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1. Introduction

The real question is not whether machines think but
whether men do.

Burrhus Frederic Skineer
Dedicated manufacturing systems are fading out as future

manufacturing (i.e., Industry 4.0 [1]) demands ultra-flexible smart
manufacturing systems that can self-adapt to production process
changes resulting from the varied batch sizes of personalized
products [2–4]. The manufacturing shop-floor can become an
unstructured environment where manufacturing systems and
processes change their configurations dynamically via adaptive
near-real-time decision-making. One emerging trend to make
manufacturing flexible and reconfigurable is to introduce collabo-
rative machines that work alongside humans with high productivi-
ty [5–7]. While these devices, powered by artificial intelligence (AI)
[7], are radically changing how work gets done and who does it in
what way, we believe that the more substantial impact will be in
augmenting human capabilities and enhancing human well-being.
Future societies will see a harmonious ecosystem in which humans
and machines cooperate to meld human cognitive strengths with
the unique capabilities of smart machines in order to create intelli-
gent teams that are adaptive to rapidly changing circumstances
[8,9].

In our view, we are at the point in time at which Rosenbrock’s
warning that ‘‘humans should never be subservient to machines
and automation, but machines and automation should be sub-
servient to humans” has become a foreseeable possibility [10].
Future smart machines can establish trustworthy relationships
with humans via proactive communication, empathic understand-
ing, and need-driven collaborations, which can lead to high-perfor-
mance human beings and productive yet flexible manufacturing
processes. However, little work has been reported on developing
a human-centric manufacturing system that places human benefits
at the center of the system optimization goal. Research on human–
machine collaboration in the manufacturing domain has only
focused on human–machine interfaces [11] and human factors in
manufacturing systems, such as ergonomics and mental workload,
to improve the overall system performance [12]. To bridge this gap,
we herein present an anthropocentric human–machine symbiosis
framework that augments human capabilities and well-being in
an industrial working environment. The essential elements of this
framework and the enabling technologies are discussed.
2. Human–machine symbiosis framework

In the following sections, we describe a general human–
machine symbiosis framework for the future of collaborative
manufacturing. Of particular interest are the following features,
which are attributed to human–machine symbiosis: ① human
centrality—the ability to focus on human desire and judgment;
② social wellness—the ability to detect and respond to human
physical and mental performance in order to maximize human
wellness; and ③ adaptability—the ability to learn from the
environment and change behavior based on that learning.

Fig. 1 presents a human–machine symbiosis framework in
which humans and machines form intelligent teams to collectively
sense, reason, and act in response to incoming manufacturing tasks
and contingencies. The main communication channels between
humans and machines are discussed in Section 2.1, while human–
machine understandings are addressed in Section 2.2. Section 2.3
presents our perspective on human–machine collaborative intelli-
gence. Section 2.4 discusses human-centered collaboration mecha-
nisms, which are a crucial feature of future human–machine teams.
2.1. Human–machine communication

Human–machine communication can be established via a
variety of communication channels, such as voice commands
[13,14], gestures [13,15–17], body pose [15,18], brainwaves
[19,20], and augmented reality (AR)/virtual reality (VR) [21–23],
in addition to traditional human–machine interfaces. These new
communication channels, which are enabled by AI technologies
such as image processing and speech recognition, have brought
human–machine communication much closer to natural human
interactions. Table 1 lists typical human–machine communication
channels according to application scenario and usability. Voice
commands, physical interactions, text, image, video, AR, and
VR can be used for bidirectional communications between
humans and machines, and are generally easy to use if developed
properly. Gesture, body pose, and brainwave recognition,
although promising, are more suitable for human-to-machine
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Table 1
Human–machine communication channels.

Method Human-to-
machine

Machine-to-
human

Usabilitya

Voice commands
p p

High
Physical inputs/

outputs

p p
High

Text
p p

High
Image

p p
Medium

Video
p p

Medium
AR/VR

p p
Medium

Gesture
p

— Medium
Body pose

p
— Medium

Brainwaves
p

— Low

a The usability evaluation of these technologies is the authors’ qualitative
assessment of their effectiveness, efficiency, and satisfactoriness. No solid quanti-
tative comparison between these technologies in the context of human–machine
communication is available yet.

Fig. 1. Anthropocentric human–machine symbiosis framework. AR: augmented reality; VR: virtual reality.
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communication and can be cumbersome to implement in a factory
environment.

In addition to exchanging information between humans and
machines, communication must adapt to content, context, and
identity. Human–machine communication is dynamic, contingent
upon the messages being exchanged at a specific moment within
a particular context. Effective machine-to-human communications
tailor the communication style based on ① the nature of the con-
tent, such as whether the content is a suggestion, warning, or
instruction; ② the context, such as whether a machine is taking
an assistive role or not, and whether the situation is time-critical
or not; and ③ the culture, education background, and communica-
tion style of the human partner, such as whether the human part-
ner is from a high-context or a low-context culture [24].

2.2. Human–machine understanding: Empathy skills

Physical and mental state can have a significant influence on
personal work performance [25,26]. Physical responses, such as
muscle fatigue build-up [12] and bad posture [27], can lead to
increased difficulty in performing manufacturing tasks [28,29].
Mental responses, such as a high cognitive workload, can result
735
in higher stress levels and lower satisfaction, ultimately reducing
productivity [12,30]. Therefore, accurate assessment of human
physical workload, cognitive workload, and the psychological
reactions (e.g., emotions) in human–machine collaborations are
essential for improving human performance. In a human–machine
collaboration context, dynamic human physical, cognitive, and
psychological states can be detected via indirect inference from
signals, such as emotional prosody [31,32], facial expressions
[33–35], body poses [36,37], electromyography [38], eye gaze,
and pupil dilation [38,39]. In the future, machines would have to
possess the skills to observe a human counterpart’s physical and
mental state, establish a human-centric world model, and generate
empathic behaviors that would be perceived as compassionate
interactions in human environments. The ultimate goal of develop-
ing empathy skills in smart machines is to establish trust and
respect between humans and machines—as these have been found
to be fundamental to many social interactions [40], including
collaborations—in order to boost human–machine team
performance and satisfaction.

It is also vital for humans to understand and care about the
‘‘health” of smart machines, through which better human–
machine relationships can be developed in return. Machine health
can include quantitative measures associated with workload, task
fluctuation levels, and so forth. Dynamic task allocation and
adjustment based on human and machine states of health can help
maximize human–machine team performance.

2.3. Human–machine collaborative intelligence

Human–machine symbiosis also requires a rethinking of how
control algorithms are developed in intelligent systems. A survey
of 1500 companies in 12 industries found that companies achieve
the most significant performance improvements when humans
and systems join forces to form collaborative intelligence, rather
than intelligence being dominated by AI algorithms [41]. In an
intelligent human–machine collaboration setting, human and
machine agents form a partnership that aims at optimizing team
benefits and maximizing their own long-term returns, through
interactions with the environment and other agents. A smart
machine can generate adaptive execution strategies to tailor to
the dynamic working environment and the state of its human
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partners. In a high-performing team, smart machine and human
agents will establish a fully cooperative planning and control rela-
tionship by leveraging each other’s complementary strengths. In
this regard, learning-based algorithms, such as multi-agent rein-
forcement learning, could be a promising option to achieve adap-
tive collaborative decision-making in a human–machine team.

2.4. Human-centered collaboration mechanisms

Based on natural human–machine communications, including
empathic understanding, we believe that anthropocentric
production [42] will become possible. Future human–machine
teams will need to place human needs and well-being at the center
of manufacturing planning and control, instead of continuing the
current practices of system-oriented optimization in manufactur-
ing control. The transition from dedicated manufacturing systems
to flexible unstructured human–machine collaboration creates
huge challenges and opportunities in ensuring manufacturing pro-
ductivity and human worker wellness [43,44]. Highly adaptive and
reconfigurable systems with real-time data-processing capabilities
are required to address ergonomics issues while ensuring
productivity in human–machine collaboration. For example, the
physiological or psychological state of a human worker can be
considered in human-in-the-loop manufacturing control, resulting
in adaptive labor demands planning without affecting the overall
production efficiency [45]. More importantly, humans will need
to be given maximum working freedom, supported by empathic
machines that can adaptively assist human workers in completing
manufacturing tasks. Real-time planning and re-planning algo-
rithms are required to handle human behavior contingencies and
refine plans based on the real-time observation of task progress
and human wellness.
3. Discussion

Human–machine symbiosis can create significant changes to
future production systems and human workers. We believe
anthropocentric human–machine symbiosis can enable the follow-
ing long-term benefits:

� Human well-being: Human–machine symbiosis can signifi-
cantly improve human wellness and satisfaction at work
due to the change for human workers from playing a sub-
servient role to taking on a dominant role in manufactur-
ing. The physical and emotional state of human workers
will be constantly tracked and optimized in human–ma-
chine collaborations.

� Manufacturing flexibility: Human–machine symbiosis can
increase the flexibility of manufacturing systems and pro-
cesses. Manufacturing systems and processes can be recon-
figured on the fly to respond to the dynamics of products,
human behavior, and production systems. The shift from
rigid manufacturing setups to flexible systems will enable
on-demand manufacturing strategies for producing indi-
vidualized products with dynamic batch sizes.

� Human and machine capacity development: With
intelligent algorithms based on AI, humans and machines
can learn and develop their capacity from coworking
experiences. Humans can absorb new knowledge and skills
through trustworthy and intimate interactions with intelli-
gent machines that can assist and guide human workers in
a socially appropriate way. On the other side, machines can
also improve their technical and interpersonal skills based
on interactions with different people.
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4. Conclusions

We believe that the advancement of AI technologies will make
anthropocentric production possible. Humans will be liberated
from repetitive, fixed tasks that were designed to maximize
manufacturing system performance; instead, humans can work
in a dominant role with on-demand assistance from smart
machines. Empathic machines and high-performance human
coworkers in dynamic coexistence settings will make manufactur-
ing more resilient, flexible, and sustainable. We encourage more
research into redefining human roles in the future of
manufacturing.
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