATCGCC–MGB 5048–5065 �

FAM: 6-carboxy-fluorescein; HEX: 5-hexachloro-fluorescein; MGB: minor groove
binder.
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Taq HS (5 U�lL�1, 1 U = 1 lmol�min�1), 0.2 lL PrimeScript RT
Enzyme Mix II, 1.2 lL of RNase-free water, 1 lL mixed primers
(primers final concentration 0.8 lmol�L�1), 0.4 lL mixed probes
(probes final concentration 0.2 lmol�L�1), and 2 lL sample RNA.
The cycling conditions were as follows: 3 min at 42 �C and then
5 s at 95 �C, followed by 40 cycles consisting of 3 s at 95 �C and
7 s at 60 �C. Fluorescence was read at the end of each 60 �C exten-
sion step. Thresholds were determined by Bio-Rad CFX96 Manager
software with amplification-based threshold determination using
the default settings.

2.6. Viral RNA-based standard curves for RT-qPCR

The transcribed viral RNA described in Section 2.4 were quan-
tized using a NanoDrop 2000C spectrophotometer according to
the manufacturer’s instructions (NanoDrop Technologies Inc.,
USA) and converted into genome copy numbers. The total numbers
of genome copies in the RNAs were calculated as follows: Copy
number = [(Concentration of RNAs) (ng�lL�1)/(molar mass)] � (6.
02 � 1023). The RNA samples were diluted in a 10-fold dilution ser-
ies (ranging from 100 to 106 copies�lL�1). Standard curves of GI and
GII HuNoVs were generated by plotting RNA copy numbers versus
quantification cycle (Cq). The mean Cq values in repeated experi-
ments were plotted to determine the slope and regression. Coeffi-
cient (R2) values were fitted by Origin 2017. Subsequently, the
amplification efficiency (E) was calculated using the following
equation: E = 10�1/slope � 1 [23].

2.7. Evaluation of three RT-qPCR assays for the detection of HuNoVs

The ND-RT-qPCR developed in this study was side-by-side com-
pared with the commonly used prototype Kageyama RT-qPCR for
the clinical positive samples mentioned in Section 2.3.

In assay A, the ND-RT-qPCR was performed as described in Sec-
tion 2.5. In assay B, the primers and probes were replaced by those
designed by Kageyama et al. [13], while the thermal cycle condi-
tions remained the same as for assay A. In assay C, Kageyama RT-
qPCR was performed as described previously, with some modifica-
tions [24]. In brief, the RT-qPCR reaction mix consisted of the fol-
lowing: 5 lL 2 � One-Step RT-PCR Buffer III, 0.2 lL Ex Taq HS
(5 U�lL�1), 0.2 lL PrimeScript RT Enzyme Mix II, 0.4 lL of each
10 lmol�L�1 primer (COGIF and COGIR, or COGIIF and COGIIR),
0.2 lL of each 10 lmol�L�1 probe (RING1(a)-TP, RING1(b)-TP, or
RING2-TP), and 2 lL of RNA. RNase-free ddH2O was added to each
well for a total volume of 10 lL. The thermo-cycling parameters
were as follows: 30 min at 42 �C and then 95 �C for 5 min, followed
by 40 cycles of 15 s at 95 �C, and 1 min at 56 �C.

Cq 40 was used as the cutoff for negative samples. The Cq values
obtained from these different RT-qPCR assays were compared.
3. Results

3.1. PlotSimilarity analyses

PlotSimilarity was conducted to identify the conserved regions
for designing primers and probes to detect HuNoVs. Complete
genomic sequences for a total of 57 GI and 132 GII HuNoVs were
analyzed to identify the conserved regions. The conserved regions
with highest similarity were found in the ORF1–ORF2 junction of
both GI and GII HuNoVs (data not shown).

3.2. Nucleotide sequences of conserved regions from GI and GII strains

With the aim of designing primers and probes to detect epi-
demic strains of HuNoVs, the conserved regions corresponding to
5288–5427 of KF306212.1 for GI and 4959–5108 of KU870455.1
for GII were used. Ninety sequences of GI and 132 sequences of
GII HuNoVs were used to analyze the frequency of each nucleotide
at each position. The A, T, C, and G counts of each position are
shown in Figs. 1 and 2. Multiple alignments were performed on
each genogroup to identify the conserved fragments in the HuNoV
genomes. The primers and probes designed in this study (orange)
were compared with those reported by Kageyama et al. [13] (gray).
Many positions in the viral genome for the binding of the GI pri-
mer/probe had changed, and no longer perfectly matched with
those in the Kageyama RT-qPCR. After considering the base mis-
matches between the current viral strain sequences and the
Kageyama assay, new sets of primers and probes for GI and GII
HuNoVs were designed and tested while considering melting tem-
perature (Tm) values, GC content, amplification efficiencies, and
cross reactions between genogroups.

3.3. Quantitation of HuNoVs

Probes for GI (LZIP) and GII (LZIIP) HuNoVs were labeled with 5-
hexachloro-fluorescein (HEX) and 6-carboxy-fluorescein (FAM),
respectively, in order to detect both genogroups within one reac-
tion tube. Standard curves and parameters generated by the tran-
script RNAs of GI and GII using the new RT-qPCR assay are shown
in Figs. 3 and 4, respectively. Samples calculated to contain a pre-
dicted 0.1 copy of the GI and GII HuNoVs showed no signal.

3.4. Comparison of three RT-qPCR assays for the detection of HuNoVs
in clinical samples

The three RT-qPCR assays were compared for the detection of GI
and GII HuNoVs in fecal samples (Table 2). Of the 23 HuNoV-
positive clinical samples, five were GI HuNoVs and 18 were GII
HuNoVs. For GI, 5/5 were detected by assay A, 0/5 by assay B,
and 2/5 by assay C. A GI.2, a GI.4, and a GI.5 HuNoV sample could
not be detected by Kageyama RT-qPCR. For the two detected GI-
positive samples, assay A showed significant lower Cq values than
assay C (P < 0.05), with an average delta Cq of 10.26 ± 0.24. For GII,
18/18 were detected by assay A, 9/18 by assay B, and 17/18 by
assay C. A GII.2 sample, 17151101, was failed in assays B and C.
For the positive samples of assay B, the Cq values were 1–10 higher
than those of assay A for different samples. Almost all (17 of 18)
positive samples detected by assay C had higher Cq values than
in assay A, with an average delta Cq of 2.20 ± 0.51. In addition,
all positive samples detected by assay B were higher than those
detected by assay A, with an average delta Cq of 6.26 ± 0.64.

In this study, all the positive samples were detected by assay A;
among these samples, the GI.2, GI.4, and GI.5 HuNoVs could not be
detected by the other two assays. Few genotypes of GII and none of
GI HuNoVs could be detected by assay B. Overall, assay A could
detect HuNoV genotypes with a frequency (100.0%) higher than
assay B (39.1%) and assay C (82.6%) (Table 2).
4. Discussion

HuNoVs are one of the leading causes of diarrheal diseases
worldwide in all age groups. However, limited information is avail-
able about the pathogens due to the lack of an efficient system to
culture the viruses in vitro. The detection of HuNoVs still predomi-
nantly relies on ELISA, RT-PCR, and RT-qPCR [25]. Comparative
analysis of these methods for clinical outbreak investigations has
estimated their sensitivities as follows: ELISA 17%, RT-PCR 86%,
and RT-qPCR 100% [26]. Due to their relatively lower detection
limits, RT-PCR and RT-qPCR are the most common approaches for
detecting HuNoVs.



Fig. 1. Multiple alignments of the conserved region of GI HuNoVs.

Fig. 2. Multiple alignments of the conserved region of GII HuNoVs.
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One-Step RT-qPCR allows for detection and amplification in a
single reaction. In general, RT-qPCR is more sensitive than conven-
tional RT-PCR, and is less likely to produce false-positive results
due to PCR contamination [25]. Broadly reactive RT-qPCR primer
sets for GI and GII HuNoVs have been described by a number of
investigators [13,16–19]. Nevertheless, the popular primer sets
mentioned here were mainly designed 10–15 years ago, with lim-
ited viral sequences available at the time. Moreover, with the ubiq-
uitous presence of mutations in the viral RNA genome, including
the highly conserved region, previously designed perfectly
matched primers/probes have failed to bind, or bind poorly, to
mutated viral genomes. Amarasiri et al. [27] recently redesigned
quantitative PCR assays for the genotype-specific quantification
of four epidemiologically important genotypes, GII.3, GII.4, GII.6,
and GII.17. However, other genotypes of GII and the entire GI were
not addressed in their publications. Our study demonstrates the
importance of redesigning primers/probes for current strains of
GI, as Kageyama RT-qPCR failed in three out of five GI-positive
samples tested. Compared with clinical samples, where the over-
whelming majority of HuNoV outbreaks are caused by GII strains
[28], more frequent detection of GI in food and environmental
samples has been reported [29,30].



Fig. 3. Standard curve of GI HuNoVs and amplification curve. RFU: relative
fluorescence units.

Fig. 4. Standard curve of GII HuNoVs and amplification curve.
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Many factors were taken into consideration to design the pri-
mers and probes:

(1) Conservation of selected regions. Sequences used to design
the primers and probes were matched as closely as possible, espe-
cially within the 30 end of primers.

(2) Tm of primers and probes. In order to shorten the time for
detection assay, annealing and extension were merged into one
Table 2
Comparison of the performance of three RT-qPCR assays to detect GI and GII HuNoVs in a

No. Sample Collection time Genotype

1 57404 Jan 2017 GI.1
2 14151 Jan 2014 GI.2
3 3010 Feb 2014 GI.3
4 58407 Feb 2017 GI.4
5 57565 Jan 2017 GI.5
6 17151101 Jan 2017 GII.2
7 17152TXZ Feb 2017 GII.2
8 15651006 Oct 2015 GII.3
9 16651029 Oct 2016 GII.4
10 57395 Jan 2017 GII.4
11 17151116 Jan 2017 GII.4
12 58037 Feb 2017 GII.4
13 C7 Jan 2018 GII.4
14 1704 Nov 2017 GII.4
15 3143 Nov 2014 GII.4
16 1028 Jan 2014 GII.4
17 3035 Feb 2014 GII.4
18 3009 Jan 2014 GII.4
19 17151030 Jan 2017 GII.6
20 57417 Feb 2017 GII.12
21 1717 Dec 2017 GII.17
22 15651202 Oct 2015 GII.17
23 3014 Jan 2014 GII.PE
24 NEG

Assay A: ND-RT-qPCR; assay B: primers and probes were replaced with those designed b
assay C: Kageyama RT-qPCR. NA: not applicable.
step at 60 �C, considering the best efficiency of the enzyme. The
best Tm for the primers was 60–63 �C and the Tm for probes was
5–10 �C higher.

(3) Relation between distance and efficiency. The shorter the
distances between the reversed primers and probes, the higher the
efficiency of the assay process is.

(4) Complementary reversal of the probes. The presence of
more guanines than cytosines in the probes can increase the
stability of hybridization of the probes; thus, the probes of GI
and GII HuNoVs were complementarily reversed.

(5) Cross reaction of GI and GII HuNoVs. To avoid a cross reac-
tion between GI and GII virus, the primer/probe sets were rede-
signed in this study for the simultaneous detection of GI and GII
HuNoVs in one tube.

The COG2F primer could be bonded and amplified according to
the GI template (data not shown). Therefore, LZIIF primers were
not designed according to the sequence of COG2F (the GII primer
designed by Kageyama et al.), even though this region is still con-
servative (Figs. 3 and 4). The perfectly matched primer/probe
sequences in the conserved region identified from 90 newly added
GI sequences were short, and processed a relatively low Tm value.
As both GI and GII will be detected in the same tube in ND-RT-
qPCR, TaqMan minor groove binder (MGB) probes were utilized
for both GI and GII. The MGB moiety at the 30 end that increases
the Tm of the probe and stabilizes probe–target hybrids can
improve the flexibility of probe selection. A 50 reporter and a 30

non-photochemical fluorescence quenching (NFQ) were incorpo-
rated. The NFQ offers the advantage of lower background signal,
which results in better precision in quantitation.

Amplification efficiency is important for the evaluation of the
redesigned primer/probe sets. For RT-qPCR, an amplification effi-
ciency between 90% and 110% is considered acceptable [31,32].
In this study, the efficiency of the newly designed primer/probe
sets for GI and GII HuNoVs were 90.6% and 97.3%, respectively.
The relatively lower efficiency for GI might be caused by three rea-
sons: ① a lack of complete genomic data on GI; ② difficulties in
HEX modification, 20-chloro-70-phenyl-1,4-dichloro-6-carboxy-
fluorescein (VIC) modification is recommended for subsequent
panel of stool samples positive for HuNoVs.

Assay A (Cq value) Assay B (Cq value) Assay C (Cq value)

18.45 ± 0.37 NA 30.11 ± 0.01
32.36 ± 0.66 NA NA
23.38 ± 0.06 NA 32.26 ± 0.04
32.66 ± 0.31 NA NA
27.25 ± 0.18 NA NA
20.98 ± 0.09 NA NA
27.02 ± 0.01 NA 30.55 ± 0.07
22.69 ± 0.14 NA 25.28 ± 0.24
20.62 ± 0.19 25.54 ± 0.02 22.90 ± 0.62
26.48 ± 0.09 36.88 ± 1.67 28.31 ± 0.10
20.79 ± 0.13 28.46 ± 0.05 23.07 ± 0.03
29.38 ± 0.07 NA 31.90 ± 0.22
15.97 ± 0.21 23.11 ± 0.47 19.27 ± 0.01
24.12 ± 0.15 25.61 ± 0.25 24.13 ± 0.26
25.69 ± 0.55 NA 28.02 ± 1.15
28.91 ± 0.20 NA 30.43 ± 0.53
26.35 ± 0.24 NA 27.24 ± 0.74
19.09 ± 0.46 NA 23.42 ± 0.45
24.58 ± 0.09 32.09 ± 0.09 26.16 ± 0.09
16.26 ± 0.23 24.26 ± 0.01 18.72 ± 0.08
19.30 ± 0.41 22.17 ± 0.02 21.54 ± 0.36
29.17 ± 0.13 35.50 ± 1.48 31.18 ± 0.01
23.57 ± 0.30 NA 25.21 ± 0.18
NA NA NA

y Kageyama, while the thermal cycle conditions remained the same as for assay A;
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synthesis; ③ a need to further optimize the concentration of pri-
mers and probes.

Previous studies have demonstrated that RT-qPCR signals, espe-
cially those obtained close to the limit of detection, do not actually
originate from the synthesis of target sequences. False-positive
results due to PCR artefacts and/or PCR contamination have been
reported [33–35]. In some cases, the reduced stringency of primer
annealing in the RT-qPCR reverse transcription and amplification
steps might lead to non-specific amplification followed by a low
level of probe hybridization for a background signal. In this study,
the time for each step of the thermal cycles was greatly shortened
in order to reduce the chance of non-specific probe hybridization,
and the detection time was cut to about 40 min. As suggested in
‘‘The MIQE guidelines: Minimum information for publication of
quantitative real-time PCR experiments,” a Cq greater than 40
was considered to be ‘‘positive but not quantifiable” [23], and 40
cycles were considered to be a cutoff in this study.

The sensitivity of ND-RT-qPCR was evaluated by using long viral
RNA templates generated in this study. Unlike the standard curves
reported previously [17,36,37], where the plasmid DNAs were uti-
lized as templates, two 1500 nucleotides transcribed viral RNAs
were used as templates to generate standard curves for GI and
GII in this study. The longer transcribed viral RNAs could maintain
their secondary structures better than the shorter ones and the
plasmid DNAs. The standard curves generated in this study could
also reflect the efficiency of the virus RNAs’ reverse transcript in
the reverse transcript part of the One-Step RT-qPCR detection
assay. Using long viral RNAs as templates, the standard curves
were generated from 100 to 106 with R2 = 1.000. The Cq values
were 39.10 and 37.90, respectively, when 100 GI and GII were
tested. No signals were detected when the viruses were further
diluted. The results suggest that the sensitivity of ND-RT-qPCR is
100, which is 10 times better than the sensitivity of the Kageyama
RT-qPCR assay.

A better performance of ND-RT-qPCR was also observed in the
detection of HuNoVs from a set of clinical samples. The ND-RT-
qPCR detected GI and GII HuNoVs at the highest frequency
(100%). In contrast, lower detection rates were observed when
Kageyama RT-qPCR was used for the same set of samples. The
Kageyama RT-qPCR worked poorly in the detection of current
strains of GI HuNoVs, and failed in three out of five GI samples
tested. In this study, the results demonstrated that the primer/
probe set designed by Kageyama et al. was not sensitive enough
for the detection of the GI HuNoVs in clinical samples. Similar
results have been reported by other groups [18,38,39]. The
improved sensitivity and amplification efficiency of ND-RT-qPCR
was also reflected by the lower Cq values, in comparison with
those of the Kageyama RT-qPCR, in each sample tested.

The primers designed in this study were processed at a Tm value
of 60–63 �C, which worked perfectly with the temperature of 60 �C
that is recommended for annealing and extension in the One-Step
RT-qPCR. Therefore, ND-RT-qPCR could be completed in 40 min. To
evaluate the primer/probe sets designed by Kageyama et al. in the
rapid thermal cycles, assay B was conducted. The results showed
that of the five GI samples tested, no positive signal was detected;
for GII, nine of the 18 samples were failed by assay B. This result
demonstrated that it is not possible for the primer/probe sets
designed by Kageyama et al. to be used while compressing the
detection time. Based on these results, ND-RT-qPCR can be used
to investigate gastroenteritis outbreaks and for disease surveil-
lance. Further studies will evaluate ND-RT-qPCR in the detection
of HuNoVs in environmental and food samples (especially in fresh
products or shellfish).

In conclusion, ourdata suggests thatND-RT-qPCRcouldbeagood
fit for the detection of current strains ofHuNoVs,with its advantages
of high sensitivity, specificity, and time efficiency (only 40 min).
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