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In late November 2020, DeepMind Technologies, the London-
based, artificial intelligence (AI)-focused subsidiary of Google’s
parent company, Alphabet, announced that its AlphaFold system
had achieved ‘‘unparalleled levels of accuracy” in predicting the
complex shape of proteins based solely on their genetic sequences
[1]. The feat meets a 50-year-old grand challenge in biology, the
extraordinarily difficult problem of predicting how proteins fold.
The advance is expected to have a significant impact on drug dis-
covery and the burgeoning field of protein design, possibly even
helping to tackle the coronavirus disease 2019 (COVID-19) pan-
demic [2], especially with the rapid emergence of severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2) variants [3].

‘‘Protein folding is one of these holy grail-type problems in biol-
ogy,” said Demis Hassabis, founder and chief executive officer of
DeepMind, at the time. ‘‘We have always hypothesised that AI
should be helpful to make these kinds of big scientific break-
throughs more quickly.”

Proteins are large, complex molecules that play a key role in vir-
tually every aspect of the biological world. It is the shape of proteins
that define their functions: hemoglobin transports nutrients,
enzymes catalyse chemical reactions, collagen provides structure,
insulin regulates blood glucose, and antibodies provide immunity.
These and all other proteins are created from the same palette of
20 amino acids in the standard genetic code, connected in long
chains.

Constructed amino acid by amino acid by living organisms or
through synthetic processes, proteins naturally twist and fold
together into complex shapes, full of bends, helixes, and sheets.
Antibody proteins are ‘‘Y”-shaped, for example, which enables
them to latch on to and help neutralize disease-causing bacteria
or viruses. Conversely, harmful genetic mutations can lead to the
production of misfolded, non-functional proteins, such as those
that cause cystic fibrosis.

The code for producing proteins is contained in deoxyribonucleic
acid (DNA). But while DNA sequencing reveals the sequence of
amino acids that a given protein comprises, it does not tell how they
fold into their ultimate shape. And the larger a protein’s sequence,
themore difficult it becomes to predict its shape. The chain of a typ-
ical protein could, in theory, fold into any of an astronomical num-
ber of conformations, making attempts at brute force calculation
futile [4].

The protein folding challenge originated in 1972 when, in his
acceptance of the Nobel Prize in Chemistry, the American
biochemist Christian Anfinsen declared that the amino acid
sequence of a protein should be sufficient to determine, in a specific
environment, its folded shape [5]. For decades, however, the only
way to accurately determine the shape of a protein of interest has
been to use expensive and painstaking methods such as nuclear
magnetic resonance and X-ray crystallography, and, more recently,
cryo-electron microscopy. It can take years of such experimental
work to delineate the shape of a single protein, with no guarantee
of success.

In 1994, in a bid to coalesce a global community of scientists
around the problem, John Moult, a professor of cell biology and
molecular genetics at the University of Maryland in Rockville,
MD, USA, and colleagues created a large-scale experiment to assess
computational methods for generating protein structures [6]. This
effort became the biennial Critical Assessment of Structure Predic-
tion (CASP) event, which Hassabis refers to as the ‘‘Olympics of
protein folding.”

The CASP competition has three rolling stages: ① collecting
about 100 protein targets, the shapes of which have recently been
uncovered by lab work, but crucially, not yet published; ② provid-
ing the genetic sequences of these targets to teams around the
world, which then set to work using software systems to predict
their shapes; and ③ blindly assessing the submitted predictions.
CASP judges the accuracy of the predicted shapes primarily using
a measure called the ‘‘Global Distance Test” (GDT), which ranges
from 0 to 100. Moult said that a score of around 90 is comparable
to results obtained through experimentation.

Progress since 1994 had been steady but slow—until CASP13 in
2018, when DeepMind entered for the first time, with an early ver-
sion of AlphaFold [7]. The teamwon by a large margin, startling the
CASP community, but AlphaFold’s predictions were still far from
the actual structures of the target proteins, with a median GDT of
59 (Fig. 1).

For CASP14 in 2020, however, DeepMind came back with a
completely revamped AlphaFold, and this time the results were
stunning. ‘‘It was extraordinary,” said Moult. ‘‘You see one surpris-
ing prediction come in, and you think, ‘what’s going on here?’. By
when you have three or four structure predictions that are unbe-
lievably accurate, you realise something very important has
happened.”

AlphaFold scored 87 GDT in the hardest category, with a median
score of 92.4 GDT across all the protein targets (Fig. 2) [8]. The sys-
tem’s average error is approximately 0.16 nanometres—roughly
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Fig. 1. The median accuracy of the winning team’s predictions—using a measure
called the GDT—in the free-modelling category, the toughest category in the
biennial CASP event. DeepMind’s AlphaFold system took first place in both the 2018
and 2020 competition. Credit: DeepMind, with permission.

Fig. 2. The structures of several proteins predicted as part of CASP14 by AlphaFold
(blue) superimposed on experimentally determined structures (green). They are
remarkably close matches. RNA: ribonucleic acid. Credit: DeepMind, with
permission.
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the width of an atom. To deliver this coup, the DeepMind team
developed a novel, attention-based neural network system [9]. In
machine learning, ‘‘attention” means a design that mimics human
attention, insofar as the system identifies key aspects of the data
and gives those more weight, while paying less attention to aspects
of the data that it deems less important. In-depth technical details
Fig. 3. An overview of AlphaFold’s architecture. DeepMind has yet to provide in-depth d
‘spatial graph,’ where amino acid residues are the nodes and edges connect the residues
Credit: DeepMind, with permission.
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of this deep-learning system are yet to be shared—but peer-
reviewed papers are expected later this year. AlphaFold (Fig. 3)
[1] was trained using publicly available data from the Protein Data
Bank (PDB)—which contains the structures of about 175 000 pro-
teins—in addition to other large databases containing the
sequences of proteins of unknown structure. The training period
required 16 or so Google TPUv3 coprocessors (equivalent to
between 100–200 graphic processing units) run over ‘‘a few
weeks,” according to the DeepMind team, with individual protein
structure predictions completed ‘‘in a matter of days” [1].

Moult has heard neural networks dismissed as glorified pattern
recognition, yet the degree of atomic-level knowledge that Alpha-
Fold was able to distill from its training was remarkable, he said.
‘‘The level of abstraction it achieved was profound. It is as if the
machine, in an alien sense, has learned the physics. It can take
any situation in which protein-type structures are involved and
get it right at the atomic level. You cannot do that just by recogniz-
ing a set of patterns in the training data.”

The breakthrough opens opportunities across biology, but drug
discovery is where it may have its most immediate impact. Most
drugs work by binding to proteins in the body, triggering changes
in how they function. With machine-learning systems like Alpha-
Fold, it should become possible to quickly work out the shape of
proteins of interest, and then design drugs—or repurpose existing
ones—to bind effectively to those proteins.

For example, as the scale of the coronavirus pandemic became
evident in early 2020, and later as part of CASP14, DeepMind took
the genetic sequences of several proteins that form part of the
SARS-CoV-2 virus and provided structural predictions that were
then largely borne out by experiment [10]. Such work has the
potential to speed up the design of drugs that could counteract
the disease. In fact, protein design is the flip side of shape predic-
tion: Once a machine has a firm understanding of the atomic pro-
cesses that underpin protein folding, it becomes easier to design
proteins that fold into the shape required.

‘‘We’ve been using current protein design methods to develop
COVID-19 therapeutics, vaccines, and sensors that look very
promising and are already in, or headed for, clinical trials,” said
David Baker, director of the Institute for Protein Design, based at
the University ofWashington in Seattle, WA, USA, who led the team
that came in second to DeepMind at CASP14 [11]. ‘‘With improved
protein design, we should be able to do even better, faster.”

Technology like AlphaFold could also be used to explore pro-
teins and enzymes that might be used to break down industrial
waste, or old plastics, for example, or efficiently draw carbon out
of the atmosphere. ‘‘The immediate impact on the field of
etails about its system but describes how ‘‘a folded protein can be thought of as a
in close proximity” [1]. MSA: multiple sequence alignment; 3D: three-dimensional.
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structural biology is huge,” said Osnat Herzberg, a professor of bio-
chemistry at the University of Maryland and contributor of protein
structures to CASP14. ‘‘These approaches will have important
medical applications and lead to technological advances that we
currently cannot imagine.”

A more cautious note was sounded by David Jones, professor of
bioinformatics and head of the Bioinformatics Group at University
College London. ‘‘Results like this have woken people up to the fact
that machine learning can have a huge influence beyond the obvi-
ous areas of machine vision and natural language processing,” Jones
said. ‘‘But I am not amongst the people who believe we will have
new treatments for diseases just becausewe can nowmodel protein
structures much more accurately than we could before. It is impor-
tant to test systems as complex as this under a lot of different con-
ditions before we can be sure of what its capabilities or limitations
are.”
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