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In modern transportation, pavement is one of the most important civil infrastructures for the movement
of vehicles and pedestrians. Pavement service quality and service life are of great importance for civil
engineers as they directly affect the regular service for the users. Therefore, monitoring the health status
of pavement before irreversible damage occurs is essential for timely maintenance, which in turn ensures
public transportation safety. Many pavement damages can be detected and analyzed by monitoring the
structure dynamic responses and evaluating road surface conditions. Advanced technologies can be
employed for the collection and analysis of such data, including various intrusive sensing techniques,
image processing techniques, and machine learning methods. This review summarizes the state-of-
the-art of these three technologies in pavement engineering in recent years and suggests possible devel-
opments for future pavement monitoring and analysis based on these approaches.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In modern transportation, pavement is one of the most impor-
tant civil infrastructures for the movement of vehicles and pedes-
trians. Pavement service quality and service life are of great
importance for civil engineers as they directly affect the regular
service for the users. Therefore, monitoring the health status of
pavements and conducting necessary maintenance are essential
for public transportation safety. Many pavement damages can be
detected and analyzed by monitoring of structure dynamic
responses and evaluating the road surface conditions. Monitoring
of pavement structure responses can be realized through different
sensor technologies. In the past, evaluation of road surface condi-
tions was often performed manually by monitoring and identifying
pavement distress based on field inspection. With the rapid devel-
opment of transportation infrastructures, it has become increas-
ingly difficult to manually monitor and analyze the service status
of all roads owing to their large extension. In recent years,
advanced technologies have been widely used to monitor the
structure dynamic response and evaluate the road surface condi-
tions, including various intrusive sensing techniques that can be
used for monitoring the pavement structure conditions, image pro-
cessing techniques that can be used for evaluating the road surface
conditions, and machine learning methods that can be used for
analyzing or predicting the performance of pavement materials
and structures. The use of these advanced technologies can partly
replace the manual detection/inspection and thus help to acceler-
ate the decision-making process and improve the efficiency of
pavement maintenance.

For pavement sensing applications, this state-of-the-art review
mainly summarizes the development of intrusive sensors, that is,
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sensors embedded in the pavement structure that can be used to
monitor the dynamic mechanical response of the pavement, as
well as Internet of Things (IoT) technologies in pavement
monitoring. For image processing techniques, this study reviews
some typical processing algorithms that can effectively identify
the type of pavement distress. For machine learning methods, this
review introduces some fundamental theories and relevant appli-
cations in pavement engineering. Generally, the use of these
advanced methods has the following advantages: ① monitoring
the pavement dynamic response for a relatively long period;
② automatic/semi-automatic detection/identification of some
typical pavement distresses; and ③ time and labor-saving.
Meanwhile, the possible disadvantages of these methods include:
① The applications of these advanced methods may require
specific trained and skilled pavement engineers, compared with
traditional methods; ② analysis based on the proposed three
methods may require significantly large amounts of monitoring
data; and ③ many of the fundamental theories are still under
development and thus may not be as mature as the traditional
approaches.

During the past decades, the applications of these three tech-
nologies have remarkably advanced the development of pavement
monitoring and analysis, which has helped improve its service
quality and service performance. To help civil engineers better
understand these technologies, the current review summarizes
the state-of-the-art of the intrusive sensing techniques, image pro-
cessing techniques, and machine learning methods in pavement
monitoring and analysis in recent years. In addition, suggestions
for possible developments in pavement monitoring and analysis
using these approaches are also provided.

2. Intrusive sensing and IoT technologies in pavement
monitoring

Currently, advanced sensing technology for pavement monitor-
ing mainly consists of non-intrusive and intrusive methods. The
non-intrusive methods include visual inspection, pneumatic tubes,
cameras, light barriers, and radar systems among others, which are
very convenient due to their non-destructive nature and easy
implementation. However, they are easily affected by weather con-
ditions. The intrusive methods, i.e. sensors embedded in the pave-
ment structure, can monitor the dynamic response of pavement
under repeated vehicle loads and various environmental factors.
The dynamic response of pavement can be analyzed to acquire
the information on traffic and structural status, which is important
for traffic management and road maintenance. This study mainly
summarizes the development of typical intrusive methods, as
shown in Fig. 1.
Fig. 1. Typical intrusive sensing techn
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2.1. Structural monitoring

Pavement structure performance is crucial for the service quali-
ty and service life. Researchers have built many test lanes and bur-
ied sensors in the pavement structure to monitor the real-time
performances under traffic loadings and environmental conditions
in order to optimize the design of pavement structures and mate-
rials, and prolong the service life of roads.

Rollings and Pittman [1] developed an analytical model of
stress-based pavement performance using embedded strain gauges
inside the pavement structure. Their results showed that tempera-
ture and water had significant effects on the pavement perfor-
mance. Sebaaly et al. [2] obtained lateral and longitudinal strain
information of pavement under various working conditions using
embedded stress-strain sensors. In their research, the relationships
between the modulus of the pavement structure and a stress/strain
relation were established. In the United States, Xue and Weaver [3]
conducted a study on the mechanical response of the test road in
Ohio under a moving load. During the test, the mechanical indexes
of different pavement structures were tested, and the changes of
structural forces under temperature were considered. Al-Qadi
et al. [4] evaluated the strain response of pavement under vehicle
moving load in a test road, where the vertical compressive strain
of the asphalt pavement under different temperatures, vehicle
speeds, and tire pressure was investigated. Gonçalves et al. [5]
installed strain gauges on the top of the roadbed of two different
pavement structures to monitor the stress response under acceler-
ated loading tests. In the National Center for Asphalt Technology,
Timm and Priest [6] installed temperature, humidity, stress, and
strain sensors in 18 test sections to measure the dynamic response
of asphalt pavement under different vehicle loads and different
environmental conditions. In Oregon, Scholz [7] used stress sensors,
temperature sensors, and displacement sensors among others to
monitor the bending strain at the bottom of the surface layer for
a long time under different axle loads and different climate condi-
tions. Hornyak et al. [8] installed a large number of sensors in test
roads, compared the effects of three different strain sensors, opti-
mized the depth and position of the sensors, and collected the data
measured by the sensors for a long time. Xue et al. [9,10] used the
asphalt strain sensor and pressure cells to monitor the stress and
strain response of the pavement under the vehicle moving load.
They further analyzed the road service condition and traffic infor-
mation based on the monitored data.

2.2. Traffic monitoring

The pavement dynamic response under vehicle moving load can
further be used to obtain traffic information, including vehicle
ologies for pavement monitoring.



Fig. 2. Traffic monitoring system based on wireless sensors. LoRa: long rang; VPN:
virtual private network.
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speed, vehicle type, and vehicle weight among other characteris-
tics. The weight-in-motion (WIM) system is one of the most popu-
lar technologies for traffic monitoring, which can be divided into
two types [11]. The first type is the high-speed WIM (HS-WIM)
system [12], which is used for traffic data collection and traffic vol-
ume control. The most commonly used sensors mainly include
loop detectors, piezoelectric sensors, and fiber sensors. The second
type is the low-speed WIM (LS-WIM), which is used to help law
enforcement determine overweight penalties. The LS-WIM is
mainly installed in toll stations. Generally, the sensors used in
WIM systems mainly include stress-strain sensors, piezoelectric
sensors, and fiber-optic sensors.

Using the stress-strain sensors, Zhang et al. [13] obtained vehi-
cle axle spacing and the number of axles by measuring the
dynamic strain of pavement under vehicle load. Xue et al. [14]
measured the stress-strain signals of pavement under vehicle mov-
ing load using strain gauges and pressure cells. The vehicle weight,
axle spacing, traffic volume, and other information were back-
calculated using a Gaussian model in an ABAQUS simulation.

Piezoelectric sensors are widely used in WIM systems because
of their high sensitivity, small size, and high rigidity. The main
mechanism of piezoelectric sensors is the conversion of mechani-
cal energy to electrical energy. Within a certain range of force,
the generated electric charge is almost in a linear relationship with
the pressure on the piezoelectric material [15]. Piezoelectric sen-
sors use materials including piezoelectric ceramic transducers
(PZT) and piezoelectric polyvinylidene fluoride (PVDF). Mazurek
et al. [16] fabricated piezoelectric sensors using PVDF materials
and conducted dynamic weighing experiments. Their results
proved that piezoelectric sensors have good performance for
dynamic weighing. Zhang et al. [17] used cement-based piezoelec-
tric sensors to monitor traffic flow information and established a
mathematical model between the voltage output of the sensor
and the traffic flow.

Fiber optic sensors can also be used in WIM systems [18]. When
the vehicle load is applied on the fiber optic sensor, it deforms it
and hence the light intensity changes. Axle load information can
be obtained by acquiring the light intensity. Malla et al. [19]
evaluated the optical properties of the fiber-based on the relation-
ship between the bend radius and the intensity of the output
optical signal. Yuan et al. [20] tested a developed Michelson inter-
ferometer by using dynamic compression load tests with different
sizes and loading rates. Batenko et al. [21] discussed the possibility
of applying fiber-optic sensors to WIM, and used measurement
error analysis to improve the weighing accuracy. Zhang et al.
[22] developed a WIM prototype system based on fiber Bragg grat-
ing (FBG) technology and conducted relevant field tests. Zhao et al.
[23] embedded distributed fiber optic sensors into a circular sili-
cone rubber package unit to form a compression sensing unit. Dong
et al. [24] installed FBG sensors in the airport asphalt pavement to
monitor the pavement dynamic response under aircraft load.
During the tests, the load offset position, speed, dynamic response
duration, and other information were obtained. In summary, the
advantages of fiber optic sensors are simple structure, low electro-
magnetic interference, wide monitoring range, simple installation,
and easy maintenance. However, compared with conventional
bending plate and piezoelectric sensors, fiber optic sensors need
more complicated techniques and expensive instruments to
measure the intensity and phase of optical signals.

Generally, intrusive sensing systems can be used for pavement
structure health and traffic information monitoring. The sensors
used by this technology include FBG sensors, stress-strain sensors,
pressure sensors, piezoelectric sensors, displacement sensors, tem-
perature sensors, and humidity sensors. These embedded sensors
usually transmit monitoring data to acquisition equipment
through cables. Hence, there are still some disadvantages in these
847
sensing systems, such as road structure damage during sensor
installation, excessive amount of field data, real-time data process-
ing difficulty, high energy consumption, high cost of data acquisi-
tion equipment, and complex system installation procedures.

2.3. IoT in pavement monitoring

The IoT is a new type of information network that uses sensors,
electronic tags, and computer networks to interconnect things
[25]. It is also a platform to provide real-time information of things
and realize automatic tracking and control, which can be used in
pavement sensing systems. Currently, there have been some stud-
ies on applying IoT to pavement monitoring in the following areas.

2.3.1. Micro-electro-mechanical system
Micro-electro-mechanical system (MEMS) is a micro-system

that integrates micro-sensors, micro-actuators, micro-mechanical
structures, micro-power supply, and high-performance electronic
integrated devices [26]. The system size is only several millimeters
or even smaller.

Some researchers applied MEMS sensors for pavement struc-
ture/material monitoring. Alavi et al. [27] developed a self-
powered intelligent piezoelectric sensor. They tested a new small
spherical packaging system for damage monitoring of asphalt con-
crete. Ong et al. [28] developed an embedded wireless MEMS sen-
sor for real-time monitoring of water content in civil engineering
materials. Lian [29] developed the Pi sensor platform to measure
local pressure, strain, moisture, temperature, and acceleration in
the X, Y, and Z directions.

Generally, many MEMS sensors have been designed for stress,
strain, and displacement monitoring, and are still in the experi-
mental stage. The short-term effects of high temperature, humidi-
ty, and a corrosive environment in the construction process need to
be considered, as well as the long-term effects of freeze–thaw
cycles and repeated vehicle loads.

2.3.2. Wireless sensor networks
Wireless sensor networks (WSNs) have been widely applied in

various fields including data aggregation, signal analysis, event
location, time synchronization, discrete monitoring, and cost con-
trol among others [30], as shown in Fig. 2. WSN can be conve-
niently used for pavement monitoring. Bennett et al. [31]
evaluated the performance of asphalt pavements using strain and
temperature sensors. The measured data was sent to a laptop
located ~4 m from the monitoring point using radio frequency
(RF) communication. Xue et al. [9,10] installed horizontal and ver-
tical strain gauges, load cells, thermocouples, and humidity sensors
in a road segment. All the embedded sensors were connected by
cable to a V-Link wireless node on the roadside. Haoui et al. [32]
used the Sensys Networks VDS240 vehicle detection system to
monitor individual vehicle lengths, vehicle speeds, and traffic
flows. Pei et al. [33] used the Mica2 Motes WSN to monitor the
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temperature and humidity of the pavement in order to reflect the
status of traffic safety.

As shown above, there are many advantages of using WSNs for
pavement monitoring. However, the severe service environment of
roads poses many challenges for the applications of WSN, includ-
ing wireless communication in noisy environments, difficult data
transmission and processing, software and hardware development,
and energy supply among others.
2.4. Summary

The pavement structure condition and traffic information can
be obtained by monitoring and analyzing the dynamic response
of pavement under vehicle loads. The pavement structure condi-
tions include stress, strain, displacement, deflection, and vibration,
which are crucial for early warning and timely maintenance. The
traffic information includes vehicle volume, weight, speed, and
type, which is important for improving the driving efficiency and
optimizing the management of road networks. Traditional intru-
sive sensing systems include stress-strain sensors, optical fiber
sensors, and piezoelectric sensors. These sensors need to be
equipped with adapters and data acquisition equipment, which
results in high energy consumption, low integration, and high cost.
To overcome the shortcomings of traditional intrusive pavement
monitoring, IoT systems have been applied to pavement monitor-
ing using MEMS and WSN technologies. To sum up, considering
the progress and limitations of current research, the following
studies need to be conducted in the future:

(1) Pavement structure is affected by repeated vehicle loads and
severe environmental factors during its service life. To achieve
long-term and stable monitoring, it is necessary to improve the
performance of intrusive sensors and optimize the packaging of
the sensors to meet the requirements of low power consumption,
low cost, high precision, high integration, compression resistance,
and waterproofing.

(2) In the actual pavement monitoring, vehicle types, speed, and
wheel-load distribution vary considerably. The temperature and
humidity also change frequently. The health condition of the road
structure and pavement roughness deteriorate with the increase of
road service life. Effective data processing algorithms and accurate
models should be developed to eliminate all the negative effects
caused by the above factors.

(3) The energy consumption for intrusive sensors in pavement
monitoring, using conventional power supply, is high. To achieve
large-scale monitoring, long-term stable communication, and
low-cost energy supply, a new system architecture should be
designed in future pavement intrusive sensing systems.

(4) Real-time pavement monitoring can be significantly devel-
oped based on the latest 5G communication technology, compared
with the traditional 2.5G/general packet radio service (GPRS)/3G
communication technology. However, a high-power supply may
be needed for the 5G communication instruments.

(5) Current installation of intrusive sensors requires the
destruction and reconstruction of the pavement structure. In the
future, prefabricated technology and 3D printing technology can
be used for the design, manufacturing, and installation of intrusive
sensors during the construction or maintenance processes of the
pavement structure in order to achieve a more efficient
monitoring.
Fig. 3. Steps of typical image processing for pavement crack detection.
3. Image processing techniques in pavement monitoring

Pavement distress occurs during the pavement service life. Fast
and accurate monitoring and detection of pavement distress are
essential for public transportation safety. Crack is one of the most
848
commonly seen pavement distresses. Typical pavement crack
types include [34]: longitudinal cracks, transverse cracks, diagonal
cracks, alligator cracks, and block or map cracks.

Compared with traditional manual detections on pavement
cracks, image processing techniques can provide faster and more
accurate results. As cameras become increasingly powerful, high-
resolution images of pavement can be obtained and therefore the
image processing techniques can now be widely used in the anal-
ysis and identification of pavement distresses. Fig. 3 shows the
typical steps of image processing methods for pavement crack
detection summarized by Zakeri et al. [35]: ① The crack images
are captured using a camera; ② the images are pre-processed by
removing the noise; ③ the contrast of the denoised images is
enhanced; ④ the enhanced image is segmented to fully extract
the crack information; ⑤ image post-processing is performed;
and ⑥ crack identification is performed on the images.

3.1. Image pre-processing

Normally, the pavement images are taken by pavement detec-
tion vehicles circulating across the whole road network. In the
actual pavement images, together with pavement distress, dirty
spots, water, pavement texture, and shadows, can be found, which
result in noises. Different illumination and external conditions may
affect the quality of the pavement cracks found in the photos. Thus,
in the image preprocessing stage, an image filtering method is
widely adopted to remove the noise in the image while retaining
the useful characteristics of the target area.

Image filtering methods [36,37] can be divided into spatial
domain filtering methods and frequency domain filtering methods.
Spatial domain filtering methods have the advantage of batch pro-
cessing images. Before spatial domain filtering, many researchers
converted the original images into grayscale [38]. The major spatial
filtering methods include the mean filtering method, median filter-
ing method, and morphology filtering method.

3.1.1. Mean filtering method
Based on Wang [39] and Li [40], it was found that the mean fil-

tering method has good results on smoothing the Gaussian noise. It
is fast due to its simple processing steps. However, it blurs the tar-
get area while smoothing the noise, resulting in the loss of some
edge information [39]. The expression for mean filtering is shown
in Eq. (1) [41]:

g x; yð Þ ¼ 1
D

X
m;nð Þ2Sxy

f m; nð Þ ð1Þ

where g x; yð Þ is the output image, f m; nð Þ is the input image, D is
the number of pixels covered by the filter, Sxy is the neighborhood
of the pixel to be processed, and m � n is the image size.

3.1.2. Median filtering method
Median filtering is a statistically nonlinear filter compared with

linear averaging filters [41]. Since the grayscale value of the crack
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is generally low compared with the neighborhood, the method can
easily identify the cracks. At the same time, as the template win-
dow becomes larger, its noise reduction performance will be stron-
ger. Ma et al. [42] used a window with multiple directions to
obtain the median values of the grayscale image, which not only
removed the noise but also obtained crack edge characteristics.
The expression for median filtering is shown in Eq. (2) [41]:

g x; yð Þ ¼ median
ðm;nÞ2Sxy

f m; nð Þ ð2Þ

where g x; yð Þ is the output image, f m; nð Þ is the input image, Sxy is
the neighborhood of the pixel to be processed, and m� n is the
image size.

3.1.3. Morphology filtering method
Wang [43] and Liu et al. [44] conducted crack detection using

the morphology filtering method. This method, which showed
better results on the treatment of salt and pepper noise, includes
two basic operations: opening and closing. For the open
morphology, erosion is first conducted and then dilation; for
the closed morphology, dilation is first conducted and followed
by erosion [41]. Erosion operations eliminate small bright spot
noise while dilation operations enhance the crack detail in the
image [43,44].

The algorithm for opening can smoothen the edges of the crack
while preserving the brightness of the original image. It can also
remove the details and eliminate the sharp noise in the image.
The algorithm for closing can connect the gap between the cracks
and fill small holes in the cracks.

3.1.4. Other methods
In addition to the above three methods, there are many new

methods. Wang [43] used the K-neighbor method, which is less
significant than the median filtering method and mean filtering
method. Han K and Han HF [45] and Luo [46] adopted a filtering
method based on the region features/dodging methods. Wang
[43] sharpened the image to increase the clarity of the edges
and reduce the noise. Li et al. [47] used the improved Ostu
method based on the image transformation and applied it to
pavement crack detection. Talab et al. [48] used the Sobel oper-
ator for filtering. Gao et al. [49] adopted a Gaussian convolution
template, and Qiu [50] adopted an improved Sobel method
based on the gradient value. Zhu [51] used the gradient inverse
weighted method to remove the noise and improve the
accuracy.

3.2. Image enhancement

After the filtering process, most of the sharp noise in the image
is removed and the whole image becomes blurred. At this stage,
the edges of the shape in the image become less clear as its grays-
cale value is closer to the background. To extract edge information,
images need to be enhanced using various methods that include
grayscale transformation and histogram equalization, among
others.

3.2.1. Grayscale transformation
The main function of grayscale transformation is to compress or

extend the grayscale range of the original image so that the con-
trast between the target area (pavement crack) and the back-
ground area (pavement matrix) can be adjusted.

Wang [43] and Di [52] both used the grayscale transformation.
A linear function can extend the grayscale range of the entire
image to a larger range. However, it not only enhances the crack
information in the image, but also enhances the noise. The piece-
wise linear transformation is shown in Eq. (3) [43] as
849
g x; yð Þ ¼
c f m; nð Þ < a
d� c
b� a

f � að Þ þ c a � f m; nð Þ < b

d f m; nð Þ � b

8>><
>>: ð3Þ

where g x; yð Þ is the output image; f m; nð Þ is the input image; a and
b are the gray level upper and lower limits of the original image,
respectively; and c and d are the gray level upper and lower limits
of the processed image, respectively.

The grayscale transformation can also be divided into gamma
transformation and logarithmic transformation. The expressions
for logarithmic transformation and gamma transformation are
shown in Eqs. (4) and (5), respectively [43]:

g x; yð Þ ¼ qlogv 1þ f x; yð Þ½ � ð4Þ

g x; yð Þ ¼ qf x; yð Þc ð5Þ
where g x; yð Þ is the output image, f x; yð Þ is the input image, v is the
base of logarithmic transformation, q is a constant, and c is a posi-
tive constant for transformation. Also note that grayscale value can
be used to judge the types of transverse crack, longitudinal crack or
map crack based on the vertical and horizontal projection [53].

3.2.2. Histogram equalization
Histogram equalization is used to extend the grayscale range of

the grayscale image histogram so that the image can be displayed
in more detail. At the same time, histogram equalization can dis-
play the grayscale values of the crack area and of the background
area, which can be useful during image segmentation. Wang [43],
Di [52], Zhang [54], and Zhu [51] used this method for images that
were either very bright or very dark. The expressions of the his-
togram are shown in Eqs. (6) and (7) [43]:

p rkð Þ ¼ n rkð Þ
MN

k ¼ 0; 1; . . . ; L� 1 ð6Þ

Sk ¼ T rkð Þ ð7Þ
where rk is the grayscale value, n rkð Þ is the number of specific
grayscale values, MN is the total number of image pixels, p rkð Þ is
the probability of the specific pixel appearing, L is the number of
grayscale values, Sk is the output grayscale value, and T rkð Þ is the
transformation function.

In addition to the above-mentioned methods, researchers have
also proposed some other methods for image enhancement. Wen
[55] proposed an improved gray correction algorithm for the pre-
processing of pavement crack images. Gang et al. [56] proposed a
finite ridgelet transform (FRIT)-based image enhancement algo-
rithm for faint pavement cracks. Li et al. [57] used a mathematical
morphology method to refine the image target, remove redundant
information, and preserve the shape of the crack.

3.3. Image segmentation

After the above two steps of image pre-processing and image
enhancement, a pavement crack image with low noise and high
contrast can be obtained. To facilitate the identification of the
crack, the edge information of the crack needs to be extracted
and the image needs to be segmented. There are many methods
for image segmentation, which include the morphological detec-
tion method, the threshold segmentation method, and the edge
detection method among others.

3.3.1. Edge detection method
An edge detector can clearly outline the edge information of the

crack. It recognizes the edge information according to the gray
level change of the crack edge using a differential function.



Fig. 4. Some operators for edge detection.
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There are many kinds of edge operators, as shown in Fig. 4.
Different pavement crack detection tasks like edge search
[40,51,58,59] and edge detection [51,58,59] require different
operators.

The expression for the Roberts operator is shown in Eq. (8) [41]:

gx ¼
@f
@x

1 0
0 �1

� �
; gy ¼

@f
@y

0 1
�1 0

� �
ð8Þ

The expression for the Prewitt operator is shown in Eq. (9) [41]:

D1 ¼
�1 �1 �1
0 0 0
1 1 1

2
64

3
75; D2 ¼

�1 0 1
�1 0 1
�1 0 1

2
64

3
75 ð9Þ

The Laplacian operator is a second-order partial derivative
operator that can detect both horizontal and vertical cracks
[40,54]. The expression of the Laplacian operator is shown in Eq.
(10) [41]:

r2 ¼ @2f
@x2

þ @2f
@y2

ð10Þ

where f is the original image, x is the pixel value in the horizontal
direction of the image, and y is the pixel value in the vertical direc-
tion of the image.

3.3.2. Morphological method
The morphological method can also be used for crack edge

detection. Zhang et al. [60] suggested that the morphological
method may easily lose the crack edge information. Li et al. [57]
considered that, compared with other edge detection methods that
used pixel value change in the image to extract the crack edge, the
morphological method can extract the crack morphology feature.
Xu and Gao [61] obtained crack edge information based on image
enhancement and mathematical morphology.

3.3.3. Threshold segmentation method
The threshold segmentation method is used to divide the image

into two parts based on a calculated threshold value. Generally, the
part with values below the threshold is the crack area, and the part
above the threshold is the background pavement matrix area. The
threshold segmentation method can be divided into the global
threshold method and the local threshold segmentation methods.
Ma et al. [42] and Talab et al. [48] used the Ostu threshold
850
segmentation method, which is a global threshold method.
Normally, before or after using this method, the image can be
preprocessed by performing grayscale stretching to reduce noise.
Ma et al. [42] employed the closing operation by using a
cross-shaped structural element and sutured the crack after the
Ostu threshold segmentation. Wang [39] improved the cement
pavement crack detection algorithm based on the image transfor-
mation. Liu [62] adopted the local threshold segmentation method,
which is effective for pavement crack images with shadow. Xu
et al. [63] also proposed an adaptive morphological filtering and
the Ostu algorithm to achieve the dual-threshold objective.

3.4. Image postprocessing

Sometimes, after processing images following the above three
steps, the crack edge information is still hard to be extracted. In
this case, some researchers have performed image post-
processing operations, such as the morphological image process-
ing, maximum connected domain denoising, or edge connection.

3.4.1. Morphological image processing
In mathematical morphology methods, images are processed

using operations including dilation, erosion, opening, and closing.
Wang et al. [64] used the dilation and erosion operations to obtain
crack images with clear edges. Wang [43] used the morphological
operation to remove the noise and identify the crack more clearly.
Ma et al. [42] used a close operation to process the images; this
process showed a small negative effect on the crack edges.

3.4.2. Image denoising
Sometimes the image processing algorithms have limitations in

incomplete crack edge detection and blur crack shape due to the
noises, and thus many researchers used the maximum connected
domain method to remove the noise. Liu [62] and Ma et al. [42]
used the maximum connected domain method to determine the
location of the crack based on the connectivity of the crack.

3.4.3. Edge detection and connection
In addition, some researchers used edge connection to stitch the

cracks for a clearer shape. Zhang [54] proposed an improved
algorithm based on the wavelet transformation for image edge
detection. He also suggested a new canny-based algorithm for
the connection of discontinuous edge points on the crack image.

3.5. Summary

With the development of computer technology, researchers are
continuously improving the traditional methods for crack detec-
tion and proposing innovative image processing algorithms, espe-
cially for low quality pavement images. Fig. 5 shows a typical
asphalt pavement crack image under a low illumination condition.
To obtain better image processing results, many researchers have
proposed many innovative algorithms, which makes the computa-
tion process very complex, and thus, hard for batch processing of
pavement images. In addition, since the characteristics of the field
images of pavements are different, many of the current image pro-
cessing algorithms are not able to automatically adapt to all types
of pavement images. Therefore, further research is needed to
improve the adaptability of the algorithm in order to admit images
with a wide range of different conditions.

4. Machine learning methods in pavement analysis

Machine Learning is an advanced system of algorithms and
models based on computer technologies targeted at solving various



Fig. 5. One typical asphalt pavement crack image under low illumination condition.

Fig. 6. Schematic view of ANN algorithm.
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problems using patterns instead of explicit conditions [65]. Using
machine learning methods, pavement structure conditions and
traffic information can be effectively calculated, identified, classi-
fied, and analyzed. Normally, machine learning methods in pave-
ment engineering include support vector machines (SVMs),
artificial neural networks (ANNs), and deep learning methods like
convolution neural networks (CNNs).

4.1. Support vector machines

The SVM was first proposed by Cortes and Vapnik [66]. It is
essentially a generalized linear classifier for binary classification
of data using supervised learning. Cortes and Vapnik [66] first used
this method for digital handwriting recognition.

In general, the SVM algorithm constructs a decision boundary by
inputting the data xk; ykf gNk¼1 and dividing the data into two cate-
gories, where xk 2 Rn are input data in real vector space, and
yk 2 �1; 1f g are the data labels. The decision boundary is the
maximum-margin hyperplane for solving the learning samples
[65]. SVM uses a kernel mechanism. When the kernel is linear, it is
not essentially different from logistic regression; when the kernel
is nonlinear, even if thedata cannot be linearly separated in thebasic
feature space, SVM will demonstrate excellent performance [67].

The training stage of SVM can be reduced to the optimization of
a loss function. Eqs. (11) and (12) can be combined to solve the
minimum value of the loss function [68]:

min JP w; ekð Þ ¼ 1
2
wTwþ C

1
2

XN
k¼1

e2k ð11Þ

s:t: yk wTU xkð Þ þ b
� � � 1� ek ð12Þ

where JP is the function ofw and ek, yk 2 �1; 1f g are the data labels,
k ¼ 1; :::; N, ek � 0 is a relaxation variable; w 2 Rn and b 2 R are the
normal vectors and intersects of the hyper-plane, R is real number;
and U xkð Þ is the mapping function of the nonlinear separable prob-
lem [68].

Many researches have used SVM for pavement performance
prediction and distress detection. Hoang et al. [69] used a multi-
class support vector machine learning model based on the artificial
bee colony (ABC) optimization algorithm to classify the pavement
cracks. In their study, the non-local mean value, differentiable
filter, and other techniques were also used to analyze the crack
characteristics, which significantly improved the prediction perfor-
mance. Schlotjes et al. [70] collected a large number of road data
information and expert failure charts, and used SVM to predict
the structural failure probability of road surface. Pan et al. [71]
used four different kernel functions to classify and predict
potholes, cracks, and pavement Fujita et al. [72] used machine
learning for crack detection in asphalt pavement surface images.
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4.2. Artificial neural network

ANN is a nonlinear feature processing and prediction network
structure with strong self-learning capability [67]. Its basic struc-
ture is divided into an input layer, hidden layers, and an output
layer. The hidden layers contain a certain number of node units
called neurons. Each neuron is connected with every node unit in
the previous layer, as shown in Fig. 6. The function of the neurons
is to carry out a linear transformation and a nonlinear transforma-
tion of the input data of the previous layer [67]. The difference
between the output layer and the hidden layers is that the nonlin-
ear activation function is changed into softmax [67] and other logic
functions are used to predict the probability of the classification
task output.

For input X; Yð Þ ¼ x 1ð Þ; y 1ð Þ� �
; :::; x mð Þ; y mð Þ� �� �

, the linear and
nonlinear transformations of single-layer neurons can be
expressed in Eqs. (13) and (14) [73,74]:

z ið Þ ¼ wTx ið Þ þ h ð13Þ

a ið Þ ¼ g z ið Þ� � ð14Þ
where w is the weight matrix of the hidden layer, h is the bias of the
hidden layer, and g zð Þ is the activation function.

Common activation functions are the sigmoid function, the tanh
function, and the rectified linear unit (ReLU) function [75]. The
activation function must use a nonlinear function, otherwise,
regardless of the number of hidden layers, the neural network
would only be a linear combination output of the input values.

The softmax function is a gradient logarithmic normalization of
the discrete probability distribution of finite terms, as shown in Eq.
(15) [73]:

r zð Þj ¼
ezjPK
k¼1ezk

ð15Þ

To solve the problem of the zero derivative of the ReLU function
in the negative domain, an advanced Leaky ReLU function has been
proposed, as shown in Eq. (16) [76]:

f xð Þ ¼ x x > 0
kx x � 0

�
ð16Þ

where k is a very small number.
In addition to the above forward propagation process, the most

important part of an ANN is the backward propagation process.
The difference between the predicted value and the true value of
the output is represented by a loss function. Backward propagation
is the process of finding the minimum value of the cost function by
using an optimization algorithm such as gradient descent [72]. One
widely used cross entropy loss function is shown in Eq. (17) [77]:



Y. Hou, Q. Li, C. Zhang et al. Engineering 7 (2021) 845–856
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¼ � yðiÞlog ŷðiÞ
	 


þ 1� yðiÞ
� �

log 1� ŷðiÞ
	 
h i

ð17Þ

where ŷ(i) is the actual output value and y(i) is the desired output
value.

The standard gradient descent algorithm and parameter updat-
ing rules are shown in Eqs. (18) and (19):

w0 ¼ w� a
@J w; hð Þ

@w
ð18Þ

w0 ¼ w� a
@J w; hð Þ

@b
ð19Þ

where w0 is the weighting after updating; and a is the learning rate,
namely, the step size of the gradient descent for each iteration.

Pavement engineers have also widely used ANN for distress
detection and performance evaluation. Similar to Hoang et al.
[68,69], Banharnsakun [78] trained an ANN to classify the trans-
verse cracks, longitudinal cracks, and potholes in damaged images
using the ABC algorithm, and the results were compared with
those of SVM. Comparisons showed that ABC-ANN was better than
SVM-ABC. Elbagalati et al. [79] proposed an ANN pattern recogni-
tion model used to assist the decision-making process of the pave-
ment management system (PMS). Pan et al. [71] used an ANN for
the fast and accurate judgment of pavement cracks and potholes.

However, ANN has a shortcoming in the field of image recogni-
tion as the calculation cost is too high. Owing to the considerable
amount of information in the images and the full connectivity of
the neurons, the number of generated parameters increases expo-
nentially, which greatly increases the iteration time of neural
networks.

4.3. Convolution neural network

Traditional machine learning methods, including SVM and ANN,
have been widely used for various purposes in pavement monitor-
ing and analysis. Recently, with the rapid development of com-
puter technologies, deep learning methods have been used in
pavement distress monitoring and detection. A CNN is a typical
deep neural network that uses convolution for computation.
Compared with the ANN, which can only use fully connected
layers, the CNN has natural advantages in computation efficiency.
The parameter sharing of the convolution kernel and the local con-
nection between layers enable it to complete complex feature
learning tasks at less computational cost [80]. The number of
weights is exponentially lower than ANN for the same layer. Unlike
ANN, the hidden layer of a CNN is generally composed of a variety
of different functional layers, a convolution layer, a pooling layer,
and a fully connected layer, among others.

The function of the convolution layer is to convolute the input
data [77]. The function of the pooling layer is to select and filter
the information extracted from the convolution layer [77], reduc-
ing the size of the model, speeding up the calculation and improv-
ing the robustness of the extracted features. The hyper-parameters
are filter size, stride, and padding. Generally the max pooling and
mean pooling methods are used. The max pooling consists on tak-
ing the maximum value in the pooled region as the new character-
istic output, and the mean pooling uses the mean value in the
output pooled region [77].

Generally, for the deep CNN structure, the pooling layer is set
behind a plurality of continuous convolution layers, and a number
of fully connected layers are set at the end of the whole network.
For example, VGG net [81], which was used by Gopalakrishnan
et al. [82], was used as a transfer learning example to identify pave-
ment cracks. However, the CrackNet proposed by Zhang et al. [83]
did not use a pooling layer in order to achieve pixel-level crack
recognition.
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The full connection layer is equivalent to the hidden layer of the
traditional neural network. After the feature map is passed into the
full connection layer, the three-dimensional structure is lost,
expanded into a vector, and passed to the next layer through the
activation function. Fig. 7 shows a CNN structure designed for
the classification of pavement with and without cracks.

4.4. Machine learning related theories

4.4.1. Dataset
The dataset selection affects the performance of the machine

learning algorithm. In supervised learning, the dataset is divided
into three parts: the training set, the development set, and the test
set [80]. Firstly, the training algorithm is applied on the training
set; then, the optimal model is determined on the development
set; and finally, the performance of the network model is evaluated
on the test set. Generally, a deeper and wider neural network needs
a significantly larger dataset for training. Thus, for applications of
deep learning methods in pavement monitoring, sufficient samples
[84] need to be collected and a large dataset needs to be prepared
before the training process.

4.4.2. Regularization
If the neural network variance is too large, that is, over-fitting of

data occurs, there are mainly two methods to solve this problem:
One is to increase the amount of data, and the other is to use a
regularization method. Generally, simpler neural network
structures require fewer complex features in order to learn.
Commonly used regularization methods are L2 regularization
(weight decay) [85] and the dropout function [86].

In L2 regularization, the cost function is defined as [85]

J w; bð Þ ¼ 1
nsample

Pnsample

i¼1
L byðiÞ; yðiÞ
� � þ k

2nsample
k w k22 ð20Þ

where k is a regularized hyper-parameter that is adjusted on the
verification set to achieve optimization. nsample is the number of
samples. During backward propagation, the update rules for weight
w are changed as [85]

w½l� ¼ w½l� � a
@J

@w½l� þ
k

nsample
w½l�

� �
ð21Þ

In the Dropout function method [86], a threshold p in (0, 1) is
set for each hidden layer, which retains the probability of each
neuron. In this way, some of the neurons in each layer are deleted,
resulting in a neural network with fewer nodes and smaller scale.

In pavement distress detection, both regularization methods
can be used. Fei et al. [87] used CrackNet-V in the pixel-level
classification of asphalt pavement cracks, which employed L2
regularization to prevent over-fitting. Cha et al. [88] used a dropout
function to regularize their model in concrete pavement detection.

4.4.3. Normalization
To avoid excessive differences in the characteristics of the input

data, these data are commonly normalized. Batch normalization
(BN) is the normalization of the output of the middle layer of a
deep network [89] and is generally chosen to normalize the linear
output of the hidden layer rather than the output value from the
activation function [89]:

Z
�ðiÞ ¼ c

zðiÞ � lffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ e

p þ b ð22Þ

where e is a very small positive number preventing r from equaling

0. c determines the distribution variance of Z
�
, and b determines the

mean value of the feature distribution. BN is not only applied on the
input layer, but also on the deep hidden layer [90]. There are two



Fig. 7. A CNN structure for pavement crack images recognition. 64 � 64 � 3 represents height, width, and channels of feature maps; size, stride, and valid are hyper-
parameters of kernels; conv: convolution; FC: fully connected layers.
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main reasons to employ batch normalization, one is to accelerate
the training process of the network, and the other is to add noise
during training. Currently, many of the pavement distress detection
methods using CNN models are established using BN.

4.4.4. Optimizer
During the back propagation of the network, choosing the most

suitable optimizer is a challenge. One of the most commonly used
methods is the mini-batch gradient descent [91]. In each iteration,
the network learns on a random subset of the training set.
Mini-batch size is a hyper-parameter of the network, the larger
the value, the greater the amount of computation required for
the operation of the network. When the size is equal to the size
of the training set, it is called batch gradient descent (BGD); when
the size is equal to 1, it is called stochastic gradient descent (SGD).

In addition, there are some other optimizers that can also accel-
erate the training process of the network, such as the Momentum
algorithm [92] used by Zhang et al. [83] and Fei et al. [87], and
adaptive moment estimation (Adam) algorithm proposed by
Kingma et al. [93] and used by Dorafshan et al. [94] and Krizhevsky
et al. [95].

4.5. Applications of deep learning methods in pavement distress
detection and condition assessment

This section summarizes the previous research using machine
learning methods, especially deep learning methods, for pavement
distress detection and condition assessment.

4.5.1. Classification task
One of the most important classification tasks in pavement dis-

tress detection is to distinguish the pavement images that have
cracking areas from the pavement images that do not have crack-
ing areas, as well as to distinguish the crack-area from the non-
crack area in the same pavement image. Most of the traditional
methods to identify and detect 2D pavement distress images are
based on image processing techniques, such as the Sobel algorithm
[96] and the Canny algorithm [97]. However, many of them can
only reach the level of semi-automatic detection. The introduction
of CNN can help to automatically solve this problem.

Some researchers have used CNN for target classification, that
is, after inputting an image, CNN can automatically judge whether
it belongs to a predetermined category. For example, CNN can
judge whether the input pavement image contains cracks. Cha
et al. [88] proposed a CNN model that can automatically identify
the cracks in cement pavement damaged images influenced by
the variation of exposure and shadow. Hoang et al. [68,69] pro-
posed CNN-crack detection model (CDM), which used a classifier
combined with a sliding window method to recognize large size
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asphalt pavement crack images. Combined with principal compo-
nents analysis (PCA), Wang and Hu [98] trained a CNN model
employing images with different input sizes to identify longitudi-
nal, transversal, and alligator cracks in pavement distress images.
Zhang et al. [83] proposed a CNN model named CrackNet for pixel
level crack recognition, which can detect pavement damage with
very high accuracy. Different from the method of SegNet down
sampling and up sampling, the characteristic of CrackNet is that
it does not have a pooled layer in order to ensure that the
three-dimensional size of the image remains unchanged in
the inter-layer transmission. Zhang et al. [99] then improved the
model to a second generation named CrackNet II, which removed
the feature generator, and optimized the structure with a 1 � 1
convolution layer. Fei et al. [87] proposed a new CNNmodel named
CrackNet-V, inheriting the characteristics of CrackNet that had no
pooling layer. Sha et al. [100] evaluated pavement distress using
a convolutional neural network. In addition, pavement texture
can be studied using CNN models [101,102].

The appearance of reflecting cracks is another serious pavement
damage using a semi-rigid pavement base. Before the final forma-
tion of the reflective crack, if the corresponding maintenance is
conducted, reflective cracks can be prevented. However, such
underground damage cannot be easily discovered using traditional
pavement surface images. To solve this problem, pavement engi-
neers have used the ground penetrating radar (GPR) to detect the
underground damages. Using CNN models, different underground
damages can be classified [103].

4.5.2. Object detection task
Deep learning methods can conveniently recognize and locate

different objects in an image. For pavement engineers, quickly
locating and recognizing different distresses can help them con-
duct better maintenance. Cao et al. [104] used a CNN to detect dif-
ferent objects on airport cement pavement. Screws and stones
were located by the CNN, the affine transformation of the image
was carried out by a spatial transformer network (STN), and the
object detection of the airport pavement image was carried out
by using a model based on VGG-13 [81]. Cha et al. [84] used Faster
R-CNN [105] to automatically detect cement concrete cracks, steel
corrosion (medium and high), bolt corrosion, and steel delamina-
tion of bridge facilities.

4.5.3. Performance prediction and condition evaluation
Machine learning related methods can be used to predict the

mechanical performances of pavement materials when laboratory
tests or field tests are unavailable. Majidifard et al. [106] proposed
two innovative machine learning methods, named gene expression
programming (GEP) and hybrid artificial neural network/simulated
annealing (ANN/SA) to predict the fracture energy of asphalt
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mixture specimens. Their models were able to determine the frac-
ture energy of the asphalt mixture, which in turn was used for the
optimization of the material mix. Gong et al. [107] developed two
deep neural networks to improve the accuracy of pavement rutting
prediction. Results showed that two neural networks perform bet-
ter than the multiple linear regression models.

Based on the analysis of the severity of pavement distress, pave-
ment condition evaluation can be conducted. Majidifard et al. [108]
conducted a pavement condition evaluation process based on their
own pavement image dataset (PID) databased on 7237 Google
street-view images. The You Only Look Once (YOLO) deep learning
framework and the U-net model were both used to quantify the
severity of pavement distress.
4.6. Summary

Using machine learning methods, the pavement surface distress
and structure status can be effectively identified, classified, and
analyzed. In the early stages, most researchers used SVM and
ANN as classifiers for pavement defects, where the accuracy was
able to meet the engineering requirements at that time. With the
development of computer technology, deep learning methods like
CNN have achieved better results for pavement distress detection
and performance evaluation because of their local connection
and weight sharing. The diverse functions of machine learning
methods can help civil engineers solve various problems of pave-
ment monitoring such as identifying the types of pavement cracks
and marking the location of pavement damage. However, the fol-
lowing issues still need to be considered in future studies:

(1) More field/laboratory tests on the performances and condi-
tions of pavement need to be conducted to obtain a much larger
dataset.

(2) The adaptability of machine learning methods must be
improved for pavement images captured by different equipment
and under different conditions.

(3) At this stage, many of the studies are focused on the identi-
fication of pavement cracks. Future studies using machine learning
methods may be extended to a variety of different pavement
distresses.
5. Conclusions

Pavement is one of the most important civil infrastructures. To
ensure the functionality and safety of pavement, it is necessary to
monitor the pavement status and conduct timely maintenance.
Nowadays, civil engineers collect the pavement dynamic response
through a variety of intrusive sensing technologies, and analyze
the surface conditions based on pavement images through image
processing techniques and machine learning methods. This review
summarizes the state-of-the-art of the intrusive sensing tech-
niques, image processing techniques, and machine learning meth-
ods for pavement monitoring in recent years and suggests future
developments of pavement monitoring and analysis using these
approaches. The main conclusions are the following:

(1) Pavement structure is affected by the repeated vehicle loads
and severe environmental factors during its service life. To achieve
long-term and stable monitoring, it is necessary to improve the
performance of intrusive sensors and optimize their packaging
for meeting the requirements of low power consumption, low cost,
high precision, high integration, compression resistance, and
waterproofing.

(2) Since the characteristics of pavement field images vary
extensively, many of the current image processing algorithms are
unable to automatically adapt to every type of pavement images.
Therefore, further research is needed to improve the adaptability
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of the algorithm to include images with a wide range of different
conditions.

(3) More field/laboratory tests on the performances and condi-
tions of pavement need to be conducted to obtain a much larger
dataset. In addition, more types of pavement distresses need to
be detected and identified using machine learning methods.
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