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The real-time reverse transcription-polymerase chain reaction (RT-PCR) detection of viral RNA from spu-
tum or nasopharyngeal swab had a relatively low positive rate in the early stage of coronavirus disease
2019 (COVID-19). Meanwhile, the manifestations of COVID-19 as seen through computed tomography
(CT) imaging show individual characteristics that differ from those of other types of viral pneumonia such
as influenza-A viral pneumonia (IAVP). This study aimed to establish an early screening model to distin-
guish COVID-19 from IAVP and healthy cases through pulmonary CT images using deep learning tech-
niques. A total of 618 CT samples were collected: 219 samples from 110 patients with COVID-19 (mean
age 50 years; 63 (57.3%) male patients); 224 samples from 224 patients with IAVP (mean age 61 years;
156 (69.6%) male patients); and 175 samples from 175 healthy cases (mean age 39 years; 97 (55.4%) male
patients). All CT samples were contributed from three COVID-19-designated hospitals in Zhejiang
Province, China. First, the candidate infection regions were segmented out from the pulmonary CT image
set using a 3D deep learning model. These separated images were then categorized into the COVID-19,
IAVP, and irrelevant to infection (ITI) groups, together with the corresponding confidence scores, using
a location-attention classification model. Finally, the infection type and overall confidence score for each
CT case were calculated using the Noisy-OR Bayesian function. The experimental result of the benchmark
dataset showed that the overall accuracy rate was 86.7% in terms of all the CT cases taken together. The
deep learning models established in this study were effective for the early screening of COVID-19 patients
and were demonstrated to be a promising supplementary diagnostic method for frontline clinical doctors.

� 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction COVID-19, indicating that the common onset symptoms were
At the end of 2019, the coronavirus disease 2019 (COVID-19)
was reported [1–4]. On 24 January 2020, Huang et al. [5]
summarized the clinical characteristics of 41 patients with
fever, cough, myalgia, or fatigue. All 41 of these patients had
pneumonia, and their chest computed tomography (CT) examina-
tion showed abnormalities. Complications included acute
respiratory distress syndrome, acute heart injury, and secondary
infections. Thirteen (31.7%) patients were admitted to the
intensive care unit (ICU), and six (14.6%) died. Chan et al. [6] at
the University of Hong Kong, China found evidence of human-to-
human transmission of COVID-19 for the first time.
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Fig. 1. Typical transverse-section CT images: (a) COVID-19; (b) IAVP; and (c) no
pneumonia manifestations. Both (a) and (b) were taken within 10 d from the onset
of the symptoms.
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The Diagnosis and treatment protocol for novel coronavirus pneu-
monia (trial version 7) [7] recommended the etiological confirma-
tion of patients with COVID-19 by means of two technologies:
nucleic acid testing or specific antibody testing. The accessibility
of nucleic acid testing has greatly improved in the past three
months, but shortcomings still exist, such as high operating
requirements, a time-consuming procedure, and a relatively low
positive rate [8,9]. A study from Wuhan showed that the positive
rate of nucleic acid testing from oral swabs, anal swabs, and the
blood of infected patients was 53.3%, 26.7%, and 40.0% respectively
[10]. Furthermore, antibody detection is not appropriate for early
screening, since there is a window phase for antibodies testing.
Long et al. [11] reported that the median time of seroconversion
for both immunoglobulin G (IgG) and IgM was about 13 d post
onset.

At the same time, radiology experts noticed that the manifesta-
tions of COVID-19 cases as seen through CT imaging had their own
characteristics, which differed from those of the CT imaging
manifestations of other viral pneumonias, such as influenza-A viral
pneumonia (IAVP), as shown in Fig. 1. Therefore, clinical doctors
chose to replace nucleic acid testing with lung CT imaging as one
of the early diagnostic criteria for this new type of pneumonia
[12], with the aim of immediately curbing transmission.

With the rapid development of computer technology, digital
image processing technology has been widely applied in the
medical field, including organ segmentation and image enhance-
ment and repair, thereby providing support for subsequent medi-
cal diagnosis [13,14]. Deep learning technologies, such as the
convolutional neural network (CNN) with its strong ability of non-
linear modeling, have also been applied extensively in medical
image processing [15–18]. Relevant studies have been conducted
on the diagnosis of pulmonary nodules [19], the classification of
benign and malignant tumors [20,21], and pulmonary tuberculosis
analysis and disease prediction [22–24] worldwide.

In this study, multiple CNN models were used to classify CT
image datasets and calculate the infection probability of COVID-
19. These findings might greatly assist in the early screening of
patients with COVID-19.
2. Materials and methods

2.1. Study dataset

A total of 618 transverse-section CT samples were collected in
this study, including 219 from 110 patients (mean age 50 years;
63 (57.3%) male patients) with COVID-19 from the First Affiliated
Hospital, College of Medicine, Zhejiang University; Wenzhou Cen-
tral Hospital; and the First People’s Hospital of Wenling from 19
January to 14 February 2020. All three hospitals are designated
COVID-19 hospitals in Zhejiang Province. Every COVID-19 patient
was confirmed with real-time reverse transcription-polymerase
chain reaction (RT-PCR) testing from sputum or nasopharyngeal
swab, and cases with no image manifestations on the chest CT
images were excluded. In addition, there was a gap of at least
two days between CT datasets scanned from the same patient in
order to ensure the diversity of samples. The remaining 399 CT
samples were collected from the First Affiliated Hospital, College
of Medicine, Zhejiang University as the controlled experiment
group. Of these, 224 CT samples were from 224 patients (mean
age 61 years; 156 (69.6%) male patients) with IAVP including
H1N1, H3N2, H5N1, H7N9, and so forth; 175 CT samples (mean
age 39 years; 97 (55.4%) male patients) were from healthy people.
The diagnosis of IAVP was proved by the RT-PCR detection of viral
RNA from sputum or nasopharyngeal swab. There were 198
(90.4%) COVID-19 and 196 (87.5%) IAVP cases in early or progres-
sive stages; the remaining 9.6% and 12.5% cases, respectively, were
in the severe stage; no significant differences of stages between
two diseases. IAVP CT samples were used because it was critical
to distinguish IAVP from patients with suspected COVID-19 cur-
rently in China.

The ethics committee of the First Affiliated Hospital, College of
Medicine, Zhejiang University approved this study, and the
research was performed in accordance with relevant guidelines
and regulations. All participants and/or their legal guardians signed
an informed consent form before the study took place.

A total of 528 CT samples (85.4%) were used for training and
validation sets, including 189 samples from patients with COVID-
19, 194 samples from patients with IAVP, and 145 samples from
healthy people. The remaining 90 CT sets (14.6%) were used as
the test set, including 30 COVID-19 cases, 30 IAVP cases, and 30
healthy cases. Furthermore, the test cases of the CT set were
selected from people who had not been included in the training
stage.

2.2. Process

Fig. 2 shows the whole process of COVID-19 diagnostic report
generation in this study. First, the CT images were preprocessed
to extract the effective pulmonary regions. Second, a three-
dimensional (3D) CNN segmentation model was used to ‘‘segment”
multiple candidate image cubes. The center image together with
its two neighbors of each cube was collected for further steps.
Third, an image classification model was used to categorize all
the image patches into three types: COVID-19, IAVP, and irrelevant
to infection (ITI). Image patches from the same cube ‘‘voted” for the
type and confidence score of this candidate as a whole. Finally, the
overall analysis report for one CT sample was calculated using the
Noisy-OR Bayesian function [25].
3. Theory and calculation

3.1. Dataset preprocessing and candidate region segmentation

The study was expedited by using the same method and models
for the data preprocessing and candidate region segmentation
stages as those used in a previous study on pulmonary tuberculosis
[23]. The focus of the infections from pulmonary tuberculosis had
multiple structures and types, including miliary, infiltrative, case-
ous, tuberculoma, and cavitary. The model, VNet–inception-
residual network (IR)–region proposal network (RPN) [23], used a
VNet [26] backbone with an IR [27] structure as the feature-
extracting part, which was followed by an RPN to segment
candidate regions. Although it was trained for the purpose of pul-
monary tuberculosis detection, the model was verified by profes-
sional radiologists to be good enough to separate candidate
patches for viral pneumonia.

The 3D segmentation process mentioned here is not a tradi-
tional pixel-level segmentation operation such as VNet or 3D



Fig. 2. Process flow chart—take one COVID-19 case as example. HU: Hounsfield unit.
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u-net [28]. As the border between a healthy region and the focus of
infection is usually blurred and indistinct, it was extremely diffi-
cult to label pixel-level masks for lesion regions of the pneumonia.
The variable 3D structures of the lesion regions also aggravated
this work. Therefore, the segmentation operation used here was
more like the operations in an object-detection algorithm. An
RPN structure was used to capture the region of interest with 3D
bounding boxes instead of pixel-level segmented masks.

Moreover, in the study of pulmonary tuberculosis, the VNet–IR–
RPNmodel was used for both segmentation and classification. Only
the segmentation-related bounding box regression part was pre-
served, regardless of the classification results, because only the for-
mer task was required at this stage in this study.
3.2. Image data processing and augmentation

A large number of non-infection regions irrelevant to this study
were also separated using the 3D CNN segmentation model,
including the pulmonary fibrotic structure, calcification spots,
and healthy regions that had been identified incorrectly. Therefore,
the extra category of ITI was added to the COVID-19 and IAVP
categories.

This study included 618 CT samples (219 COVID-19, 224 IAVP,
and 175 healthy cases). Subsequently, a total of 3957 candidate
cubes were generated from the 3D CNN segmentation model. Only
the territory close to the middle of this cube contained maximum
information about the focus of infection. Hence, only the center
image together with its two neighbors of each cube was collected
to represent this region for further classification steps. Next, all
image patches were manually classified by two professional
radiologists into two types: ITI and pneumonia. The images in
the latter category were recognized automatically as COVID-19
or IAVP based on the clinical diagnosis results.

A total of 11 871 image patches were acquired from the afore-
mentioned steps, including 2634 COVID-19, 2661 IAVP, and 6576
ITI. According to the previous dataset assignment, the training
and validation sets had 528 CT samples, which were equivalent
to 10161 (85.6%) images, including 2301 COVID-19, 2244 IAVP,
and 5616 ITI images. The remaining 1710 (14.4%) images were
reserved for the test dataset.

The sampling possibility of the COVID-19 and IAVP cases was
expanded three times to balance the specimen number of ITI cases,
in order to reduce the influence of the uneven distribution of
different image types on the present dataset. At the same time,
generic data-expansion mechanisms, such as random clipping,
left–right flipping, up–down flipping, and mirroring operation,
were performed on specimens to increase the number of training
samples and prevent data overfitting.

3.3. Deep learning model for classification

3.3.1. Location-attention classification
The work of Kanne [29] and Chung et al. [30] has shown at least

three distinguishing features of COVID-19: a ground-glass appear-
ance, peripheral distribution along with the pleura, and usually
more than one independent focus of infection in a single case, as
shown in Fig. 3.

The models were optimized based on these findings. The image
classification model was designed to distinguish the appearance
and structure of different infections. Moreover, relative distance
from the edge was used as an extra weight for the model in order
to learn the relative location information of the patch on the pul-
monary image. Focuses of infection that were located close to the
pleura were more likely to be recognized as COVID-19.

The relative distance from the edge of each patch was calcu-
lated as follows:

Step 1: Measure the minimum distance from the mask to the
center of the patch (double-headed arrow in Fig. 3(c)).

Step 2: Obtain the diagonal of the minimum circumscribed rect-
angle of the pulmonary image (Fig. 3(d)).

Step 3: Obtain the relative distance from the edge by dividing
the distance from Step 1 by the diagonal from Step 2.

3.3.2. Network structure
Two classification models were evaluated in this study, as

shown in Fig. 4. One was a relative traditional residual network
(ResNet)-based [31] model and the other was designed based on
the first network structure by concatenating the location-
attention mechanism in the full-connection layer to improve the
overall accuracy rate. This mechanism was added to the first full-
connection layer to maximize the influence of this factor on the
whole network.

The classical ResNet-18 network structure was used for image
feature extraction. Pooling operations were also used for the
dimensional reduction of data in order to prevent overfitting and
improve the problem of generalization.

The output of the convolution layer was flattened to a 256-
dimensional feature vector and then converted into a 16-
dimensional feature vector using a full-connection network. For
the location-attention classification model, the value of the



Fig. 3. (a) COVID-19 image with three ground-glass focuses of infections; (b) IAVP image with four focuses of infections; (c) the minimum distance from the mask to the
center of the patch (double-headed arrow); (d) diagonal of the minimum circumscribed rectangle of the pulmonary image.

Fig. 4. The network structure of traditional ResNet-18-based classification model (without the relative distance-from-edge mechanism). The location-attention classification
model was built on the backbone of ResNet-18 by concatenating the location-attention mechanism in the full-connection layer to improve the overall accuracy rate. Conv2D:
convolution 2D.
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relative distance from the edge was first normalized to the same
order of magnitude, and then concatenated to this full-connection
network. Next, three full-connection layers were followed to
output the final classification result together with the confidence
score.

3.4. Diagnostic report

3.4.1. ‘‘Voting” for each candidate region
Inspired by the theory of the Bagging prediction algorithm [32]

in machine learning technology, one candidate region was repre-
sented by three image patches: the center image and its two neigh-
bors. These three images ‘‘voted” for the whole region according to
the following strategies:

(1) If at least two images were categorized into the same type,
then the image with the maximum confidence score in this type
was selected.

(2) Otherwise, the image with the maximum confidence score
was picked (no type dominated).

Regions that ‘‘voted” as the ITI type were ignored in the next
step.
3.4.2. Noisy-OR Bayesian function to deduce the overall report
One of the remarkable features of COVID-19 is that there is

more than one independent focus of infection in a single CT case
[29,30]. It is reasonable for the overall probability to be much lar-
ger than 50% if a patient has two COVID-19 regions, both having a
50% probability. Accordingly, the total infection confidence score
(C) for one infection type was calculated using the probability for-
mula of the Noisy-OR Bayesian function as follows:

C ¼ 1�
Y

i

1� Cið Þ ð1Þ

where Ci represents the confidence of the ith region.
The confidence scores of two types, CCOVID-19 and CIAVP, were

deduced accordingly; this CT sample was then categorized into
the corresponding group according to the dominating C value.

Moreover, the following strategies were used to export the con-
fidence possibility of an entire CT sample to provide a reasonable
reference for clinical doctors:

(1) If both CCOVID-19 and CIAVP were equal to 0, then this CT sam-
ple belonged to the healthy case.



1126 X. Xu et al. / Engineering 6 (2020) 1122–1129
(2) If one of the C values was equal to 0, then the other C value
was exported directly as the confidence possibility of this CT
sample.

(3) Otherwise, the softmax function was used to generate two
confidence scores.

Sj ¼ eCj

P
k eCk

ð2Þ

where j, k2(COVID-19, IAVP). Sj was exported as the confidence
score for each type of infection. The softmax operation normalized
the sum of Sj to 100% and did not alter the judgment result for infec-
tion types. However, manual investigation should be involved from
the perspective of clinical doctors, as some COVID-19 suspected
regions were captured by the models even though they might not
be the majority type.
4. Results

4.1. Evaluation platform

An Intel i7-8700k central processing unit (CPU) with NVIDIA
graphics processing unit (GPU) GeForce GTX 1080ti was used as
the testing server. The processing time largely depended on the
number of image layers in one CT set. On average, it took less than
30 s for a CT set with 70 layers to go from data preprocessing to the
output of the report.

4.2. Training process

As one of the most classical loss functions used in classification
models, cross entropy was used in this study. When the epoch
number of training iterations increased to more than 1000, the loss
value did not obviously decrease or increase, suggesting that the
models converged well to a relative optimal state without distinct
overfitting. The training curves of the loss value and the accuracy
rate for two classification models are shown in Fig. 5. The model
with the location-attention mechanism achieved better perfor-
mance on the training dataset, in comparison with the original
ResNet.

4.3. Performance on test dataset

4.3.1. Performance measurement
A confusion matrix was used, which is a table that is often used

to describe the performance of a classification model on test data-
set for which the true values are known. It allows the visualization
of the performance of an algorithm.

The accuracy (A) of a method determines how correct the pre-
dicted values are. Precision (P) determines the reproducibility of
the measurement, or how many of the predictions are correct.
Recall (R) indicates how many of the correct results are discovered.
The f1-score uses a combination of precision and recall to calculate
a balanced average result. The following equations show how to
Fig. 5. Training curve of (a) loss and (b) accur
calculate these values, where TP, TN, FP, and FN are true positive,
true negative, false positive, and false negative, respectively.

A ¼ TPþ TN
TPþ FPþ TNþ FN

ð3Þ

P ¼ TP
TPþ FP

ð4Þ

R ¼ TP
TPþ FN

ð5Þ

f 1-score ¼ 2� P � R
P þ R

ð6Þ
4.3.2. Image preprocessing and segmentation
A total of 90 CT samples were randomly selected from each

group (30 CT sets from COVID-19, 30 from IAVP, and 30 from
healthy cases) for the test dataset. The choice of the test dataset
followed the rule that any CT of this person had not been trained
in the previous stage, in order to avoid having a similar CT that
had been learned by the models. Moreover, the thresholds for both
the image preprocessing and the segmentation were optimized to
be more suitable for the current study. In the image preprocessing
stage, the threshold of the Hounsfield unit (HU) value, which was
used to binarize the resampled images, was raised to �200 in order
to maximize the filtering out of valid lung. The segmentation
model VNet–IR–RPN was configured to reduce the proposal’s
threshold to maximize separate candidate regions, even through
many normal regions could be included. We noticed that one CT
case from the COVID-19 group that had no image patches was seg-
mented as COVID-19 or IAVP, and was hence wrongly categorized
as healthy case, as shown in Fig. 6. These focuses of infection were
barely noticeable with the human eye, and seemed too tenuous to
be captured by the segmentation model in this study.

4.3.3. Classification for a single image patch
A total of 1710 image patches were acquired from 90 CT sam-

ples, including 357 COVID-19, 390 IAVP, and 963 ITI (ground
truth). To determine the optimal approach, the design of each
methodology was assessed using a confusion matrix. Two classifi-
cation models were evaluated: with and without the location-
attention mechanism, as shown in Tables 1 and 2.

The average f1-score and the overall accuracy rate for the two
models were 0.750/0.764 and 78.5%/79.4%, respectively. Further-
more, the location-attention mechanism was used to improve the
respective accuracy rate of the COVID-19 and IAVP groups, and
was shown to result in a remarkable improvement of 5.0%
(260/273) and 1.4% (276/280). This evidence indicates that the sec-
ond model with the location-attention mechanism achieved better
performance. Therefore, that model was used for the rest of this
study.

Moreover, as the ITI group was used to remove disturbing
factors in this study, it was ignored and not counted by the
acy rate for the two classification models.



Table 1
Confusion matrix of two classification models for the COVID-19, IAVP, and ITI groups.

Group COVID-19 (M1/M2) IAVP (M1/M2) ITI (M1/M2)

COVID-19 (M1/M2) 260/273 47/32 50/52
IAVP (M1/M2) 55/46 276/280 59/64
ITI (M1/M2) 75/77 81/82 807/804

M1: the ResNet model; M2: the ResNet model with the location-attention
mechanism.

Table 2
Recall, precision, f1-score, and accuracy ratea of two classification models for the
COVID-19, IAVP, and ITI groups.

Group R P f1-score

COVID-19 (M1/M2) 0.728/0.765 0.667/0.689 0.696/0.725
IAVP (M1/M2) 0.708/0.718 0.683/0.711 0.695/0.714
ITI (M1/M2) 0.838/0.835 0.881/0.874 0.859/0.854

a The overall accuracy rates of M1 and M2 for the three groups are 78.5% and
79.4%; the accuracy rates of M1 and M2 for COVID-19 and IAVP groups are 71.8% and
74.0%.

Table 3
Confusion matrix for the COVID-19, IAVP, and ITI groups after voting.

Group COVID-19 IAVP ITI

COVID-19 97 15 7
IAVP 18 98 14
ITI 5 2 314

Table 4
Recall, precision, f1-score, and accuracy ratea for the COVID-19, IAVP, and ITI groups
after voting.

Group R P f1-score

COVID-19 0.815 0.808 0.811
IAVP 0.754 0.852 0.800
ITI 0.978 0.937 0.957

a The overall accuracy rate for the three groups was 89.3%; and the average
accuracy rate for COVID-19 and IAVP groups was 78.3%.

Fig. 6. All CT images (a–c) were from a single CT case. The focuses of infections
were pointed out by arrows.

Table 5
Confusion matrix of the export of the Noisy-OR Bayesian function for COVID-19, IAVP,
and healthy cases.

Group COVID-19 IAVP Healthy

COVID-19 26 3 1
IAVP 4 25 1
Healthy 2 1 27

Table 6
Recall, precision, f1-score, and accuracy ratea of the export of the Noisy-OR Bayesian
function for COVID-19, IAVP, and healthy cases.

Group R P f1-score

COVID-19 0.867 0.813 0.839
IAVP 0.833 0.862 0.847
Healthy 0.900 0.931 0.915

a The overall accuracy rate for the three groups is 86.7% and the average accuracy
rate for COVID-19 and IAVP groups was 85.0%.
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Noisy-OR Bayesian function in the final step. To retain consistency
in the next steps, we further compared the average f1-score and
accuracy rate for the first two groups, which were 0.720 and
74.0%, respectively.

4.3.4. ‘‘Voting” for a region
Each image patch ‘‘voted” to represent the entire candidate

region. A total of 570 candidate cubes were distinguished, includ-
ing 119 COVID-19, 130 IAVP, and 321 ITI regions (ground truth).
The confusion matrix of the voting result and the corresponding
recall, precision, and f1-score are shown in Tables 3 and 4,
respectively.

The average f1-score and overall accuracy rate for the three
categories were 0.856 and 89.3%, respectively, which showed a
respective improvement of 12.0% and 12.5% when compared with
the previous step. As for the first two groups, the average f1-score
and accuracy rate were 0.806 and 78.3%, respectively, which
showed a respective increase of 11.9% and 5.8%.

4.3.5. Result of the classification of CT samples as a whole
Noisy-OR Bayesian function was used to identify the dominat-

ing infection types. Three kinds of results were exported in the
final report: COVID-19, IAVP, and healthy cases. The experimental
results are summarized in Tables 5 and 6.

Only the average f1-scoreand the accuracy rate of the COVID-19
and IAVP groups were counted to compare with the previous
results. These were 0.843 and 85.0%, respectively, which showed
a promotion of 4.6% and 8.6% in this step.

A consistent improvement of the average f1-score and accuracy
rate was observed. The accuracy rate of the classification of COVID-
19 and IAVP was promoted from 74.0% (single image patch) to
78.3% (image cube), and then to 85.0% (overall CT case based on
the dominating infection types). Measured by all three benchmark
groups, the overall classification accuracy rate was 86.7%.

Moreover, a series of images with highlighted focuses of infec-
tion would also be exported (examples shown in Fig. 7).

5. Discussion

COVID-19 has caused serious public health and safety problems,
and hence has become a global concern [33–35]. In the early stage
of COVID-19, some patients may already have positive pulmonary
imaging findings but no sputum or negative nucleic acid testing
results from sputum or nasopharyngeal swabs. These patients are
not diagnosed as suspected or confirmed cases. Thus, they are
not isolated or treated in a timely manner, making them potential
sources of infection. Meanwhile, CT examination is routinely per-
formed on every patient with fever and respiratory symptoms in
the early stage, and is repeated for dynamic observation, since it
is cheap and easy to operate. Using CT images to screen patients
can improve the early detection of COVID-19, and ease the pres-
sure on laboratory nucleic acid testing.

The CT imaging of COVID-19 presents several distinct manifes-
tations, according to previous studies [29,30,36]. These manifesta-
tions include focal ground-glass shadows mainly distributed along
the pleura, multiple consolidation shadows accompanied by the
‘‘halo sign” of the surrounding ground-glass shadow, multiple
consolidations of different sizes, and grid-shaped high-density
shadows. An experienced radiologist can make judgments on the



Fig. 7. Examples of two CT cases reports with bounding boxes on the original
images to highlight the focus of infections. Images (a)–(c) are from one case of IAVP.
Images (d)–(f) are from one case of COVID-19. The segmented region of pulmonary
was an image cube and only the center image was marked with a bounding box to
facilitate the interpreting of the lesions.
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possibility of COVID-19 based on his or her clinical experience;
however, such judgments are easily influenced by subjective
factors and individual proficiency. In comparison, deep-learning-
system-based screen models reveal more specific and reliable
results by digitizing and standardizing the image information.
Hence, they can assist physicians in making a clinical decision
more accurately.

There have been many precedents for artificial intelligence
(AI)-assisted models that are now widely used in clinical practice,
such as the pulmonary nodules diagnostic system. In June 2019,
Ardila et al. [20] proposed a deep learning algorithm that used a
patient’s current and prior CT volumes to predict the risk of lung
cancer. This model achieved an accuracy rate of nearly 94.4% on
6716 cases, and performed similarly on an independent clinical
validation set of 1139 cases. In addition to having high accuracy
rate, an AI-assisted model can do the work faster and more
efficiently than a human.

In this study, deep learning technology was used to design a
classification network for distinguishing COVID-19 from IAVP. In
terms of the network structure, the classical ResNet was used for
feature extraction. A comparison was made between models with
and without an added location-attention mechanism. The experi-
ment showed that the aforementioned mechanism could better
distinguish COVID-19 cases from others. Furthermore, multiple
enhancement methods were involved in our study, such as image
patch vote and Noisy-OR Bayesian function, in order to determi-
nate the dominating infection types. All these efforts produced a
consistent improvement in the average f1-score and accuracy rate.

This study has some limitations. First, the manifestations of
COVID-19 may have some overlap with the manifestations of other
pneumonias such as IAVP, organizing pneumonia, and eosinophilic
pneumonia. We only compared the CT manifestation of COVID-19
with that of IAVP. A clinical diagnosis of COVID-19 still needs to
combine the patient’s contact history, travel history, first
symptoms, and laboratory examination. Second, the number of
model samples was limited in this study. The number of training
and test samples should be expanded to improve the accuracy in
the future. More multi-center clinical studies should be conducted
to cope with the complex clinical situation. Moreover, efforts
should be made to improve the segmentation and classification
model. A better exclusive model could be designed for training,
the segmentation and classification accuracy of the model could
be improved, and the generalization performance of this algorithm
could be verified with a larger dataset.
6. Conclusions

In this multi-center case study, we presented a novel method
that can screen CT images of COVID-19 automatically by means
of deep learning technologies. Models with a location-attention
mechanism can classify COVID-19, IAVP, and healthy cases with
an overall accuracy rate of 86.7%, and would be a promising sup-
plementary diagnostic method for frontline clinical doctors.
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