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In recent years, material genome has been a hot topic in the
field of material science. The emergence of the term ‘‘material gen-
ome” was largely inspired by the successful Human Genome Pro-
ject. Traditionally, the discovery and development of new
materials and new processes depend on scientific intuition and a
lengthy trial-and-error process. For years, material scientists have
been longing to find some sort of basic building blocks whose
structure and defects may determine the properties of materials,
similar to the genome in the field of biology. By understanding
these building blocks, they hope to be able to design materials
on demand, so as to accelerate discovery and development, and
reduce costs. Since the launch of Material Genome Initiative [1,2]
in the United States in 2011, other major economies such as the
European Union [3,4], Japan [5], and China have set up similar sci-
entific programs at the national level. However, despite a wide
range attempts, it has been difficult to define what the ‘‘material
genome” really is. The current consensus is that the term ‘‘material
genome engineering” (MGE) is used only as a proxy for predictive
material research and development [6]. By integrating high-
throughput experimentation, high-throughput computation, and
material informatics, the relationships between composition, pro-
cess, structure, and performance—which form the basis of material
design—can be established in a faster, more efficient, and less
costly fashion.

The working modes of MGE can be roughly classified as experi-
ment-driven, computation-driven, and data-driven, respectively
[7]. The experiment-driven mode is based on high-throughput syn-
thesis and characterization experiments, such as combinatorial
material chip technology [8], which enables rapid screening or
optimization of materials. The computation-driven mode is to pre-
dict materials by computational simulation [9], which greatly
reduces the scope of promising candidates for quicker experimen-
tal verification. The data-driven mode is to build models using a
materials informatics approach—that is, by applying artificial intel-
ligence (AI)-based methods such as machine learning to a large
amount of data in order to predict candidate materials [10]. For
thousands of years in human history of seeking the truth of nature,
science has gone through the paradigm shift from experimental
observation, to theoretical deduction, then to computational simu-
lation. Today, taking advantage of unprecedented computing
power and the large-scale collection of data, modern science is
currently entering the ‘‘fourth paradigm” [11], which features
intensive data + AI. Therefore, the data-driven mode of MGE is an
embodiment of the ‘‘fourth paradigm.”

It should be noted that the essence of the experiment- and com-
putation-driven modes is either factual judgment or the deduction
of known physical laws, neither of which fundamentally changes
the current way of thinking. In contrast, the data-driven mode uses
AI to reveal the relationships embedded in massive data. This
approach adds new dimensions and perspectives to the existing
routine of material science research. Clearly such ‘‘new tool in
the box” is expected to produce subversive results. That being said,
it is also important to point out that the data-driven mode will by
no means supersede the experiment- and computation-driven
modes. Rather, it is a powerful supplement and extension of the
traditional cognitive paradigm. In addition, domain knowledge
should be carried over into the machine learning regime to provide
guidance for and validity to the AI-based models.

Sufficient material data is the basic prerequisite for the imple-
mentation of the data-driven mode. Although vast quantities of
data have been collected in databases around the world, this is
only a drop in the ocean when facing the diversity and complexity
of material problems. A simple estimation [7] suggests that over 2
million material systems can be composed out of just four ele-
ments, which leads to a total of trillions of multidimensional data
points at 1% of the data density. In fact, the full implementation of
the data-driven materials research is hindered by a lack of material
data. In this data era, the ability to quickly generate a large amount
of material data has become essential.

Inmany aspects, the existingmaterials research infrastructure is
designed and developed to fit the current needs. As a new material
research routine, MGE requires a whole new infrastructure to be
instituted, which should be designed as data-centric to cover from
data generation to data utilization, and thus would comprise
facilities of data, high-throughput experimentation, and high-
throughput computation. A data facility would include a database
in conformity with MGE concepts, a library of software modeling
tools based on AI methods, and an integrated data platform with
data collection, storage, processing, exchanging, sharing, and
e-collaboration capabilities [12]. High-throughput experimental
facilities and high-throughput computing facilities are effective
ways to rapidly generate a large amount of data, while
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simultaneously serving as a basis for the experiment-driven and
computation-driven modes. As such, the three technical elements
of MGE form a deeply fused and indispensable whole, and act in
synergy.

In addition to that a large volume of data being needed, the data
for MGE should be highly integrated, systematic, consistent, and
comprehensive. Ideally, the data should be generated from a ‘‘Data
Fab” (Fig. 1)—that is, a dedicated data-producing platform that can
either be a facility in a centralized location or in the form of a group
of virtually linked sites. An experimental ‘‘Data Fab” includes
setups of systematic and high-throughput synthesis and multi-
parameter characterization, which are capable of mass producing
data in batches in a standardized manner, just like an industrial
production line. It would be advantageous to build such a platform
in conjunction with large-scale scientific facilities such as a
synchrotron light source, neutron source, and so forth. A computa-
tional ‘‘Data Fab” can be a facility with a variety of high-throughput
computing software and hardware, which is able to generate a
large amount of comprehensive material data through batch com-
puting. A ‘‘Data Fab” will bring about profound changes in data
generation. First, comprehensive data will be intentionally mass
produced with a broader goal, rather than being collected from
scattered experiments or computation events with a very specific
purpose. Second, the ‘‘Data Fab” shifts data generation from indi-
vidual activities to organized efforts. Third, such organized efforts
will transform the societal characteristics of data from private
property to public resources. As a result, data quality, consistency,
and comprehensiveness will be improved, data sharing will
become simpler, and the total cost to society will be reduced.

At present, there are a list of databases based on high-through-
put computing platforms, or computational ‘‘Data Fab,” such as the
Materials Project [13], Automatic Flow for materials discovery
(AFLOW) [14], Open Quantum Materials Database (OQMD) [15],
Novel Materials Discovery (NOMAD) [16], and MatCloud [17].
The High-Throughput Experimental Materials Database (HTEM
DB) [18] is an open experimental database of inorganic materials
synthesized by high-throughput thin-film technology, developed
by the National Renewable Energy Laboratory (NREL), United
States. It has the basic characteristics of an experimental ‘‘Data
Fab.” The computational and experimental ‘‘Data Fab” supported
by the National Key Research and Development Program of China
is currently underway.

Another important task of MGE is to cultivate an open and col-
laborative ‘‘big science” culture in materials research and develop-
ment. In order to break down the barrier to data sharing among all
researchers, Wilkinson et al. [19] and Mons et al. [20] put forward
Fig. 1. Conceptualization of Data Fab—a dedicated facility capable of mass
producing data in batches in a standardized manner, just like an industrial
production line. An experimental Data Fab, as depicted on the right, contains setups
of systematic and high-throughput synthesis and characterizations to generate
multi-parameter data sets, including mechanical, electrical, optical, thermal,
magnetic and acoustic properties and performances, etc. Ideally all property
measurements are done on the same sample, preferably simultaneously, sometimes
in-situ. A computational Data Fab, as depicted on the left, can be a computing center
with a variety of high-throughput computation software and hardware, to generate
a large amount of comprehensive data from atomic to macroscopic scales via
various methods including Density Functional Theory, Molecular Dynamics,
CALPHAD method, phase field simulation, Finite Element Analysis, etc. through
batch computing. Data Fab can be a platform either in a centralized location or in
the form of a group of virtually linked sites.
the findable, accessible, interoperable, reusable (FAIR) data princi-
ple for scientific data. Establishing appropriate data standards is an
important aspect of ensuring that the data meets the FAIR princi-
ples. To this end, the recently released China Standards of Testing
and Materials (CSTM) General rule for materials genome engineering
data [21] is a first attempt to standardize the content of data (many
more standards for specific data format still need to be estab-
lished). Under the General rule for materials genome engineering
data, data is divided into three classes: sample information, source
data (unprocessed data), and processed data (data obtained by
analyzing and processing of existing data). Each individual action
event (i.e., sample preparation/characterization/calculation/data
processing) is defined as a stand-alone entry unit, and is assigned
an independent resource identification (such as digital object
identifier (DOI) or an identification per Chinese national standard
GB/T 32843–2016, etc.). Here, the sample can be either a real
object fabricated by experimentation or a virtual object created
by computation. Similarly, the source data can be a result of direct
measurement, or can be generated by computation/simulation
under given conditions. Each data entry should collect as complete
a set of metadata related to the action as possible Fig. 1. Listing
sample information as a class of data is a unique choice, the great-
est advantage of which is to make the samples themselves a part of
the resources conforming to FAIR principles, so that samples can be
found, shared, and reused, like data.

In summary, the data-driven mode of MGE brings about a new
paradigm in material innovation that is fundamentally different
from the current way of thinking and doing, and that needs to be
supported by a corresponding whole new infrastructure. The
infrastructure will include a data-centric integrated platform con-
sisting of facilities of data, high-throughput experimentation, and
high-throughput computation, in order to comprehensively cover
data production, storage, analysis, sharing, and collaboration capa-
bilities. Such a platform will generate and utilize an enormous
amount of data conforming to the FAIR principles to facilitate the
data-driven mode, while simultaneously serving as the basis for
exercising the experiment- and computation-driven modes.
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