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Due to growing concerns regarding climate change and environmental protection, smart power genera-
tion has become essential for the economical and safe operation of both conventional thermal power
plants and sustainable energy. Traditional first-principle model-based methods are becoming insufficient
when faced with the ever-growing system scale and its various uncertainties. The burgeoning era of
machine learning (ML) and data-driven control (DDC) techniques promises an improved alternative to
these outdated methods. This paper reviews typical applications of ML and DDC at the level of monitor-
ing, control, optimization, and fault detection of power generation systems, with a particular focus on
uncovering how these methods can function in evaluating, counteracting, or withstanding the effects
of the associated uncertainties. A holistic view is provided on the control techniques of smart power gen-
eration, from the regulation level to the planning level. The benefits of ML and DDC techniques are
accordingly interpreted in terms of visibility, maneuverability, flexibility, profitability, and safety (abbre-
viated as the ‘‘5-TYs”), respectively. Finally, an outlook on future research and applications is presented.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

For decades, power generation has been widely recognized as a
major contributor to environmental pollution and carbon emis-
sions [1]. The power generation sector reportedly accounted for
nearly two-thirds of emissions growth in 2018, with coal-fired
power generation as the single largest contributor (around 30% of
gross emissions) [2]. Concerned with the growing issue of climate
change, major countries around the world are compelled to ‘‘hold
the increase in the global average temperature to well below
2 �C above pre-industrial levels” [3]. Toward this goal, efforts to
reform power generation include optimizing the efficiency of the
currently prevalent thermal power generation and expanding the
penetration of sustainable energy, including hydropower, solar
power, and wind power.

Control and optimization are essential for the efficient and safe
operation of these power generation systems [4]. Given the multi-
ple time-scale characteristics of multiple layers, a hierarchical con-
trol framework is generally deployed [5,6] for power generation
systems to accomplish the salient task for each level, as shown in
Fig. 1. At the lowest measurement process level, visibility must
be maintained while important variables are measured and moni-
tored. Based on these variables, regulatory controllers are placed in
the field to steer each single-loop process [7], such as temperature,
pressure, and water level, to the operating point designated by the
upper-level supervisory control level. In this regard, the task
of the regulatory control level is referred to as ‘‘maneuverability”
in this paper, which describes how quickly and stably the targeted
loop can act when desired. The supervisory control level
employs advanced control algorithms to maximize the flexibility
of many interacting loops by accounting for multivariable cou-
plings while satisfying operational constraints [8]. At the highest
level of economic planning, overall efficiency or profit metrics
are formulated and optimized to provide steady-state set-points
for the lower layers of dynamic controls [9]. In addition to the
bottom-to-top control levels, fault detection and diagnosis (FDD)
is essential for safe operation and longer plant lifetimes [10]. The
hierarchical structure in Fig. 1 can be used to manage either a
complete power generation system, such as a fuel cell unit, or a
subsystem, such as the boiler combustion furnace of a coal-fired
power plant.
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Fig. 1. The hierarchical structure of a power generation system or a subsystem for monitoring, control, optimization, and fault detection.

L. Sun and F. You Engineering 7 (2021) 1239–1247
Traditionally, developing an accurate model for each level in
Fig. 1 is critical in order to fulfil multiple objectives. The internal
variable of monitoring for visibility is usually realized by a state
observer or a Kalman filter based on a state-space (SS) model, such
as battery core temperature estimation [11]. The widely used
proportional–integral–derivative (PID) controller for regulatory
maneuverability typically requires a process model for parameter
tuning [12]. For the flexibility level, model predictive control
(MPC) accounts for the largest share of the supervisory control
algorithms. MPC formulates the multivariable constrained opti-
mization problem into a receding-horizon quadratic optimization
framework using model-based output prediction. A typical MPC
application is demonstrated in Ref. [13] for the supervisory control
of a solar combined cycle plant. For the economic planning level,
dynamic programming serves as a very popular algorithm to
schedule the energy flow demand among different power sources,
typically at an hourly rate, and can be applied to, for example, the
energy cost minimization of a complex tri-generation plant [14] or
the operational cost minimization of a hybrid power plant [15].
Fault detection is usually carried out based on a model known as
a priori, as is the case in a recent application in the air-feed system
of a fuel cell [16]. A significant trend in recent years is the integra-
tion of the economic planning and supervisory control levels, based
on the framework of economic model predictive control (EMPC).
EMPC has the capacity to realize economic optimization and
dynamic operations simultaneously by directly formulating an
economic index subject to the system model and various
constraints. EMPC has already been studied in the throttling loss
minimization of a boiler–turbine unit [17] and the comfort maxi-
mization of a building cogeneration system [18].

Although efficient, model-based methods are gradually becom-
ing incapable of dealing with the ever-growing scale of energy sys-
tems with various uncertainties. This paper summarizes several
typical uncertainties that are commonly encountered at each of
the levels listed in Fig. 1. These uncertainties are discussed one
by one in the following sections. The 21st century is witnessing
the booming prosperity of machine learning (ML) and data science
[19]; such a boom may be the key to addressing growing difficul-
ties regarding scalability and uncertainty. In this era of big data,
many disciplines—such as particle physics [20], material science
[21], and process system engineering [22]—have seen a drastic
shift from model-based analysis to ML and data-driven (DD) meth-
ods. ML and DD techniques have revolutionized the monitoring,
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control, and optimization of modern energy systems, including
conventional fossil fuel power plants and renewable energy sys-
tems. Common ML algorithms include unsupervised learning,
supervised learning, and reinforcement learning (RL) [23], each of
which has been applied at different levels of energy systems to
address different problems. DD techniques usually use real-time
or historical data to directly control the process, including iterative
feedback tuning (IFT) [24], iterative learning control (ILC), and
active disturbance rejection control (ADRC) [25,26], among other
techniques. DDmethods usually have an extended scope and run fas-
ter than ML methods; they have widespread usage in meeting the
high real-time capability requirements of regulatory control levels.

This paper does not attempt to provide a comprehensive review
of every method in all energy system applications; rather, it aims
to demonstrate how ML and DD methods can be suitably deployed
to improve the visibility, maneuverability, flexibility, profitability,
and safety (abbreviated as the ‘‘5-TYs”) of power generation sys-
tems in order to handle the uncertain challenges at each level. Fol-
lowing from Fig. 1, the 5-TYs can be defined as follows:

� Visibility: The measurement and transmission of measurable
variables and the estimation of internal unmeasurable variables.

� Maneuverability: The rapidity and accuracy of the response
of the bottom-level regulatory control, mostly in single-loop
processes.

� Flexibility: The extent to which multivariable coordination
can reach in the supervisory control level.

� Profitability: The economic cost or benefit of the whole sys-
tem or of an important subsystem.

� Safety: The FDD of the system, which prevents danger to the
energy generation system.

In smart power generation, the visibility level is the basis of the
other levels, as it involves sensing the internal conditions for use in
control, optimization, and diagnosis. A strong maneuverability
level permits flexibility and profitability, while the safety level is
the watchdog that protects the whole system.

This paper comprehensively reviews ML and DD methods:
� From conventional thermal power generation to the emerging
field of renewable energy;

� From the deterministic scenario to the stochastic environment;
� From the bottom level to the top level of the whole operations
management framework.

The motivations of this paper in choosing the perspective of
uncertainty handling are as follows:
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� Uncertainties widely exist in all levels of power generation. As
Roger Brockett said, ‘‘if there is no uncertainty in the system,
the control, or the environment, then feedback control is lar-
gely unnecessary” [27].

� The nature of uncertainties differs at different levels, and spe-
cial care is required to handle each uncertainty. For example,
disturbance uncertainty at the maneuverability control level
should be estimated and rejected, while environmental uncer-
tainty at the profitability level should be modeled as a
stochastic process and then taken into consideration during
economic optimization.

This paper focuses on the power generation side; literature on
the power grid will not be discussed. The rest of this paper is orga-
nized as follows. Bottom-level visibility and maneuverability, in
which DD and ML algorithms must respond quickly to regulation
requirements, are discussed in Section 2. Section 3 reviews DD
model-based predictive control for supervisory flexibility and var-
ious unsupervised and RL methods in the energy system planning
level, at which the computational time ranges from minutes to
hours. The DD FDD methods are reviewed and compared with
the model-based methods in Section 4 for power generation sys-
tems. Section 5 concludes the survey and depicts future research
for smart power generation.
2. Visibility and maneuverability

Visibility requirements concern variable measurement, quanti-
tative process characterization, and hidden-variable soft sensing.
Inevitable stochastic noise in the measured signals is the primary
uncertainty to be addressed at this level. Maneuverability is
realized based on process identification and measured or
estimated signals from the visibility level, with the primary goal
of uncertain disturbance rejection.
2.1. Dynamic characterization

System identification is a classical DD method for dynamic
system characterization. It is generally treated as a black box
due to the difficulties in physical modeling. Since the 1960s, this
discipline has received considerable attention and attained great
success, even preceding the prosperity of ML [28]. It is used to
characterize the underlying structure and parameters behind
the input/output data of power generation processes by
exercising certain activations as the control input. Classical step
response-based transfer function identification is the most
common method used in power plants. Applications of step
response identification to energy systems include the water level
identification problem in a regenerative heater [29], fuel cell tem-
perature identification [30], and the multivariable fluidized-bed
combustor [31]. The classical step response method has proved
to be incapable of identifying high-order processes in the pres-
ence of measurement noise [32]. To mitigate this issue, a hybrid
time and frequency domain identification method is developed
in Ref. [33] for heat exchangers, a common high-order component
in energy systems.

Sensor noise is the central issue to be addressed by modern sys-
tems identification methods. Additive white Gaussian noise
(AWGN), which primarily originates from thermal noise, is the
most frequently encountered form of sensor noise in power
generation systems. Multiple mature DD methods have been
developed to address AWGN in energy systems; the most common
method is the use of a minimization criterion such as the square
error [34]. A single-input single-output (SISO) example can be
found in Ref. [35], where an adaptive recursive least-squares
(ARLS) method is used to identify in real time the regression
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parameter of the fuel cell hybrid system model—that is, a linear
difference equation with AWGN, or an ‘‘autoregressive with extra
input (ARX)” model. This ARX-based recursive least-squares (RLS)
identification method is one of the most popular AWGN-effect
removal methods in almost every power generation sector, includ-
ing the wind turbine generator sector [36], solar power generation
sector [37,38], thermal power plant sector [39], and energy storage
systems sector [40,41]. For non-Gaussian colored noise, the battery
parameter identification study in Ref. [42] introduces an instru-
mental variable method that improves the least-squares identifica-
tion method over the conventional RLS.

The noise problem becomes even more intractable when it
comes to the multi-state system described by the SS model. For a
given SS physical model with unknown parameters (i.e., a grey
box), the Cramer–Rao bound analysis is used for the parameter
identification of battery [43] and hybrid energy storage systems
[44] to handle AWGN in the battery voltage measurement. To cir-
cumvent analytical difficulties in theoretical solutions, heuristic
optimization methods are extensively used to identify the SS
model parameters of energy systems, such as in fuel cells [45],
solar cells [46], and water turbines [47]. For a black-box system
without any information on the physical mechanism and the SS
model order, subspace identification (SID) is usually applied.
Examples of such systems include fuel cells [48], power plant
reheated temperatures [49], and fluidized-bed combustors [50].

The above system identification methods have conventionally
required a specific type of input excitation signal and work mostly
on linear systems. This convention has changed with the develop-
ment of ML methods, which are able to identify a complex nonlin-
ear system based primarily on a massive data record. Shallow
neural networks (NNs) are one of the most popular methods
applied in energy systems such as the dynamic modeling of fuel
cells [51,52], boiler–turbine units [53,54], and solar power genera-
tion [55]. To reduce the structural risk, a support vector machine
(SVM) is also widely used for energy systems identification
[56–58]. In the past decade, along with the resurgence of deep
learning, long short-term memory (LSTM) has become increasingly
prevalent because it better handles the time-series data of power
generation systems [59].
2.2. Soft sensing

Since some of the critical variables in energy systems may not
be directly measurable, soft-sensing techniques, including model-
based state estimation [60] and DD algebraic correlation [61]
algorithms, effectively visualize internal phenomena and provide
feedback signals for the upper control levels. Model-based state
estimation usually suffers from stochastic noise uncertainty and
sensor inaccuracy. Some DD methods have been incorporated to
remedy this insufficiency, such as battery core temperature esti-
mation based on state augmentation and feedback correction
[11].

DD algebraic correlation-based soft-sensing methods aim to
estimate unmeasurable variables (also called primary variables)
based on measurements of secondary variables [62]. Although
not directly measurable while the system is in operation, primary
variables can be measured offline and/or accessed intermittently
with a high cost per sample. Therefore, the essential task of soft
sensing is to determine the relationship between the primary vari-
ables and secondary variables based on the finite observed data. To
this end, regression or curve fitting can be used. For example, an
evidential regression model was learned as a soft sensor to monitor
the powder concentration in a coal mill [63], and the partial least-
squares (PLS) regression was trained to predict the NOx emission in
a 1000 MW power plant [64].
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2.3. Regulatory control

To implement strong maneuverability, many feedback con-
trollers are deployed at the regulatory control level. This level
receives sensed signals from the visibility level and reference com-
mands from the upper levels. Its primary goal is to mitigate the
effects of unmeasurable and uncertain disturbances [65]. Modeling
each loop and designing individual feedback controllers is time-
consuming and costly. Therefore, DD control methods now play a
central role in the industrial regulatory control level [26]. This
paper reviews the applications of PID control, ADRC, and ILC for
some typical disturbances.

PID control is still the dominant controller in power generation
systems due to its ease of use and negligible computation time in
the fast-response-requiring environment of rapid maneuverability
[12]. PID control uses a combination of proportion, integration, and
derivation of real-time error data, rather than a physical model, to
adjust the actuator and maintain device operations under optimal
conditions. The difficulty usually lies in tuning the controller
parameters. ML techniques are sometimes incorporated to
improve the performance; examples include NN-enhanced PID
control application in a thermal power plant [66], a fuel cell [67],
a solar power plant [68], and a wind turbine [69]. In addition, fuzzy
logics are very popular for adjusting PID parameters online in
applications such as wind turbines [70], fuel cells [71], solar power
generation [72], and combined cycle power plants [73]. To fully
exploit the potential of historical data, IFT has also been investi-
gated for tuning the PID parameters of a boiler–turbine unit [74].
IFT is an interesting approach to iteratively improve the control
performance by learning from the performance of previous tasks.

Due to the limitations of PID control in dealing with nonlinear-
ity and model uncertainty, ADRC is emerging as a disruptive DD
control technology. Like PID control, it does not require a physical
model for controller design [75]. The primary advantage of ADRC
over PID control is that it can produce a satisfactory performance
in both set-point tracking and disturbance rejection, which is
attributed to its two-degrees-of-freedom structure. The DD com-
pensation mechanism of ADRC is depicted in Fig. 2. An extended
state observer is first designed to estimate the unknown dynamics
and external disturbances, which are then directly compensated
for in the control input through an analysis of the input and output
data. The enhanced plant—that is, the grey block in Fig. 2—can be
approximately compensated for as a cascaded-integrator process,
so that the outer-loop controller can be readily designed. It is
revealed in Ref. [29] that ADRC is able to accommodate actuator
saturation with application to a regenerative heater in a
1000 MW power plant. Tuning of ADRC is discussed via an
experimental application in the boiler furnace control [76]. The
fluctuation of the power plant superheated temperature is reduced
significantly by introducing a cascaded ADRC structure [77].
Recently, ADRC has also been introduced into the regulatory con-
trol of wind turbines [78], photovoltaic generation [79], and fuel
cells [80,81].
Fig. 2. The DD disturbance compensation structure of ADRC. kp: proportiona
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ILC has been specifically proposed for use in addressing periodic
disturbances [82], and has gained wide attention from the control
community, although applications in power generation systems
are relatively limited. ILC gradually modifies the control action at
each time step by learning the corresponding time steps in the pre-
vious sequences. Typical periodic disturbances and explorative ILC
applications in power generation systems include the fuel cell
anode purge process [83] and wind turbine peak loads [84].
3. Flexibility and profitability

Flexibility refers to the ability of the supervisory control level to
coordinate the operation among multiple loops; it forms the basis
for profitability. Seeking maximum profit and minimal costs, the
profitability level computes the optimal condition of the middle-
level process variables. Therefore, greater flexibility makes highly
interactive energy systems easier and safer to maintain at a select
few operating conditions with maximal economic efficiency.
3.1. Flexibility

The supervisory control level for system flexibility is primarily
accountable for the coordination of a couple of basic regulatory
loops. A more flexible multivariable controller design strategy
enables a swift dynamic transition back to economically optimal
conditions after any disturbance.

A multivariable model is still essential and currently plays
mostly a basic role in the supervisory control practice, including
power generation practices. Research studies on and applications
of pure DD controls are somewhat limited, presumably due to
the rigorous safety requirements in the power generation process.
Without a model, it is usually difficult to ensure the stability of a
multivariable control system. However, the primary challenge of
model-based control is model uncertainty during condition transi-
tion, device aging, and environmental change. To this end, the ML
and DD techniques can improve system robustness against model
uncertainty.

For conventional supervisory control applications with limited
computational resources, fuzzy logic is usually used to adjust the
parameters in order to improve performance. By identifying a clus-
ter of linear models for the main steam pressure in a power plant,
fuzzy reasoning was used to adjust the parameters of the decou-
pling PID controllers online to accommodate the uncertain condi-
tions of the coal mill [85]. Similarly, a flatness-based intelligent
fuzzy logic controller was developed for a photovoltaic/fuel cell
power plant to achieve a fast and stable response to the power sys-
tem [86]. A hybrid classical and fuzzy control methodology was
developed to control the steam temperature and water level of a
power plant boiler [87]. Model information can be incorporated
to enhance the DD control performance of multivariable ADRC,
such as multivariate control applications in water tank
l gain; e: feedback error; b0: process gain; ESO: extended state observer.
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demonstration [88] and in the direct energy balance control of a
thermal power plant [89].

The above supervisory control methods are now somewhat out-
dated in light of the rapid development of industrial computing
power, which enables the application of advanced, computation-
ally expensive control algorithms such as MPC. When a physical
model is absent, the SID method is commonly used to develop a
DD model for MPC. A combined method of fuzzy clustering and
SID is proposed in Ref. [90], such that the multivariable coupling
and operational constraints of a boiler–turbine unit can be formu-
lated and handled under the MPC framework. For fuel cell systems
without complete online measurement of all output variables, a
SID method is directly embedded into the MPC to realize complete
DD control [91]. Recently, DD-enhanced MPC was used in the pol-
lution control [92] and carbon capture control [93] of coal-fired
power plants. Along with DD methods, ML methods are also com-
bined with MPC. An NN was used to train the model for MPC, and
showed success in dynamic energy management systems [94]. In
addition, least-squares SVMs (LS-SVMs) and PLS are respectively
used to identify fuel cell systems, based on which MPC is deployed
to realize fast power tracking with constraints on the operating
temperature [95]. A multilayer perception-based MPC is proposed
in Ref. [96] for the superheated-steam supply systems of nuclear
power plants. The primary disadvantage of the ML-based MPC is
that the closed-loop stability cannot usually be ensured.

3.2. Profitability

The economic planning level for profitability is the topmost
level of power generation systems. It usually works on an hourly
or even daily basis, thus having sufficient time to compute the eco-
nomic reference for the lower levels. Traditionally, data-mining
methods are used to compute the most economical operation from
the historical data. For example, in a recent unsupervised learning
application, the size of the historical data of a power plant desulfu-
rization system was first reduced by principle component analysis
(PCA), from which a fuzzy C-means clustering method was used to
derive several groups with similar operating conditions. Therefore,
the economic reference for the running system could be deter-
mined as the lowest desulfurization cost point of a similar group
[97]. In other words, the combined PCA and clustering methods
aim to search for the best point by comparing the current condition
with similar operating conditions in the group it belongs to.
However, this method can search only for existing conditions of
the database and cannot ensure optimality. This is a different
methodology from boiler combustion optimization [98]. The com-
bustion efficiency and the amount of pollution emission are
regressed in terms of a large number of boiler variables based on
the LS-SVM. A genetic algorithm is then used to optimize the
condition setting, balancing the combustion efficiency and pollu-
tion emission.

When it comes to renewable power generation systems, the
presence of uncertain environmental variables, such as the inter-
mittency of wind and sunlight, as well as fluctuations in the con-
sumptive load, makes economic planning more difficult. To this
end, a reasonable forecast for each uncertain variable is critical
for the next-step profitability decision. This is probably the most
active area of research within the power generation domain, with
a large volume of literature investigating a wide variety of ML algo-
rithms. Taking wind power forecasting as an example, various arti-
ficial NN (ANN) structures, including feed-forward, time-series,
recurrent, and deep NN, have been used to map different weather
variables to a series of deterministic wind power prediction values
in terms of different time scales (e.g., daily, weekly, and monthly)
[99,100]. The statistical properties of wind power generation are
evaluated by Bayesian methods, such as sparse Bayesian learning
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[101], the Bayesian nonparametric approach [102], and the Markov
chain Monte Carlo (MCMC) approach [103], to derive a probabilis-
tic distribution over a certain range. Recently, an ensemble two-
layer ML model was developed to produce both deterministic
and probabilistic wind power forecasts, in which the weather vari-
ables (temperature, humidity, pressure, and wind direction) were
preprocessed via a deep feature selection block [104]. State-of-
the-art solar and load forecasting methods are similar to those of
wind, as reviewed in the literature [105,106].

With the forecasting of intermittent renewables and uncertain
loads, it becomes possible to optimize the economic planning of
hybrid power generation and energy storage systems. RL appears
to be a promising DD solution because it remains accurate when
handling optimization problems with uncertainty, even without a
model. Inherited from the Markov decision process (MDP) frame-
work, RL is described by a set of agent states within an environ-
ment, a set of possible actions for each agent, and rules
governing dynamic transition, preference, and observation [107].
By interacting with the host environment (i.e., receiving observa-
tions and rewards), the RL agents choose appropriate actions to
maximize the reward. To overcome the analytical challenge of tra-
ditional optimization methods [108,109], RL converts extreme
seeking or economic planning to pure data-learning problems for
power generation systems with or without a physical/simulation
model [110]. An intuitive single-agent Q-learning example comes
from the maximum power point tracking (MPPT) control of wind
energy conversion systems (WECSs), where the RL agent is the
wind turbine, the transition states are the rotor speed and electri-
cal output power, the action is the speed adjustment command,
and the reward is defined as the increment of electrical power out-
put [111]. For distributed energy generation with multiple power
generation sources, a multi-agent fuzzy Q-learning method has
been developed, in which the agents are the controllable devices,
such as the fuel cell, diesel generator, battery, desalination device,
and electrolyzer. With the RL coordinated actions among these
adjustable elements, the cumulative expected discounted rewards
are maximized to ensure system reliability and to minimize fossil
fuel consumption [112]. Deep reinforcement learning (DRL) was
introduced [113] to address the complex energy Internet problem
by taking advantage of the strong approximation ability of NNs.
Further examples on RL and DRL applications to power generation
systems are available in a recent survey [114].
4. Safety: Fault detection and diagnosis

In general, the methods used for FDD in smart power generation
fall into one of two categories: model-based and DD (case-based)
approaches. Model-based approaches seek a quantitative relation-
ship among the inputs, states, and outputs of a plant, subject to
potential device uncertainties. The residuals between target out-
puts and model projections are calculated; fault(s) are detected
and isolated if the accumulated residual is greater than a pre-
scribed threshold. Taking a coal pulverizing system as an example,
an observer-based FDD model made of SS equations was estab-
lished to monitor faults, such as coal leakage and mill blockage;
the experimental results showed that the observer-based FDD
method performed well in nominal cases [115,116]. Nevertheless,
unknown disturbances or uncertainties may render the observer-
based FDD model inadequate. To prevent such failures, a DD FDD
method was proposed with robust residual generators that are
directly constructed from the available process data to detect
faults, such as an application in a wind turbine FDD in the presence
of unknown disturbances and measurement noise [117]. Further-
more, DD FDD methods might not need a priori information from
a plant. An application of wind turbine fault detection can be found
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in Ref. [118], where NN and other regression methods are
compared.

DD case-based approaches also view historical samples with
different fault types as patterns locating in a hybrid feature space
composed of inputs, outputs, and/or states. New observations are
then compared against historical patterns to determine whether
faults are present; if so, the detected fault will be assigned to the
most similar fault type known. DD case-based approaches solve a
classification problem, whereas model-based approaches solve a
regression problem. In other words, any classification algorithm
can be repurposed and deployed as an FDD model. Similarly, fuel
cell FDD is carried out based on classification algorithms [119].
SVM and adaptive neuro-fuzzy inference system (ANFIS) classifiers
were investigated in Ref. [120] to recognize the faulty conditions in
a steam turbine unit. For other FDD models based on classification
algorithms in energy systems, interested readers can refer to Ref.
[121] and the literature therein.

The pervasive uncertainty hinders FDD application in power
generation systems. The threshold values are usually determined
by the users. In fact, almost all FDD models are sensitive to the
user-given threshold: A small threshold would lead to many false
alarms. There currently exists no general and widely accepted
method to deal with imprecision and uncertainties, or to preset
the user-given threshold in FDD. In addition to the above two
issues, the safety protocols of power plants make it too expensive
to obtain faulty samples (i.e., training samples). Therefore, FDD
must be carried out based on normal operational data.

Due to the uncertainty difficulties, classical DD case-based
approaches often struggle to identify potential faults by comparing
new observations against historical operational data. To mitigate
this difficulty, the Dempster–Shafer (DS) theory [122–125] of evi-
dence extends probability theory and provides a general frame-
work to interpret imprecision and uncertainty by taking the
power set of all fault types/classes as the frame of discernment.
Theoretically, given a set of c normal cases (or fault types) X =
{x1, x2, . . ., xc}, probability theory defines a probability distribu-
tion p: X ? [0, 1], whereas DS redefines the probability as a mass
functionm: 2X? [0, 1]. Evidently, a mass function can describe not
only the possibility or belief—that is, m({xq})—of an observation
belonging to the normal case {xq}, but also the belief belonging
to transient cases (e.g., {xq, xq+1}) as well as belief pertaining to
the ignoranceX. In particular, when an observation has large igno-
rancem(X), such as m(X) ? 1, it would be identified as a new nor-
mal case (including the new cases deteriorated from the existing
normal cases) or an unknown fault. In general, DS provides a more
powerful tool for FDD to deal with imprecision and uncertainties in
Fig. 3. DD FDD in the fram
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comparison with either probability theory or fuzzy set theory.
Therefore, implementing DD case-based approaches in the DS
framework can yield more meaningful interpretations for FDD,
including the detection of normal cases, transient cases, new nor-
mal cases, deteriorated cases (from normal cases), and unknown
fault cases, as illustrated in Fig. 3. DS theory has found several
FDD applications in power generation systems. For example, a
multi-sensor fusion and decision method based on DS theory and
classification and regression tree is proposed in Ref. [126] for the
diagnosis of a high-voltage circuit breaker (HVCB) used to protect
power generation systems in case of contingencies. By borrowing
the basic idea from Refs. [127,128], an FDD model is established
based on the evidential k-nearest neighbor (EKNN) classification
rule to perform monitoring and early warning on two practical
equipment units in a thermal power plant [129].
5. Conclusions

ML and DD control methods have proven to be promising alter-
natives to traditional model-based methods at all levels of smart
power generation systems operation, especially in the presence
of uncertainty. This paper formulated the objectives and primary
uncertainties at each level and reviewed how ML and DD methods
can help in improving visibility, maneuverability, flexibility,
profitability, and safety (the 5-TYs). For dynamic modeling that is
subject to stochastic noise uncertainty, DD system identification
methods play an important role in deriving algebraic models in
the form of transfer functions and SS. In addition, ML-based regres-
sion methods have been revealed to be more powerful in charac-
terizing nonlinear multivariable energy systems when big data is
available. In addition to dynamic characterization, the visibility
of the internal energy systems can be significantly enhanced by
DD soft sensing. Based on the visibility information, the regulatory
control level can improve the device maneuverability by utilizing a
suitable DD control method for a specific type of uncertain distur-
bance. A first-principles model is still essential for the supervisory
multivariable control level, but DD methods can be embedded into
the MPC framework to enhance the flexibility of power generation
systems against model uncertainty. The economic planning level
relies heavily on ML methods to accommodate large-scale energy
system optimization problems that are subject to various uncer-
tainties. To improve system safety in the case of unknown faults,
the DD DS theory shows great potential in the FDD of power gen-
eration systems when only the normal operation data are avail-
able. At present, EMPC still relies heavily on the process model,
ework of DS theory.
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and the literature lacks in-depth studies on implementing ML algo-
rithms into a combination of the supervisory and planning levels.
Furthermore, compared with the booming development taking
place in ML and data science, there exists a great gap between
the latest ML algorithms, such as deep learning, and present appli-
cations in the smart power generation system. The primary diffi-
culty prohibiting further applications of EMPC is the huge
computational time required by online optimization. Efficient
computation of EMPC is a promising topic for future research. This
undervalued but exciting topic is still principally in its infancy; ML
and DD methods hold great potential for improving power systems
efficiency for a more sustainable future.
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