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Intelligent process planning (PP) is one of the most important components in an intelligent manufactur-
ing system and acts as a bridge between product designing and practical manufacturing. PP is a nonde-
terministic polynomial-time (NP)-hard problem and, as existing mathematical models are not formulated
in linear forms, they cannot be solved well to achieve exact solutions for PP problems. This paper pro-
poses a novel mixed-integer linear programming (MILP) mathematical model by considering the network
topology structure and the OR nodes that represent a type of OR logic inside the network. Precedence
relationships between operations are discussed by raising three types of precedence relationship matri-
ces. Furthermore, the proposed model can be programmed in commonly-used mathematical program-
ming solvers, such as CPLEX, Gurobi, and so forth, to search for optimal solutions for most open
problems. To verify the effectiveness and generality of the proposed model, five groups of numerical
experiments are conducted on well-known benchmarks. The results show that the proposed model
can solve PP problems effectively and can obtain better solutions than those obtained by the state-of-
the-art algorithms.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Intelligent manufacturing involves intelligent manufacturing
technology and intelligent manufacturing systems [1–3]. Intelli-
gent process planning (PP) is one of the most important intelligent
manufacturing technologies and plays a crucial role in intelligent
manufacturing systems [4,5]. PP can effectively shorten production
cycle and improve product quality, and further, reduce the con-
sumption for resources and energy [6]. Hence, PP has gained a con-
siderable amount of attention in industrial applications.
Nevertheless, due to the extensive internal flexibility within PP,
it is very difficult to solve for an optimal process plan in practical
production scenarios [7].

Solving a traditional PP problem usually involves three steps:
process selection, resource allocation, and operation sequencing
[5]. The first step is to fix the process selection, afterwards, the
length of a process route can be determined because the number
of operations varies from different process approaches. Next, the
allocation of resources, including machines and tools, should be
configured for all the operations. Sequencing the operations is
the last and most critical step for obtaining a feasible process route
that obeys the precedence constraints [8]. For example, milling and
grinding must be arranged before fine milling and fine grinding
operations, and tapping for a hole thread must be carried out after
the operation of drilling a hole [9].

PP problems have been proved to be nondeterministic
polynomial-time (NP)-hard [6,10] meaning that it is difficult to
solve by only relying on the traditional gradient descent methods,
graph theory methods, or simulation-based methods. Therefore,
most researchers attempt to introduce meta-heuristics [11] to
study PP problems. The main research approaches for PP problems
include genetic algorithm (GA) [7,12], tabu search (TS) [13], parti-
cle swarm optimization (PSO) [8], ant colony optimization (ACO)
[14], and honey-bees mating optimization (HBMO) [10], which
aim to find high-quality solutions within less computational cost,
and attach more importance to the efficiency, rather than the
optimality.

In this background, optimal solutions for many open PP prob-
lems [8,15] have not been found yet. One important reason is that
recent studies have paid more attention to improving the perfor-
mance of intelligent algorithms than to the modification of current
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mathematical models, especially mixed-integer linear program-
ming (MILP) mathematical models [14]. An effective MILP model
can be solved by a mathematical programming solver, such as
CPLEX, Gurobi, and so forth, and the optimal solution of a PP prob-
lemmay be stably obtained under certain conditions. However, the
solving effect of an MILP model is highly related to the problem
scale. Once the scale becomes larger, the solving effect of the
model deteriorates rapidly, and the model may even fail to find a
feasible solution within a long computation time [16]. Therefore,
current research work for PP does not focus on MILP models. In
fact, the research status of MILP models is in a state of ‘‘compro-
mise” because almost all reported PP models are feature-based
[8,14,17]. These models convert an original network graph into a
tabular form to simplify process representations. This kind of con-
version, to some extent, changes the original process information
of the network. (Discussions on this situation are presented in Sec-
tion 3.3.) In addition, although there are other modeling methods
that can avoid the abovementioned situation, they require compli-
cated preprocessing, such as the generation of combinations of all
possible processing operations, in order to eliminate and substitute
OR nodes that represent a type of OR logic inside the network [18].
This preprocessing procedure is complicated, in particular, the
presence of too many OR nodes or a complex topological structure
will greatly increase the complexity and computational time of a
PP problem.

In order to fill in the gap of recently reported research work, a
novel MILP model is proposed based on the PP network topological
structure. The main contributions of this paper are as follows:

(1) This paper proposes a new OR-node-based MILP model for
PP problems with no need for any feature conversion or other
preprocessing.

(2) The precedence relationships of the operations are discussed
in detail, and three types of precedence relationship matrices are
presented to illustrate the precedence relationship constraints.

(3) Coded in the general algebraic modeling system (GAMS)/
CPLEX solver, this MILP model successfully finds new optimal solu-
tions for open problems in the literature [8,15,16].

The rest of this paper is organized as follows. Section 2 intro-
duces the related work, while Section 3 proposes the model and
discusses the related analysis mentioned above in detail. Section 4
presents several groups of comparative experiments to verify the
advantage of the proposed model. Section 5 provides conclusions
and outlines some future work.

2. Related work

The related work on PP can be divided into two categories: algo-
rithms and mathematical models. Xu et al. [6] and Leo Kumar [4]
have both provided good reviews of PP problems. Intelligent algo-
rithms such as GA, simulated annealing (SA) algorithms, TS algo-
rithms, and PSO algorithms have shown sufficient advantages
and have been widely applied in PP problems [6]. To solve PP prob-
lems with complex prismatic parts, Li et al. [19] proposed a good
hybrid algorithm comprising a GA and a SA algorithm. The local
search capability of the hybrid algorithm was enhanced by a strat-
egy of searching and selecting solutions based on the Hamming
distance between alternative routes. Hua et al. [20] proposed a
synthesis algorithm based on a GA to search for the global or
near-global optimal solution in PP problems. Li et al. [15] proposed
an effective genetic programming (GP) algorithm, which per-
formed genetic operations on OR-node branches in the network
graph. Taking into account manufacturing resources such as tool
selection and feed direction, Shin et al. [21] proposed a symbiotic
evolutionary algorithm to optimize three objectives, including
balancing the machine workload, minimizing part movements,
and minimizing tool changes. Wang et al. [22] put forward a PSO
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combining two local search strategies to solve the PP problem.
Subsequently, Li et al. [8] presented a modified PSO to solve PP
problems considering the transmission time between machines.
Liu et al. [14] combined ACO with the constraint matrix and the
state matrix of the problem, and applied it to solve the PP problem
of two prismatic parts.

Although some achievements have been made in applying intel-
ligent algorithms to solve PP problems, the solution quality can be
further improved in most of the existing PP instances, since meta-
heuristic algorithms cannot guarantee the optimality of the solu-
tions. Besides, as a method of describing problems, a mathematical
model can help researchers to understand and comprehend prob-
lems more deeply and thoroughly [23]. Therefore, research on PP
mathematical models is very meaningful. Floudas and Lin [24] ana-
lyzed several mixed-integer programming (MIP) models of PP
problems on the methods of time representation, and then pro-
posed several effective optimization approaches to improve the
computational efficiency of the model. In view of the complemen-
tarity of PP and scheduling, Li et al. [25] established a mathemati-
cal model to integrate a PP problem and shop scheduling problem.
Xia et al. [26] proposed a feature-based mathematical model for a
reconfigurable PP problem. Similarly, based on features, Jin and
Zhang [16] established MILP models for PP considering the trans-
mission time between machines.

To the best of our knowledge, mathematical models for PP prob-
lems are always feature-based [8,14,17]. Although this kind of
modeling method can describe most kinds of jobs, it is still inevita-
ble that some direct precedence constraints must be added, which
do not exist in the original network [16]. Therefore, the network
graph method is more capable of describing different manufactur-
ing flexibilities than a feature-based method. This paper proposes a
novel MILP model directly based on the topology of the network
graph; it can describe all types of manufacturing flexibilities of
PP without adding or omitting any constraints. By solving the pro-
posed model, new optimal solutions of some famous benchmarks
in previous publications are successfully obtained.
3. The proposed MILP model for PP

3.1. Problem description

The types of flexibilities in PP include process flexibility,
machine selection flexibility, and operation sequencing flexibility.
There are several approaches to describe PP problems, such as Petri
nets [27], feature tables [28], AND/OR graphs, and networks
[29,30]. In Fig. 1, the manufacturing flexibilities are represented
in the form of a network graph. This network graph is composed
of five types of nodes: The starting node, which is virtual, repre-
sents the start of a part’s production; the ending node, which is
also virtual, indicates the end of a part’s production; intermediate
nodes represent operations; and the OR node, combined with the
fifth type of node, the JOIN node, represents the process flexibilities
[15]. An intermediate node contains three pieces of information:
the operation number in the solid circle, the alternative machine
number in { }, and the corresponding processing time in [ ]. For
example, the intermediate node 6 indicates that operation 6 can
be processed on any machine out of the three alternative machines
3, 7, and 13, and the required processing time is 44, 48, and 49,
respectively. The time unit in the paper is omitted just like original
data. Arrows connecting pairs of nodes in the network indicate
precedence relationship constraints between operations [21]. For
example, the arrow between operations 2 and 3 declares that
operation 2 must be processed before operation 3. There are no
fixed precedence constraints between operations not connected
by an arrow. Only one link connected to the OR node will be



Fig. 1. A flexible process plan network. OR1, OR2, JOIN1, and JOIN2 represent OR
node 1, OR node 2, JOIN node 1, and JOIN node 2, respectively.

Fig. 2. A process plan network.
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selected. The operations contained in the link with other opera-
tions compose a feasible operation combination for the part [29].
Take Fig. 1 as an example: If operations 2? 3 are selected between
OR node 1 and JOIN node 1, and if operation 7 is selected between
OR node 2 and JOIN node 2, then one of the complete feasible pro-
cess routes is 1?2?3?5?6?7?9?10.

3.2. Precedence relationship between operations

According to the definitions of binary variables, there are three
modeling methods for PP problems [31]:

hjt ¼
1; if operation j is processed at period t

0; otherwise

�

qjt ¼
1; if operation j is the tth one of the sequence to be processed
0; otherwise

�

qjj0 ¼
1; if operation j is processed before operation j0

0; otherwise

(

For the large amount of variables and constraints, the binary
variable hjt based on time periods is rarely mentioned in PP prob-
lem modeling. In the existing literature, the definition qjt describes
the operation sequence by the position of operation j [16,32,33],
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which is widely used in the current literature [24,34,35]. In this
paper, the proposed MILP model for PP is established based on
the third method, qjjʹ, for the first time.

As shown in Fig. 2, a feasible operation sequence of this part is
1?2?3?4?5?6?7?8?9. Operation 1 is in front of all the
other eight operations; thus, according to the definition, q1jʹ =1,
where jʹ=2, . . ., 9. Operation 2 is processed before all the other
seven operations, so q2jʹ=1, where jʹ=3, . . ., 9. The number of
‘‘1”s in the matrix Q= [qjjʹ] can be obtained as (n–1)n/2, where n
stands for the total number of operations, which is also the length
of the operation sequence. Fig. 3 shows the precedence relation-
ship transformation from a sequence to a Q matrix.

For a sequence that has been ordered, every two operations
have a sequential relationship. Therefore, the priority relation can
be represented by an n�n matrix. The Q matrix contains all the
precedence relationships of an operation sequence. The Q matrix
can be regarded as a completely expressing matrix (CEM) for the
precedence relationships of an operation sequence. Through the
observation and analysis, the characteristic constraints of CEM Q
can be concluded as follows:

(1) The diagonal elements of CEM Q are equal to 0:

qjj ¼ 0; 8j ð1Þ
(2) The sum of the two elements symmetrical about the

diagonal is equal to 1:

qjj0 þ qj0j ¼ 1; 8j – j0 ð2Þ
(3) The sum of the elements in any two different columns

is not equal:

X
j

qjj0–
X
j

qjj00 ; 8j0 – j00 ð3Þ



Fig. 3. The transformation of the precedence relationship.
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Eq. (1) indicates that precedence relationships only exist
between different operations. In Eq. (2), qjjʹ=1 makes qjʹj=0,
whereas qjjʹ=0 makes qjʹj=1, because there is only one precedence
relationship between the two operations. Eq. (3) is established
because the sum of the column elements corresponds to the posi-
tion that is unique in the operation sequence. The Q matrix con-
tains all the precedence relationships between operations.
According to the corresponding Q matrix, it can be quickly and
easily determined whether a sequence satisfies the precedence
constraints in a network.

The notation sjjʹ is defined to represent the precedence con-
straints in Fig. 2:

sjj0 ¼
1; if operation j should be processed before j0 according to the network
0; otherwise

(

Fig. 4. Precedence constraints in a netw
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The corresponding constraint matrix S= [sjjʹ] is shown in Fig. 4,
where each ‘‘1” in the S matrix corresponds to an arrow in the net-
work, representing a precedence constraint. If a sequence satisfies
all the precedence constraints, its CEM Q is supposed to contain all
the precedence values shown in matrix S, which can be formulated
as follows:

qjj0 � sjj0 ; 8j; j0 ð4Þ
Matrix S can be generated from the network graph, but the

matrix Q is unknown because the operation sequence has not been
determined yet. Therefore, Eq. (4) can be regarded as the
constraint.

The number of ‘‘1”s in CEM Q is (n–1)n/2. However, the least
number of ‘‘1”s required to determine an operation sequence in a
ork and the corresponding matrix S.
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matrix is (n–1). For example, to determine the sequence 1?2?
3?4?5?6?7?8?9, it only needs to set eight variables as
‘‘1,” which are q12, q23, q34, q45, q56, q67, q78, and q89. From this point,
it is helpful to define a notation vjjʹ whose corresponding matrix V=
[vjjʹ] contains the least number of variables equal to 1. The matrix V
can be regarded as an exactly expressing matrix (EEM) of the
precedence relationships of the sequence, which contains the exact
and least number of ‘‘1”s. The EEM V of the above operation
sequence is shown in Fig. 5.

The EEM matrix can also be directly called the precedence
matrix, since it just contains the precedence relationship of the
two directly adjacent operations. According to the direct prece-
dence relationships, it is simple to obtain an operation sequence
by sequentially identifying the elements of the EEM V. The EEM
matrix has several characteristic constraints as follows:

(1) The number of variables that equal to 1 in the EEM V is (n–1):

X
j

X
j0
v jj0 ¼ n� 1 ð5Þ

(2) Each row or column of the EEM V has at most one element
equal to 1:

X
j

v jj0 � 1; 8j0 ð6Þ

X
j0
v jj0 � 1; 8j ð7Þ
Fig. 5. The EEM V of the sequence.

Fig. 6. Three types of precedence relationship ma
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(3) The relationship betweenmatrix Q and matrix V is expressed
as follows:

v jj0 � qjj0 ; 8j; j0 ð8Þ
Matrix V is a simplified representation of matrix Q, and both of

them can determine a unique operation sequence. However,
matrix S cannot determine a unique operation sequence due to
its incomplete representation of the precedence relationships of a
determined sequence. Therefore, matrix S is named the partly
expressing matrix (PEM) in this paper. More than one sequence
can satisfy the precedence constraints expressed by an S matrix.
CEM Q, EEM V, and PEM S are shown in Fig. 6.

3.3. A discussion on feature-based and network-based process
representations

In the current literature, all the mathematical models for PP
problems are feature-based. For example, an instance adopted in
the literature [8,16] is shown in feature tabular form in Fig. 7(a).
In fact, this instance is derived from the 18th example in Ref.
[29], as shown in Fig. 7(b). Therefore, Figs. 7(a) and (b) illustrate
the same instance expressed in two different representation forms.

In the feature table [8,16], features F2, F5, and F9 have alternative
operations or operation sets, corresponding to the three OR nodes
OR1, OR2, and OR3 in the network graph. However, in the tabular
form, the operation sets under the same feature are constrained by
direct precedence relationships that do not exist in the correspond-
ing network graph. For example, if O4–O5 is chosen for feature F2,
then O5 must be processed directly after O4. However, O5 does
not have to be processed immediately after O4 according to the
original network graph Fig. 7(b). As a result, the solution space
might be changed, leading to the failure to obtain the optimal solu-
tion. Table 1 shows two optimal solutions respectively obtained by
solving a feature-based model and a network-based model with
the GAMS/CPLEX solver. The letter M with number subscript in
the bracket means the allocated machine, and it is the same in
the follow-up tables.

Observed from Table 1, the main distinction between these two
sequences is that the sequence obtained by the network-based
method does not have the direct precedence constraint of O4–O5.
In addition, the production time of 356 obtained by the network-
based method is superior to the value of 357 obtained by the
feature-based method. Therefore, the method of building a model
directly on the basis of the network is superior to the feature-
based method.

The process flexibility of the feature-based representation is
implemented through alternative operations or operation sets for
features. For the network-based representation, the process flexi-
bility is expressed by selecting the links of OR nodes. The links refer
to the arrow connected to the OR nodes. Each link of the OR nodes
trices: (a) CEM Q, (b) EEM V, and (c) PEM S.



Table 1
Two optimal solutions obtained by using the feature-based model and the network-based model.

Result Feature-based model Network-based model

Optimal process plan O7(M3)–O1(M3)–O12(M5)–O4(M5)–O5(M9)–O13(M9)–
O9(M15)–O10(M15)–O16(M15)–O6(M8)–O17(M10)–O11(M10)

O7(M3)–O1(M3)–O4(M1)–O8(M13)–O12(M13)–O10(M3)–O5(M9)–
O13(M9)–O16(M4)–O6(M8)–O11(M10)–O17(M10)

Production time 357 356

Fig. 7. Two representation forms of the same instance: (a) feature tabular form and (b) network graph.
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corresponds to a choice for the process flexibility. In Fig. 8, accord-
ing to the order from the top to bottom and the left to right, the OR
nodes and their links are numbered as shown. If link 1 of OR node 1
is selected, then operations 2, 3, and 4 will be selected. Addition-
ally, whether link 1 or 2 of OR node 2 is selected, operations 6
and 7 will not be selected. The reason is that, in addition to OR
node 2, operations 5, 6, 7, and 8 are controlled by link 2 of OR node
1. The selection performed by the OR node is valid only if the link
at which this OR node lies is selected.

A binary parameter wjrl is introduced to describe the control
function of OR nodes on the operations. The definition of the
parameter wjrl is stated as follows:

wjrl ¼
1; if operation j is controlled by the lth link of the rth OR node
0; otherwise

�

For the example in Fig. 8, the corresponding values of wjrl are
shown in Table 2.

Hence, the controlling function of the OR node can be concluded
as: Operation jwill be selected only under the condition that all the
controlling links of operation j are selected. On the contrary, oper-
ation j will not be selected as long as one of its controlling links is
not selected. A binary variable url is introduced to describe the
choice of the links, and another binary variable xj is used to
describe the operation choosing state. The definitions of url and xj
are given as follows:

url ¼
1; if the lth link of rth OR node is selected
0; otherwise

�
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xj ¼
1; if operation j is selected
0; otherwise

�

The model established in Section 3.4 is based on these two vari-
ables, url and xj, and on a parameter, wjrl.

3.4. Mathematical model for PP

The proposed MILP model is precedence-based and OR-node-
based. Most of the process optimization objective functions are
time related [8] or cost related [14,18]. In this paper, with the
objective of minimizing the production time, the transmission time
between machines is taken into account in the model. The sets,
subscripts, parameters, and variables of the model are introduced
below (Table 3).

The total production time as the objective can be formulated as
follows:

minTT ¼
X
j

MTj þ
X
j

X
k

Tjk � yjk ð9Þ

On the right side, the first part of Eq. (9) refers to the total trans-
mission time, and the second is the total processing time. The con-
straints of the model are displayed as follows:

(1) OR-node controlling constraints:

xj � M � 1�wjrl
� �þM � url; 8j; r; l ð10Þ

xj � 1�M �
X
r

X
l

wjrl � 1� urlð Þ; 8j ð11Þ
X
l

url ¼ 1; 8r ð12Þ



Fig. 8. An example of a controlling discussion.
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The constraint in Eq. (10) indicates the ‘‘unselected” condition:
Operation j will not be selected as long as one of all operation j’s
controlling links is not selected. The constraint in Eq. (11) is the
‘‘selected” condition. The constraint in Eq. (12) means that only
one link of an OR node can be chosen.

(2) Precedence constraints:
qjj ¼ 0; 8j ð13Þ
qjj0 þ qj0 j � 1þM � 2� xj � xj0

� �
; 8j – j0 ð14Þ

qjj0 þ qj0 j � 1�M � 2� xj � xj0
� �

; 8j – j0 ð15Þ

M � 2� xj � xj0
� �þX

j00
qj00 j �

X
j00

qj00 j0–0; 8j – j0 ð16Þ
Table 2
The values of parameter wjrl.

Values of r and l wjrl

j = 1 j = 2 j = 3

r = 1, l = 1 0 1 1
r = 1, l = 2 0 0 0
r = 2, l = 1 0 0 0
r = 2, l = 2 0 0 0
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qjj0 þ qj0j � M � xj; 8j; j0 ð17Þ
2� xj � xj0
� � �M þ qjj0 � sjj0 ; 8j; j0 ð18Þ

Eqs. (13)–(18) refer to the constraints in the precedence relation-
ships. Unlike Eqs. (1)–(4), the operation selecting condition is added
to this group of constraints. Eq. (13) corresponds to Eq. (1). Eqs. (14)
and (15) correspond to Eq. (2), on the condition that operation j and jʹ
are selected. Under the same condition, the constraint in Eq. (16)
corresponds to Eq. (3). As for Eq. (17), themeaning is that the prece-
dence relationships qjjʹ and qjʹj should be set as 0 if operation j is uns-
elected. The constraint in Eq. (18) guarantees that the selected
operation sequence obeys the precedence constraints.

(3) EEM V and CEM Q constraints:X
j

X
j0
v jj0 ¼

X
j

xj � 1 ð19Þ

X
j0
v jj0 � 1; 8j ð20Þ

X
j0
v j0 j � 1; 8j ð21Þ

v jj0 � qjj0 ; 8j; j0 ð22Þ
Since a matrix V contains the precedence relationships between

the two adjacent operations, the transmission time can easily be
calculated. The constraints in Eqs. (19)–(21) describe the property
of matrix V. Because matrix V is derived from matrix Q, Eq. (22) is
presented.

(4) Machine selection constraint:X
k

zjk � yjk ¼ xj; 8j ð23Þ

Eq. (23) means that there is only one machine that can be
assigned for the selected operation, and there is no need to assign
any machine for an unselected operation.

(5) Transmission constraints:
MTj � TKkk0 þM � 1� v jj0

� �þM � 2� yjk � yj0k0
� �

; 8j; j0; k; k0 ð24Þ

MTj � TKkk0 �M � 1� v jj0
� ��M � 2� yjk � yj0k0

� �
; 8j; j0; k; k0 ð25Þ

Eqs. (24) and (25) formulate the transmission time of operation
j from the current processing machine to the next machine.

4. Experiments and discussions

To verify the proposed model, five groups of comparative
experiments are carried out based on famous benchmarks. All
the experiments are directly compared with the results of other
reported methods. On a personal computer (PC) with 3.7GHz and
16GB random-access memory (RAM), the proposed model is coded
in the GAMS, and the solver CPLEX is used to solve the PP
problems. In this paper, the parameter Gap (%) is also introduced
to evaluate the proposed model and the computation results. The
Gap value represents the relative tolerance of the obtained
solution; its definition is (BF–BP)/BP, where BF is the current best
j = 4 j = 5 j = 6 j = 7 j = 8

1 0 0 0 0
0 1 1 1 1
0 0 1 0 0
0 0 0 1 0



Table 3
Definitions of the sets, subscripts, parameters, and variables of the mathematical
model for PP.

Items Definition

Sets and subscripts
j, jʹ Operations, j =1, 2, . . ., n, where n is the total number of operations
k, kʹ Machines, k=1, 2, . . ., K, where K is the total number of machines
r OR nodes, r=1, 2, . . ., R, where R is the total number of OR nodes
l Links, l=1, 2, . . ., L, where L is the total number of links of one node
Parameters
sjjʹ The precedence constraints in the network: If operation j is supposed

to be processed before operation jʹ, then sjjʹ=1; otherwise, sjjʹ=0
zjk 1, machine k is optional for operation j; 0, otherwise
wjrl 1, operation j is controlled by the lth link of the rth OR node; 0,

otherwise
Tjk The processing time of operation j on machine k
TKkkʹ The transmission time from machine k to kʹ
M A large enough positive number
Variables
qjjʹ 1, operation j is processed before operation jʹ; 0, otherwise
vjjʹ 1, operation j is processed directly before operation jʹ; 0, otherwise
yjk 1, operation j is processed on machine k; 0, otherwise
url 1, the lth link of the rth OR node is selected; 0, otherwise
xj 1, operation j is selected to process the part; 0, otherwise
MTj The transmission time from the machine processing operation j to the

next machine to process the operation
TT The total production time
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solution of the objective function, and BP is the lower bound. The
smaller the Gap value is, the closer the current solution is to the
optimal solution. The computation time of GAMS/CPLEX is set as
3600 s. If the optimal solution is not found within the time limit,
the computation will be terminated and the best known solution
will be output. The transmission time between machines adopted
by the cases in experiments 1, 2, 4, and 5 is shown in Table 4 [8,18].

4.1. Experiment 1

The three cases in experiment 1 are adopted from Jin and Zhang
[16], where a dynamic programming (DP)-like heuristic algorithm
is applied to solve the PP problem. The results obtained by the
proposed MILP model and the DP-like heuristic are presented in
Table 5. The production time of case 1 obtained by the MILP
method is 357, which is better than the 360 provided by the
DP-like heuristic. Furthermore, all three optimal solutions to the
cases are found by the MILP model.

4.2. Experiment 2

The four cases in experiment 2 are from different publications:
Case 1 comes from Zhang and Nee [36], and cases 2–4 come from Li
Table 4
The transmission time matrix [8,18].

Machine Machine

1 2 3 4 5 6 7

1 0 5 7 9 10 11 7
2 5 0 3 4 5 7 2
3 7 3 0 6 5 4 3
4 9 4 6 0 4 4 6
5 10 5 5 4 0 10 12
6 11 7 4 4 10 0 4
7 7 2 3 6 12 4 0
8 6 7 7 7 7 4 5
9 14 6 2 4 8 5 6
10 13 4 4 10 9 5 6
11 12 7 3 12 10 6 6
12 10 12 5 13 12 7 7
13 5 10 6 14 11 6 7
14 6 7 8 15 10 7 7
15 9 8 9 16 8 8 8
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and McMahon [37]. The detailed information of these cases can be
found in the corresponding papers. Computational results from a
modified PSO algorithm are given in the work of Li et al. [8]. The
modified PSO algorithm is one of the state-of-the-art algorithms
that are used to solve combinatorial optimization problems. The
comparison between PSO and MILP is given in Table 6. It can be
observed that the MILP model obtains the better solution in case
1. Furthermore, the optimal solutions for cases 2–4 are found by
the MILP model method within short computational time (less
than one second).

4.3. Experiment 3

The two cases in experiment 3 are adopted from Li et al. [15],
and the machine transmission time matrix is shown in Table 7.
These two cases employed the same part from Li et al. [15]. The
only distinction between the two cases is that machine 2 is
assumed to be broken down in case 2. The comparative results
are listed in Table 8. Both the GP algorithm and the MILP model
are able to find the optimal solutions of the two instances.

4.4. Experiment 4

The 17 cases in experiment 4 are adopted from the well-known
Kim dataset [29], which consists of 18 parts, and the comparative
calculation results are from Ref. [8]. Because there are some prob-
lems regarding the data of part 4 fromRef. [8], it is not selected here.
The results obtained by the modified PSO algorithm, the simple GA,
and the simple SA are presented in Table 9. Within a reasonable
computational time, the proposed MILP model can find 13 optimal
solutions out of 17 cases. For the cases that the optimal solutions
are not found, the MILP model still obtains better solutions com-
pared to the other algorithms, such as cases 3, 6, 12, and 15.

4.5. Experiment 5

The 11 cases in experiment 5 are adopted from another famous
Shin benchmark [21], and the comparative calculation results are
from Li et al. [8]. Because there are some problems regarding the
data of some parts in Ref. [8], 11 parts (omitting parts 9, 10, 12,
13, 15, 17, and 18) are selected in this experiment group. The solu-
tions obtained by the modified PSO algorithm, the simple GA, and
the simple SA are presented in Table 10. Within a reasonable com-
putational time, the proposed MILP model can find nine optimal
solutions out of 11 instances. For the cases that the optimal solu-
tions are not found, the MILP model still obtains better solutions,
such as case 3.
8 9 10 11 12 13 14 15

6 14 13 12 10 5 6 9
7 6 4 7 12 10 7 8
7 2 4 3 5 6 8 9
7 4 10 12 13 14 15 16
7 8 9 10 12 11 10 8
4 5 5 6 7 6 7 8
5 6 6 6 7 7 7 8
0 4 2 3 4 2 4 3
4 0 5 7 4 7 6 8
2 5 0 8 10 12 14 7
3 7 8 0 7 10 14 10
4 4 10 7 0 10 12 10
2 7 12 10 10 0 8 8
4 6 14 14 12 8 0 9
3 8 7 10 10 8 9 0



Table 7
Transmission time between the machines.

Machine Machine

1 2 3 4 5 6 7 8 9 10

1 0 5 8 12 15 4 6 10 13 18
2 5 0 3 7 10 6 4 6 10 13
3 8 3 0 4 7 10 6 4 6 10
4 12 7 4 0 3 14 10 6 4 6
5 15 10 7 3 0 18 12 10 6 4
6 4 6 10 14 18 0 5 8 12 15
7 6 4 6 10 12 5 0 3 7 10
8 10 6 4 6 10 8 3 0 4 8
9 13 10 6 4 6 12 7 4 0 4
10 18 13 10 6 4 15 10 8 4 0

Table 6
Comparative results of experiment 2.

Case Modified PSO [8] MILP

1 Process plan O12(M4)–O2(M4)–O15(M4)–O16(M4)–O3(M2)–O13(M1)–O8(M1)–
O9(M1)–O10(M1)–O4(M1)–O1(M1)–O17(M1)–O14(M1)–O5(M1)–
O6(M1)–O7(M1)–O11(M1)–O18(M1)

O16(M4)–O15(M4)–O2(M4)–O12(M4)–O1(M2)–O8(M2)–O9(M2)–
O10(M2)–O3(M2)–O5(M2)–O6(M1)–O7(M1)–O14(M1)–O4(M1)–
O13(M1)–O17(M1)–O18(M1)–O11(M1)

Objective value 359 358
Computing time — 3600.00
Gap — 4.71%

2 Process plan O1(M4)–O5(M4)–O18(M4)–O2(M4)–O6(M4)–O11(M4)–O12(M4)–
O13(M4)–O14(M4)–O7(M4)–O4(M4)–O17(M4)–O15(M4)–
O16(M4)–O8(M4)–O9(M4)–O10(M4)–O19(M4)–O20(M4)–O3(M4)

O1(M4)–O18(M4)–O3(M4)–O5(M4)–O7(M4)–O8(M4)–O9(M4)–
O10(M4)–O2(M4)–O11(M4)–O17(M4)–O4(M4)–O6(M4)–O12(M4)–
O13(M4)–O14(M4)–O19(M4)–O20(M4)–O15(M4)–O16(M4)

Objective value 341 341a

Computing time — 0.20
Gap — 0%

3 Process plan O1(M4)–O2(M4)–O9(M4)–O10(M4)–O11(M4)–O5(M4)–O3(M4)–
O6(M4)–O4(M4)–O7(M4)–O12(M4)–O13(M4)–O8(M4)–O14(M4)

O1(M4)–O2(M4)–O5(M4)–O4(M4)–O3(M4)–O6(M4)–O9(M4)–
O10(M4)–O11(M4)–O7(M4)–O12(M4)–O13(M4)–O14(M4)–O14(M4)

Objective value 176 176a

Computing time — 0.44
Gap — 0%

4 Process plan O16(M4)–O3(M4)–O5(M4)–O1(M4)–O6(M4)–O7(M4)–O14(M4)–
O11(M4)–O15(M4)–O9(M4)–O12(M4)–O4(M4)–O13(M4)–O2(M4)–
O8(M4)–O10(M4)

O16(M4)–O6(M4)–O7(M4)–O5(M4)–O11(M4)–O13(M4)–O12(M4)–
O9(M4)–O14(M4)–O1(M4)–O3(M4)–O2(M4)–O15(M4)–O4(M4)–
O10(M4)–O8(M4)

Objective value 187 187a

Computing time — 0.39
Gap — 0%

a Indicates that the optimal solution is found.

Table 5
Comparative results of experiment 1.

Case DP-like heuristic [16] MILP

1 Process plan O12(M5)–O7(M3)–O1(M3)–O4(M10)–O5(M9)–O13(M9)–
O9(M15)–O10(M15)–O16(M15)–O6(M8)–O17(M10)–O11(M10)

O7(M3)–O1(M3)–O12(M5)–O4(M5)–O5(M9)–O13(M9)–O9(M15)–
O10(M15)–O16(M15)–O6(M8)–O17(M10)–O11(M10)

Production time 360 357a

Computing time — 3546.74
Gap — 0%

2 Process plan O13(M1)–O4(M1)–O2(M1)–O1(M1)–O7(M1)–O8(M1)–
O9(M1)–O12(M1)–O10(M1)–O11(M1)–O5(M1)–O6(M1)–
O3(M1)

O13(M1)–O2(M1)–O4(M1)–O1(M1)–O3(M1)–O10(M1)–O11(M1)–
O7(M1)–O8(M1)–O9(M1)–O5(M1)–O6(M1)–O12(M1)

Production time 222 222a

Computing time — 12.16
Gap — 0%

3 Process plan O1(M2)–O3(M2)–O5(M2)–O6(M5)–O9(M5)–O4(M5)–
O7(M5)–O8(M4)–O2(M4)

O1(M2)–O3(M2)–O5(M2)–O6(M5)–O4(M5)–O9(M5)–O7(M5)–
O8(M4)–O2(M4)

Production time 212 212a

Computing time — 0.44
Gap — 0%

a Indicates that the optimal solution is found.
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4.6. Discussion

The proposed MILP model obtained 28 optimal solutions out
of 37 instances within acceptable calculation time. The solutions
found by the MILP model are better than those obtained
by the high-performance heuristic [16] and meta-heuristic
815
algorithms [8,15]. Experiments 4 and 5 were carried out on
two widely-used benchmarks [21,29], and the better results sug-
gest the superiority of the proposed model.

As shown in Table 11, the proposed model contains four
types of subscripts, that is, operation, machine, OR node, and
links, while the model reported in Ref. [16] contains six types
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of subscripts, that is, feature, operation set, operation, machine,
position, and place. Fewer subscripts in the proposed model
make the computation more effective than that of the model
developed by Ref. [16]. Furthermore, the OR-node-based model-
ing method makes the proposed model more universal for solv-
ing different types of PP problems. This is why most optimal
Table 9
Comparative results of experiment 4.

Case Objective value

SA GA PSO

1 303 303 303
2 359 359 359
3 502 502 498
5 314 314 314
6 409 409 408
7 304 304 304
8 358 358 358
9 393 392 391
10 264 264 264
11 271 271 271
12 442 442 442
13 216 216 216
14 269 269 269
15 358 357 357
16 248 248 248
17 314 314 314
18 361 361 360

a Indicates that the optimal solution is found.

Table 8
Comparative results of experiment 3.

Case GP [15] MILP

1 Process plan O1(M2)–O2(M7)–O3(M2)–
O4(M2)–O9(M3)

O1(M2)–O2(M7)–O3(M2)–
O4(M2)–O9(M3)

Objective
value

213 213a

Computing
time

— 0.16

Gap — 0%
2 Process plan O10(M9)–O11(M3)–O15(M7) O10(M8)–O11(M2)–O15(M6)

Objective
value

224 224a

Computing
time

— 0.13

Gap — 0%

a Indicates that the optimal solution is found.

Table 10
Comparative results of experiment 5.

Case Objective value

SA GA PSO

1 267 267 267
2 165 165 163
3 299 297 296
4 268 268 267
5 204 204 204
6 204 204 204
7 137 137 137
8 181 181 181
11 151 150 149
14 120 120 120
16 170 167 167

a Indicates that the optimal solution is found.
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solutions can be obtained for both of the Kim [29] and Shin
[21] benchmarks.
5. Conclusions and future work

Considering the topology of network graph, this paper proposed
a new MILP mathematical model based on OR nodes. Firstly, for
precedence relationships between operations, three precedence
matrices were introduced. Secondly, for better generality, the nota-
tions wjrl, url, and xj were introduced to describe the controlling
function of the OR nodes. Finally, the proposed MILP model were
coded in the mathematical programming solver CPLEX and tested
on public benchmarks. The extensive comparative results verified
the correctness and superiority of the proposed model.

In this work, an OR-node-based modeling method was proposed
for the first time, demonstrating a new perspective for PP problems
and their extension research. The analyses of the three precedence
matrices in the paper also revealed the essence of the operation
sequencing sub-problem,which is beneficial for further comprehen-
sion of the PP problem. However, there are still some limitations in
this PP model research. Optimal solutions cannot be found for the
minorityof instances, and the computational efficiency isnot always
satisfactory,which implies that the proposed approaches can be fur-
ther improved. Some simplification and speed-up strategies are
urgently required for the further research work.
Gap Computational time

MILP

292a 0% 0.08
351a 0% 191.50
486 45.5% 3600.00
280a 0% 26.45
399 40.5% 3600.00
304a 0% 27.02
353a 0% 63.44
391 38.1% 3600.00
264a 0% 1.27
264a 0% 22.24
433 34.9% 3600.00
215a 0% 10.69
244a 0% 56.77
353 5.1% 3600.00
244a 0% 3071.28
300a 0% 3600.00
356a 0% 3600.00

Gap Computing time

MILP

266a 0% 19.55
162a 0% 30.06
268 33.7% 3600.00
267 20.2% 3600.00
199a 0% 463.20
189a 0% 268.33
116a 0% 0.94
178a 0% 0.20
149a 0% 69.88
120a 0% 11.06
167a 0% 620.38



Table 11
The subscripts of the models.

Subscripts Definition

Proposed MILP model
j, jʹ Operations
k, kʹ Machines
r OR nodes
l Links
Reported model in Ref. [16]
i, iʹ Features
j, jʹ Operation sets
k, kʹ Operations
l, lʹ Machines
r OR nodes
h Place, where a feature can be assigned
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