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Deep-learning methods provide a promising approach for measuring in-vivo knee joint motion from fast
registration of two-dimensional (2D) to three-dimensional (3D) data with a broad range of capture.
However, if there are insufficient data for training, the data-driven approach will fail. We propose a
feature-based transfer-learning method to extract features from fluoroscopic images. With three subjects
and fewer than 100 pairs of real fluoroscopic images, we achieved a mean registration success rate of up
to 40%. The proposed method provides a promising solution, using a learning-based registration method
when only a limited number of real fluoroscopic images is available.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Accurate kinematics of the knee joint is critical in many ortho-
pedic applications for understanding aspects such as the normal
function of the joint [1], development of knee osteoarthritis [2],
mechanisms of knee injuries [3], optimization of prosthesis design
[4], preoperative planning, and postoperative rehabilitation [5].
The measurement of knee kinematics is also essential for biome-
chanical studies on the musculoskeletal system. In the event of sig-
nificant demand for kinematics in the clinical field, an efficient and
reliable method to measure the dynamic motion of the joint is
needed.

Various measurement tools are now available for researchers to
quantify three-dimensional (3D) knee kinematics, but only a few of
them can provide millimeter-scale accuracy and rapid tracking
velocity. Skin-marker-based optical tracking systems are widely
used in the analysis of humanmotion, but their accuracy is affected
by marker-associated soft-tissue artifacts, which can cause dis-
placements of up to 40 mm [6]. Although several researchers have
attempted to reduce the effects of soft-tissue artifacts by building
mathematical models [7–9], the issue remains unsolved when
using any skin-marker-based motion-capture technique [10]. With
the development of medical imaging, some techniques can mea-
sure dynamic joint kinematics directly, such as real-time magnetic
resonance (MR) tomography and computed tomography (CT)
[11,12]. However, clinical promotion of these techniques was lim-
ited by low temporal resolution, restricted range of motion (ROM),
the need to control motion speed, low image quality, and non-
negligible amounts of radiation [13,14]. In the past decade, a
dual-fluoroscopic imaging system (DFIS) has been widely used
and well-accepted for accurate in-vivo joint motion analysis
because of its high accuracy [15], accessibility, sufficient ROM
[16], and low radiation levels compared with traditional radiogra-
phy (Fig. 1).

To find the pose of the object (i.e., native knee joints) in DFIS,
two-dimensional (2D) to 3D registration, which aligns the volume
data (e.g., CT) with fluoroscopy (continuous X-ray images), is
applied in the measurement procedure. The 3D position of CT is
adjusted iteratively, and a large number of digitally reconstructed
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Fig. 1. Virtual DFIS for measuring the dynamic motion of knee joints.
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radiographs (DRRs) is generated simultaneously until the DRR is
most similar to the X-ray image [17]. With the increasing use of
DFIS in clinical applications, researchers have attempted various
automatic registration methods to accelerate the matching proce-
dure. Optimization-based registration, which is composed of an
optimizer and similarity metrics between images, has been inves-
tigated extensively [18,19]. Although the accuracy of optimization-
based registration is high [20–22], several drawbacks, such as the
strictly required registration initialization and the high computa-
tional cost of calculating DRRs and the iterations during optimiza-
tion, limit the widespread use of DFIS [23].

With the rapid development of machine learning [24,25] in
recent years, several learning-based methods have been developed
to measure joint kinematics, with the advantages of computational
efficiency and enhancement of capture range compared with
optimization-based methods [21,26–28]. However, these methods
are always trained with synthetic X-ray images (i.e., DRRs) because
training such models with a large amount of authentic labeled data
is impractical. Even so, considerable authentic images are still
necessary to ensure the robustness of registration [22,27]. Another
consideration is the discrepancy between DRRs and X-ray images.
Compared with DRRs, fluoroscopic images showed blurred edges,
geometric distortion, and nonuniform intensity [29,30]; therefore,
networks that train on DRRs do not generalize to fluoroscopic
images ideally [22]. Previous studies have established various
physical models to generate more realistic DRRs through addi-
tional measurements of X-ray quality [31,32]. Recently, a survey
conducted by Haskins et al. [24] has shown the ability to use trans-
fer learning in such cross-modal registration, which may save the
effort of building complicated DRR models or collecting authentic
clinical images.

In our work, we developed a pseudo-Siamese multi-view point-
based registration framework to address the problem of limited
number of real fluoroscopic images. The proposed method is a
combination of a pseudo-Siamese point-tracking network and a
feature-transfer network. The pose of the knee joints was esti-
mated by tracking selected points on knee joints with the multi-
view point-based registration network, paired DRRs, and
fluoroscopy. A feature extractor was trained by the feature-
learning network with pairs of DRRs and fluoroscopic images. To
overcome the limited number of authentic fluoroscopic images,
we trained the multi-view point-based registration network with
DRRs and pre-trained the feature-learning network on ImageNet.

The remainder of this paper is organized as follows. Section 2
reviews deep-learning-based 2D–3D registration and domain
adaption. Section 3 presents the proposed learning-based 2D–3D
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registration problems. Section 4 presents the experiments and
results, and Section 5 concludes the paper.

2. Related work

2.1. Learning-based strategy

To avoid the large computational costs of optimization-based
registration, researchers have recently developed learning-based
registration [24]. Considering the success of convolutional neural
networks (CNNs), feature extraction from both DRRs and fluoro-
scopic images has been proposed. The pose of the rigid object
was then estimated by a hierarchical regressor [33]. The CNN
model improves the robustness of registration, but it is limited to
objects with strong features, such as medical implants, and cannot
perform the registration of native anatomic structures. Miao et al.
[28] proposed a reinforcement learning network to register X-ray
and CT images of the spine with a Markov decision process.
Although they improved the method with a multi-agent system,
the proposed method may still fail because it cannot converge dur-
ing searching. Recently, several attempts have been made to regis-
ter rigid objects with point correspondence networks [27,34,35],
which showed good results in both efficiency and accuracy on ana-
tomic structures. Their method avoids the costly and unreliable
iterative pose searching and corrects the out-of-plane errors with
multiple views.

2.2. Domain adaption

The discrepancy between synthetic data (i.e., DRRs) and authen-
tic data (i.e., fluoroscopic images), also known as drift, is another
challenge to learning-based registration strategies, in which train-
ing data and future data must be in the same feature space and
have the same distribution [36]. Compared with building compli-
cated models for DRR generation, domain adaption has emerged
as a promising and relatively effortless strategy to account for
the domain difference between different image sources [37], and
it has been applied in many medical applications, such as X-ray
segmentation [38] and multi-modal image registration
[21,22,39]. For 2D–3D registration, Zheng et al. [21] proposed the
integration of a pairwise domain adaptation module into a pre-
trained CNN that performs rigid registration using a limited
amount of training data. The network was trained on DRRs, and
it performed well on synthetic data; therefore, the authentic fea-
tures were transferred close to the synthetic features with domain
adaption. However, existing methods are still inappropriate for
natural joints, such as knees and hips. Therefore, a designed regis-
tration approach for natural joints that do not require numerous
clinical X-ray images for training is needed.

3. Methods

The aim of 2D–3D registration is to estimate the six degrees of
freedom (6DOF) pose of 3D volume data from pairs of 2D multi-
view fluoroscopic images. In the following section, we begin with
an overview of the tracking system and multi-view point-based
2D–3D registration (Section 3.1). Then, details of the two main
components of our work are given in Section 3.2 and Section 3.3.

3.1. Multi-view point-based registration

3.1.1. 2D–3D rigid registration with 6DOF
We consider the registration of each bone in the knee joint as a

separate 2D–3D registration procedure. Pose reproduction of each
bone isdenotedas the3Dalignmentof theCTvolumedataV through
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a transformation matrix T4�4, which is parameterized by six ele-
ments of translations and rotations x; y; z; c;a; bð Þ using the Euler
angle [40]. Transformation matrix T4�4 can be represented as a
homogeneous 4� 4 matrix, and pose P can be derived as follows:

P ¼ T4�4 � V ¼ R3�3 c;a;bð Þ t
0 1

� �
� V ð1Þ

where R3�3 is a rotation matrix about three axes R3�3 ¼ Rc � Ra � Rb,

Rc ¼
cos c � sin c 0
sin c cos c 0
0 0 1

2
4

3
5, Ra ¼

1 0 0
0 cosa � sina
0 sina cosa

2
4

3
5, and

Rb ¼
cos b 0 sinb
0 1 0

� sinb 0 cos b

2
4

3
5, and t is translation vector along the three

axes t ¼
tx
ty
tz

2
4

3
5.

3.1.2. 3D projection geometry of X-ray imaging
In the virtual DFIS, the four corners of each imaging plane and

the location of the X-ray sources were used to establish the optical
pinhole model during DRR generation (Fig. 1). After a polynomial-
based distortion correction and spatial calibration of two-view
fluoroscopy, DRRs were generated by the ray-casting algorithm
[41] with segmented CT volume data using Amira software
(ThermoFisher Scientific, USA). Combing the transformation matrix
T4�4, the final DRR IDRR can be computed as follows:

IDRR ¼ R
l T�1

4�4 � lðp; sÞ
h i

ds ð2Þ

where lðp; sÞ is the ray s connecting the X-ray source and image
plane in the X-ray imaging model, and p is a point of the ray. l �ð Þ
represents the attenuation coefficient at some point in the volume
data.

3.1.3. Registration by tracking multi-view points
Previous literature has reported single-view 2D–3D registration

to be an ill-posed problem; therefore, two-view fluoroscopic
images were used for registration to avoid out-of-plane errors
[42]. Considering the excellent performance of the point-based
registration method on anatomic structures [27,34,35], we mea-
sured the dynamic motion of knee joints by tracking a set of
selected points on the surface model in DFIS (Fig. 2), and we
denoted the selected points as Pbone ¼ p1; p2; p3; :::; pN

� �
. 2D projec-

tion of the selected points was tracked with a pseudo-Siamese
multi-view point-based registration network (Section 3.2). After
tracking the selected points from all the provided views,
we reproduced the 3D locations of the set of points
PE ¼ p1

estimated; p
2
estimated; p

3
estimated; :::; p

N
estimated

� �
using triangulation
Fig. 2. The workflow of the multi-view point-based registration method. A set of points
view in the virtual DFIS to reconstruct their 3D positions. The final transformation matr
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[43]. To determine the final transformation matrix T, a Procrustes
analysis [44] was used as follows:

T ¼ argmin
T

kT � Pbone � PEk2 ð3Þ
The final pose of each bone was reproduced with transforma-

tion matrix T.

3.2. Pseudo-Siamese point tracking network

In the proposed method, we used a pseudo-Siamese network to
track points from each view. The pseudo-Siamese network has two
branches: One is a visual geometry group (VGG) network [45] for
extracting features from DRRs, and the other is a feature-transfer
network, which transfers authentic features to synthetic features
(Section 3.3). The overall workflow is shown in Fig. 3. The input
of the network was unpaired DRRs and fluoroscopic images, and
the output was the tracked points of the fluoroscopic images. In
the upper branch of the network (Fig. 3), the exported features
FDRR around each selected point have the size of M � N � C when
the width and height of the DRR are respectively M and N, and C
is the number of feature channels. In the lower branch of the net-
work, the features of fluoroscopic images Ffluoro, were exported by
the feature-transfer network without weight sharing. With the
output of the extracted features FDRR and Ffluoro, a convolutional
layer was applied to quantify the similarity between the two fea-
ture maps [27]. The similarity is denoted as

M ¼ Ffluoro W � FDRRð Þ ð4Þ
where W is a learned weighting factor in finding better similarity
for each selected point. The objective function to be minimized dur-
ing the training is Euclidean loss (i.e., registration loss), defined as

u ¼ 1
N

XN

1
kpi

fluoro � pi
drrk

2
2

ð5Þ

where pfluoro is the tracked 2D points and pdrr is the projected 2D
points in DRR with known locations. With the tracked 2D points
from different views, the 3D points were reconstructed using trian-
gulation [43].

3.3. Feature transfer using domain adaption

For feature extraction of fluoroscopic images, we proposed a
transfer-learning-based method to reduce the domain difference
between synthetic images (e.g., the DRRs) and authentic X-ray
images (e.g., the fluoroscopic images) (Fig. 4).

To close the gap between the two domains, we used a domain-
adaption method. That is, additional coupled VGG net with cosine
similarity was set during feature extraction of the fluoroscopic
images to close the gap (Fig. 5). Pairs of DRRs and fluoroscopic
was selected on the bone surface, and their 2D projections were tracked from each
ix was determined by the reconstructed points using Procrustes analysis [44].



Fig. 3. The framework of the point-tracking network. Pairs of DRRs and fluoroscopic images were imported to the network, and their features were extracted by a VGG and a
feature-transfer network, respectively. The selected points were tracked on fluoroscopic images by searching the most similar feature patch around the selected points in
DRRs. Conv: convolution layers.

Fig. 4. Feature-transfer network with the paired synthetic image and authentic
image. Synthetic images (i.e., DRRs) were generated at the pose after manual
registration.

Fig. 5. The architecture of synthetic
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images, which share the same locations of volume data using a
model-based manual registration method [9], were used for train-
ing. We used cosine similarity as the cost function to measure the
gap between the two domains. For the tracking problem, the cosine
similarity can be stated as
L FX; FD
� �

¼ 1� 1
M

1
N

PM
1

PN
1

hFX ;FDi
kFXkkFDk ; ð6Þ
where k � k denotes L2-norm and h�i denotes dot product, and
FXand FDare the feature maps. To improve the performance of fea-
ture transfer, we optimized the proposed method with weights
pre-trained on ImageNet.
X-ray image feature extraction.



Fig. 6. Paired raw fluoroscopic images and the corresponding images after manual
matching. The raw fluoroscopic images are (a) and (b), in which additional noise
(wearable electromyography sensors) can be found on the surface of the lower limb.
As described in the previous study [6], manual registration was performed until the
projections of the surface bone model matched the outlines of the fluoroscopic
images, and the matched results are shown in (c) and (d). Reproduced from Ref. [6]
with permission of Elsevier Ltd., � 2011.
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4. Experiments and results

4.1. Dataset

In this institutional-review-board-approved study, we col-
lected CT images of three subjects’ knees, and all subjects per-
formed two or three motions that were captured by a bi-plane
fluoroscopy system (BV Pulsera, Philips, the Netherlands) with a
frame rate of 30 frames per second. CT scans (SOMATOM Defini-
tion AS; Siemens, Germany) of each knee, ranging from approxi-
mately 30 cm proximal and distal to the knee joint line
(thickness, 0.6 mm; resolution 512 � 512 pixels), were obtained.
The size of the fluoroscopic images was 1024 � 1024 pixels with
a pixel spacing of 0.28 mm. Geometric parameters of the bi-plane
fluoroscopy imaging model, such as polynomial distortion correc-
tion parameters [46] and the locations of the X-ray source and
detector plane, were used to establish a virtual DFIS, in which
poses of each bone were reproduced manually [47]. In this study,
143 pairs of matched fluoroscopic images were used (Fig. 6), of
which 91 pairs of matched images were used for training the
feature-transfer network of fluoroscopic images and the point
tracking network, and the remaining images were used as the
testing set. Additionally, a three-fold validation was performed
in the study. To evaluate the 2D–3D registration algorithm, a
widely used 3D error measurement (i.e., the target registration
error (TRE)) was applied [48]. We computed the mean TRE
(mTRE) to determine the 3D error. The average distance between
the selected points defines the mTRE.

mTRE PE; Pboneð Þ ¼ 1
k

XM

1
kPE � Pbonek ð7Þ

where Pbone denotes the selected points and PE denotes the esti-
mated points. The success rate was defined as the percentage of
all the test cases with an mTRE of less than 10 mm.

4.2. Loss selection in cross-domain feature extraction analysis

We defined a cosine similarity as the loss function in the feature
extraction on the authentic X-ray images. We also used the mean
squared error as the loss function [22] to find a better loss function.
The position of the loss function may also affect the final perfor-
mance of the feature extraction layer. Thus, we first compared
the effects of loss functions located at different convolution layers.
To obtain the best performance of the cross-domain feature from
Fig. 7. The success rate using cosine similarity and mean
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the real fluoroscopic images, we put the defined loss function
between the pairs of conv2 layers, conv3 layers, conv4 layers,
and conv5 layers. In our data (Fig. 7), we preferred the cosine
similarity as the loss function because it has better performance
regarding the final registration result of the entire knee joint.
Cosine similarity showed the best performance between conv5 lay-
ers (see details in Appendix A, Table S1).
4.3. With or without transfer training network analysis

To test the effects of the proposed feature-based transfer learn-
ing method, we compared this method with the Siamese registra-
tion network (i.e., POINT2 network) [27]. Moreover, as a widely
used transfer learning tool, fine-tuning, was also compared in the
current study to find a better way to reduce the differences
squared error (MSE) at different convolutional layers.



Fig. 8. Mean target registration error with different registration networks.
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between the fluoroscopic images and DRRs. The weights of the
proposed method were pre-trained on the ImageNet database.
The average performance of 10 tests for each method was used
as the final performance. The mTRE results are reported in terms
of the 10th, 25th, 50th, 75th, and 95th percentiles to demonstrate
the robustness of the compared methods. The proposed feature-
based transfer learning method had a significantly better perfor-
mance than the Siamese registration network (Fig. 8), and it also
performed better than fine-tuning, with a success accuracy rate
of almost zero (Table S2 in Appendix A).
4.4. Three-fold cross-validation

We used three-fold cross-validation in this study and compared
the proposed pseudo-Siamese registration network with and with-
out transfer learning. Therefore, two of the three subjects were
used for training the system, and the last subject was used to
validate the system. This approach was iterated ten times by shift-
ing the test subjects randomly. The performances (mTRE) were
evaluated in each iteration. Finally, the performances recorded in
all ten iterations were averaged to obtain a final mTRE. The mTRE
results are reported in terms of the 10th, 25th, 50th, 75th, and 95th
percentiles (Table 1). The final three-fold cross-validation showed
that the proposed method also had a better performance with
feature transfer.
Table 1
Three-fold cross-validation with and without transfer learning.

Term Registration network with transfer learning

Femur Patella Tibia Jo

10th mTRE 6.45 6.68 5.52 8
25th mTRE 8.86 8.27 7.07 9
50th mTRE 12.17 10.73 9.09 11
75th mTRE 17.52 15.23 11.58 13
95th mTRE 26.68 27.61 15.99 20
Success rate 0.36 0.42 0.60 0

All values are in millimeters.
a Joint means the final registration result of the whole joint.
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5. Conclusions

To overcome limited numbers of real fluoroscopic images in
learning-based 2D–3D rigid registration via DRRs, we proposed a
pseudo-Siamese multi-view point-based registration framework.
The proposed method can decrease the demand for real X-ray
images. With the ability to transfer authentic features to synthetic
features, the proposed method has better performance than the
fine-tuning pseudo-Siamese network. This study also estimated
the POINT2 network with and without transfer learning. The results
showed that the proposed pseudo-Siamese network has a better
success rate and accuracy than the Siamese point-tracking net-
work. With a small amount of training data, the proposed method
can work as an initialization step for the optimization-based regis-
tration method to improve accuracy. However, there are several
limitations to the current work. First, because our method is
designed for at least two fluoroscopic views, multi-view data were
required to reconstruct the knee poses; otherwise, out-of-plane
translation and rotation error would be large because of the phys-
ical imaging model. Second, the proposed method cannot reach a
sub-millimeter accuracy compared with an optimization-based
strategy. Like other learning-based strategies, our proposed
method did not provide good accuracy but would be much faster
than the optimization-based method, because no iterative step
was needed during matching. In clinical orthopedic practice,
accurate joint kinematics is essential for the determination of a
Registration network without transfer learning

inta Femur Patella Tibia Jointa

.16 5.71 7.49 5.84 7.47

.28 10.44 8.50 7.66 9.61

.08 16.74 9.61 10.53 12.70

.58 21.20 11.34 13.43 14.57

.49 27.64 16.16 17.55 18.37

.35 0.24 0.57 0.45 0.28
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rehabilitation scheme [5], surgical planning [1], and functional
evaluation [47]. The proposed method alone is inappropriate for
in-vivo joint kinematics measurement. Therefore, a combination
of our method with an optimization-based strategy would be a
viable solution.
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