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Hepatitis C virus (HCV) is a major cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma
(HCC) worldwide. Among the structural proteins of HCV, the HCV core protein has the ability to regulate
gene transcription, lipid metabolism, cell proliferation, apoptosis, and autophagy, all of which are closely
related to the development of HCC. Transgenic mice carrying the HCV core gene exhibited age-dependent
insulin resistance, hepatic steatosis, and HCC that resembled the clinical characteristics of chronic hepa-
titis C patients. Several dietary modifications, including calorie restriction and diets rich in saturated
fatty acids, trans fatty acids, or cholesterol, were found to influence hepatic steatogenesis and tumorige-
nesis in HCV core gene transgenic mice. These strategies modulated hepatocellular stress and prolifera-
tion, in addition to hepatic fibrotic processes and the microenvironment, thereby corroborating a close
interconnection between dietary habits and steatosis-related hepatocarcinogenesis. In this review, we
summarize the findings obtained from mouse models transgenic for the HCV genome, with a special
focus on HCV core gene transgenic mice, and discuss the mechanisms of steatogenesis and hepatocar-
cinogenesis induced by the HCV core protein and the impact of dietary habits on steatosis-derived
HCC development.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Chronic hepatitis caused by hepatitis C virus (HCV) infection is a
serious global issue, since chronic hepatitis C is the main cause of
both liver cirrhosis and hepatocellular carcinoma (HCC). According
to a report from the World Health Organization (WHO) in 2017, 71
million people worldwide (1%) are estimated to be infected with
HCV [1]. Approximately 30% of HCV-infected individuals display
persistent chronic hepatitis, which may progress to liver cirrhosis
and HCC [2].

HCV is a member of the genus Hepacivirus within the Flaviviri-
dae family, which is a group of small, enveloped, single-stranded
RNA viruses [3]. HCV particles are formed from structural proteins,
including the HCV core protein and the envelope glycoproteins E1
and E2. Since nonstructural proteins (p7, NS2, NS3, NS4A, NS4B,
NS5A, and NS5B) play an important role in the HCV life cycle, they
have become molecular targets for direct-acting antiviral agents.
For example, NS4B regulates replication complex formation,
NS5A is the main component of HCV RNA replication and particle
production, and NS3–NS5B are responsible for the replication
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module and catalyze the amplification of the viral RNA genome
[3,4]. HCV contains a 9.6 kilobase (kb) positive-strand RNA genome
composed of a 50 noncoding region (NCR) with an internal ribo-
some entry site, an open-reading frame that encodes the structural
and nonstructural proteins, and a 30 NCR [5] (Fig. 1).

Previous studies have demonstrated a strong association
between HCV infection and various metabolic diseases, including
hepatic steatosis, type 2 diabetes mellitus (T2DM), and iron and
porphyrin accumulation [6,7]. However, metabolic disorders are
also strongly influenced by daily lifestyle, such as overeating,
high-fat and high-carbohydrate diets, and lack of exercise. More-
over, persistent HCV infection is often accompanied by hepatic
inflammation and fibrosis, disrupting insulin signaling and lipid
metabolism through inflammatory cascades and hepatocyte injury
[8–12]. It is therefore difficult to understand the singular direct
contribution of HCV to metabolic diseases. In order to decipher
the pathogenic principles of HCV, a variety of HCV transgenic mice
models have been developed using the ten structural and non-
structural proteins [13–15]. The fact that only HCV core protein
transgenic mice exhibited spontaneous glucose intolerance,
hepatic steatosis, and HCC similar to those seen in HCV-infected
patients [16] corroborated the crucial role of the HCV core protein
in HCV-related metabolic disturbances.

In this review, we summarize the recent key findings obtained
from mouse models transgenic for the HCV genome, with a special
focus on characteristic observations in HCV core gene transgenic
mice, and discuss the mechanisms of steatosis-derived hepatocar-
cinogenesis induced by the HCV core protein. For an objective and
comprehensive review, we entered several keywords on this theme
(HCV transgenic mice, fatty liver, HCC, fatty acid (FA), cholesterol,
calorie restriction, dietary intervention, etc.) into PubMed and
searched for related articles published between 1995—when HCV
protein transgenic mice were first established [14]—and 2021.

2. Function of the HCV core protein

2.1. Structure of the HCV core protein

The HCV core protein is a 21-kilodalton (kDa) multifunctional
protein with lipid and RNA binding activity, whose main function
Fig. 1. Structure of the HCV and its core protein. The HCV genome (structural genes and n
untranslated regions (UTRs), This polyprotein is processed by cellular and viral protease
NS4B, NS5A, and NS5B). The core protein is released from a polyprotein by a signal peptida
to obtain a mature protein of approximately 177 aa, which is composed of two domains
(BD2), and basic domain 3 (BD3). The D2 domain includes helix I (HI) and helix II (HII
permission of Springer Science Business Media New York, � 2014 and from Ref. [5] wit
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is the construction of a viral capsid to cover and protect genomic
RNA while simultaneously transmitting the virus from one cell to
another [4,17]. After the precursor of the HCV core protein (191
amino acids (aa)) is released from a polyprotein, further processing
by a signal peptide peptidase produces the mature core protein
form [4].

The HCV core protein consists of two domains: hydrophilic D1
and hydrophobic D2. The D1 domain is composed of three basic
clusters: basic domain 1 (BD1; 2–23 aa), basic domain 2 (BD2;
38–74 aa), and basic domain 3 (BD3; 101–121 aa). The D1 domain
is related to the oligomerization necessary for particle formation
and RNA binding [4]. The D2 domain is responsible for associations
with the endoplasmic reticulum (ER) and lipid droplets (LDs). The
main structural element in D2 consists of two amphiphilic a
helices (helix I (HI) and helix II (HII)) separated by a hydrophobic
ring. The two helices can fold in a hydrophobic environment, thus
implicating the interaction of lipids in maintaining structural
integrity. Mutational studies have shown that the combination of
HI, the hydrophobic loop, and HII is inseparable from the formation
of LDs [18] (Fig. 1). The approximately 20 final aa of the hydropho-
bic D2 domain serve as the signal sequence targeting the envelope
glycoprotein E1 [4].

2.2. Role of the HCV core protein in cells

To evaluate the direct function of the HCV core protein in cells,
in vitro experiments using cultured cells stably overexpressing the
HCV core protein are indispensable. In the QSG7701 human-
derived non-tumor liver cell line, expression of the HCV core pro-
tein inhibited cell apoptosis [19] by disrupting the retinoblastoma
tumor suppressor protein (pRb)/ E2F transcription factor 1 (E2F-1)
balance [20]. In contrast, the translocation of B cell leukemia/lym-
phoma 2-associated X protein (BAX) from the cytoplasm to the
mitochondria, destruction of the mitochondrial membrane poten-
tial, release of cytochrome c, and activation of caspase-9 and
caspase-3 by the HCV core protein appeared to drive apoptosis
[21]. The HCV core protein not only upregulated nuclear factor
(NF)-jB to suppress host cell responses, but also enhanced
autophagy by increasing Beclin-1 expression [19]. Although
autophagy can help eliminate pathogens, HCV can accelerate
onstructural genes) encodes a polyprotein of 9.6 kb flanked at both ends by 50 and 30

s into ten structural and nonstructural proteins (Core, E1, E2, p7, NS2, NS3, NS4A,
se (SP). The precursor core of 191 aa is processed by a signal peptide peptidase (SPP)
(D1 and D2). The D1 domain is divided into basic domain 1 (BD1), basic domain 2

), which are separated by a hydrophobic loop (HL). Reproduced from Ref. [4] with
h permission of Elsevier, � 2011.
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self-replication through autophagy, leading to HCV survival and
persistent infection [19].

In HCC cell lines, the HCV core protein significantly enhanced
Wnt/b-catenin signal transduction activity, a key driver of hepato-
cyte proliferation and hepatocarcinogenesis [22]. It also regulated
Wnt1 in HepG2 cells to promote abnormal proliferation [23]. Sev-
eral studies have shown that the HCV core protein can enhance the
expression of activator protein (AP)-1 and vascular endothelial
growth factor (VEGF) in liver cancer cells, indicating that HCV-
induced angiogenesis in HCC might be partially mediated by this
protein [24]. The HCV core protein has the ability to upregulate
hypoxia-inducible factor-1a under hypoxic conditions, thereby
helping to increase VEGF expression [25]. A report has also shown
that the HCV core protein promoted the proliferation of human
liver cancer cells by activating NF-jB and upregulating the expres-
sion of tumor necrosis factor (TNF)-a. The HCV core protein stimu-
lated hepatocyte proliferation and chemoresistance by inhibiting
nuclear receptor subfamily 4 group A member 1 (NR4A1) [26].
Hepatoma cells expressing the HCV core protein activated co-
cultured stellate cells in a manner mediated by transforming
growth factor b [27]. The interaction between the HCV core protein
and LDs plays an important role in the process of HCV infection.
The HCV core protein has been shown to affect sphingolipid and
cholesteryl ester biosynthesis, which was partially associated with
abnormal lipid metabolism in HCV-infected patients [28]. In addi-
tion, the expression of insulin-like growth factor-binding protein
(IGFBP)-1 was significantly reduced in hepatocytes transfected
with the HCV core protein [29]. Since IGFBP-1 may be a key factor
in hepatic insulin sensitivity and glucose metabolism [30], this
effect may contribute to insulin resistance in chronic hepatitis C.
3. Generation of HCV core gene transgenic mice

3.1. Why are HCV core gene transgenic mice necessary?

Since the results of cell experiments overexpressing HCV pro-
tein are obtained under specific conditions, in vivo animal experi-
ments are extremely valuable in evaluating the impact of HCV
protein in the whole body by mimicking persistent HCV infection
in humans. However, HCV cannot infect rodents, the conventional
animals of most in vivo experiments [31]. As an alternative, a vari-
ety of HCV protein transgenic mice have been generated for under-
standing the pathogenesis of HCV proteins in vivo [13,14,32].

The establishment of HCV mouse models has helped to repro-
duce the clinical features of HCV-infected patients and assess the
pathogenesis of chronic HCV infection. Transgenic mice carrying
the HCV envelope genes E1 and E2 were first documented in
1995 [14]. Immunostaining showed that the envelope protein
was localized mainly in the cytoplasm of hepatocytes around the
Fig. 2. Generation of HCV core gene transgenic mice. pBEP39 is an expression vector con
microinjected into mice embryos, which are then introduced into C57BL/6N mice. P: pr
Elsevier, � 2011 and from Ref. [40] with permission of Society for General Microbiology
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hepatic central veins. There was no detectable evidence of liver dis-
ease until 16 months of age, although the animals exhibited
exocrinopathy involving the salivary and lachrymal glands, indi-
cating the direct involvement of HCV in the pathogenesis of
sialadenitis in HCV-infected humans [33]. The HCV NS5A protein
has numerous hallmark characteristics, including the sequestra-
tion of p53 in the cytoplasm, downregulation of the p21 protein,
activation of signal transducer and activator of transcription 3
(STAT3), and inhibition of TNF-a-mediated apoptosis. However,
HCV NS5A protein gene transgenic mice did not show obvious
pathogenicity [13], which was also the case for HCV NS3A/NS4A-
expressing transgenic mice [32,34].

Among the HCV structural and nonstructural proteins, muta-
tions are rare in the core gene, suggesting that the core protein play
a key role in the pathogenesis of HCV [35,36]. The ability of the
HCV core protein to regulate a variety of signaling pathways in
the host, such as those related to apoptosis, gene transcription, cell
transformation, and immune responses [37–39], is also related to
hepatocarcinogenesis [16]. Therefore, clarifying the role of the
HCV core protein in vivo using transgenic mouse systems such as
the one established in 1997 will provide clues about HCV patho-
genesis [40].

3.2. How were HCV core gene transgenic mice generated?

To generate HCV core gene transgenic mice, the expression vec-
tor pBEPBglII containing hepatitis B virus regulatory elements was
used in the plasmid construction process [14]. By double digestion
with PstI and EcoRI, a (1 ± 6) kb fragment containing the core pro-
tein coding region was excised from plasmid pSR39 [41] after
treatment with T4 DNA polymerase and the attachment of BclI
linkers. Subsequently, it was connected to the BglII site of plasmid
pBEPBglII. A (1 ± 2) kb KpnI–HindIII fragment from pBEP39 was
purified by means of polyacrylamide gel electrophoresis (PAGE)
and microinjected into mouse embryos from C57BL/6N mice. Then,
1 ng of tail DNA was amplified by polymerase chain reaction (PCR)
to identify transgenic mice [40] (Fig. 2).

In the strain of HCV core gene transgenic mice developed by
Moriya et al. [40], core protein expression in the liver begins at
birth. This transgenic mouse line has levels of core protein similar
to those of HCV-infected humans. The mice begin to exhibit LDs in
liver cells 3 months after birth, and liver steatosis continues as the
animals grow. Hepatic adenomas containing fat droplets in the
cytoplasm appear at approximately 16 months of age, and the mice
eventually exhibit HCC at the age of 17 months [16].

3.3. Hepatic insulin resistance in HCV core gene transgenic mice

T2DM is a complex multi-system disease involving defects in
insulin secretion, which increases hepatic glucose production and
taining hepatitis B virus regulatory elements. A (1 ± 2) kb KpnI–HindIII fragment is
omoter; (A)n: polyadenylation signal. Reproduced from Ref. [5] with permission of
, � 1997.



Fig. 3. Mechanism of hepatic steatosis induced by the HCV core protein. The HCV
core protein induces hepatic steatosis in transgenic mice via several pathways.
TNF-a and PA28c cause insulin resistance, upregulate sterol-response element-
binding protein (SREBP)-1c, and stimulate lipogenesis. Decreased adiponectin and
microsomal triglyceride transfer protein (MTP) expression also leads to diminished
very-low-density lipoprotein (VLDL) secretion and hepatic steatosis. Mitochondrial
dysfunction by the HCV core protein can reduce FA catabolism and enhance
oxidative stress, thereby aggravating hepatic steatosis.
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insulin resistance [42,43]. Although a positive association between
T2DM and chronic hepatitis C has been reported in epidemiological
studies, it remains unclear how HCV contributes to the onset of
T2DM. A significant and direct mechanistic link between insulin
signaling and HCV was first demonstrated using HCV core gene
transgenic mice [40]. Whereas the body weight of the transgenic
mice was similar to that of control mice, their serum insulin levels
and pancreatic b cell mass were both significantly higher. Hyperin-
sulinemia was observed as early as at 1 month of age in the trans-
genic mice and preceded hepatic steatosis, demonstrating the
direct and initial action of the HCV core protein in insulin resis-
tance. TNF-a is a key contributor to insulin resistance. In fact,
blocking TNF-a action restored hepatic insulin sensitivity in the
transgenic mice, confirming that disrupted hepatic insulin signal-
ing by the HCV core protein was mediated by TNF-a [44]. The
HCV core protein may also stimulate the activation of proteasome
activator 28c (PA28c) to affect insulin signal transduction [45].
Although the mechanism of insulin resistance is multifactorial
[42,43,46,47], the above findings support the direct action of the
HCV core protein on hepatic insulin resistance and T2DM develop-
ment, which are frequently accompanied by chronic hepatitis C
[12] (Fig. 3).

3.4. Hepatic steatosis in HCV core gene transgenic mice

Hepatic steatosis is more common in chronic hepatitis C than in
chronic hepatitis B [40,48]. Indeed, steatosis was observed in 72%
of chronic hepatitis C patients, versus only 19% of autoimmune
chronic active hepatitis patients [49]. Hepatic steatosis is a
reported risk factor for HCC in chronic hepatitis C [50]. Since the
mechanism of hepatic steatosis is complicated due to the involve-
ment of several metabolic pathways and interconnections with
extrahepatic organs, the generation of transgenic mice carrying
HCV proteins has been useful in assessing the direct contribution
of HCV to the development of hepatosteatosis.

Among the transgenic mice that have been generated for HCV
proteins, only core gene mice exhibited spontaneous hepatic
steatosis. The LDs were initially small in young mice, with large
droplets becoming predominant with age to resemble the livers
of chronic hepatitis C patients. All male and approximately half
of female transgenic mice exhibited hepatic steatosis by the age
of 6 months [40]. Hepatic insulin resistance and steatosis are fea-
tures shared by both HCV-infected patients and HCV core gene
transgenic mice, while lymphocyte infiltration into hepatic
parenchyma and bile duct injury are observed in HCV-infected
patients alone [48].

HCV core protein-induced non-obese hepatosteatosis is associ-
ated with hypoadiponectinemia and can be improved by the
administration of adiponectin [51]. PA28c is not only related to
insulin resistance via TNF-a overproduction, but also involved in
FA synthesis in HCV core gene transgenic mice, since the HCV core
protein activates the sterol regulatory element-binding protein 1
promoter in a liver X receptor a/retinoid X receptor a (RXRa)-
and PA28c-dependent manner [52–55].

The influence of the HCV genotype 1b and 3a core proteins on
the FA synthase (FAS) promoter and the molecular mechanism
behind this process has been described. Microsomal triglyceride
transfer protein (MTP) can promote the synthesis of very-low-
density lipoprotein (VLDL). Since the HCV core protein lowers
MTP activity [56], this function of the core protein on MTP may
cause the accumulation of triglycerides [57]. It has also been
demonstrated that the HCV core protein can directly bind to the
RXRa–peroxisome proliferator-activated receptor a (PPARa) com-
plex, a nuclear receptor governing FA b-oxidation, to activate sig-
naling. Persistent PPARa–RXRa activation by the HCV core
protein and excessive FAs in hepatocytes have been shown to
1800
enhance oxidative stress [58–60]. Moreover, a study has shown
that HCV infection inhibits autophagy in hepatocytes [61]. PA28c
activation leads to the degradation of microtubule-associated pro-
teins 1A/1B light chain 3 (LC3)-I proteasomes, thereby preventing
autophagy and enhancing lipid storage [62,63]. As HCV core gene
transgenic mice have mitochondrial dysfunction, presumably due
to the direct effect of the HCV core protein [64], this vicious cycle
exacerbates mitochondrial damage and FA accumulation in the
liver [57,60,65]. The possible mechanisms of steatogenesis by the
HCV core protein are summarized in Fig. 3.
3.5. HCC in HCV core gene transgenic mice

The HCV core protein also plays a prominent role in the devel-
opment of HCC caused by chronic HCV infection. The incidence of
HCC in HCV core protein transgenic mice (C21 and C49) was
significantly higher than that in normal controls [16]. HCV core
transgenic mice displayed clinicopathological characteristics
similar to those of patients with chronic HCV infection, including
a high frequency of accompanying steatosis [48], increased
accumulation of carbon 18 monounsaturated FAs in the liver
[66], mitochondrial dysfunction [38], increased insulin resistance
and oxidative stress [67], and multicentric HCC occurrence
[58,68,69]. The incidence of HCC was lower in female transgenic
mice, which was consistent with epidemiological data showing
that men are more likely to experience HCC among chronic
hepatitis C patients [2,16,70]. Liver nodules with the characteris-
tics of hepatocellular adenoma were found in 16-month-old HCV
core transgenic mice. Fat droplets were abundant in the cytoplasm
of hepatocellular adenoma cells, as in the cytoplasm of
non-tumorous hepatocytes, with few droplets in HCC cells. This
phenomenon in HCV core gene transgenic mice closely resembled
that found in chronic hepatitis C patients, in which precancerous
and well-differentiated HCC lesions occasionally showed marked
fatty changes and reduced fat content during malignant transfor-
mation [16]. However, HCV core transgenic mice did not display
liver inflammation or fibrosis during the hepatocarcinogenic pro-
cess, in contrast to patients with chronic HCV infection [40,71].

The HCV core protein modulates the occurrence of HCC through
multiple pathways. For example, long-term PPARa activation
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upregulated multiple oncogenic factors, including c-Fos, c-Myc,
cyclin D1, cyclin-dependent kinase 4, proliferating cell nuclear
antigen, and phosphorylated extracellular signal-regulated kinase
(ERK) in rodents [58,72–74]. The HCV core protein can constitu-
tively activate activator protein-1 (AP-1), which is related to the
activation of c-Jun N-terminal kinase (JNK) and mitogen-
activated protein kinase (MAPK) [53,75,76], while downregulating
the activity of the tumor suppressor genes p53 and p21 [77].

Oxidative and ER stress are important factors in cell injury and
drive malignant transformation. PPARa activation increased reac-
tive oxygen species (ROS)-generating enzymes, such as acyl-CoA
oxidase and cytochrome P450 4A1, which might cause nuclear
DNA damage [58]. It has been reported that the HCV core protein
triggered a calcium deficiency and stress in the ER, leading to the
activation of caspase and BAX [78,79]. Persistent ER stress may also
result in genomic instability and mutation and resistance to cell
death [80]. These events may drive malignant transformation and
aberrant cell fate, thus accelerating the progression of HCC [81]
(Fig. 4).

4. Impact of lifestyle and dietary habits on the development of
steatosis-derived HCC in HCV core gene transgenic mice

Several epidemiological studies have demonstrated that life-
style and dietary factors can affect the clinical course of chronic
hepatitis C patients [82–84]. In 9221 patients with chronic hepati-
tis C during 13.3 years of follow-up, participants who reported a
diet high in protein had a significantly higher risk of hospitaliza-
tion or death due to cirrhosis or liver cancer after adjusting for
potential confounders [82]. Although total fat consumption was
not remarkably associated with the risk of cirrhosis or liver cancer,
a significant relationship was found for cholesterol consumption
[82]. However, due to the complexity of lifestyle and dietary habits,
it remains difficult to clarify which dietary features contribute to a
diminished outcome and the precise mechanisms involved. To
address these issues, comparisons between normal feeding and
dietary intervention regimens in HCV core gene transgenic mice
have been useful [8–11]. Meanwhile, non-alcoholic fatty liver dis-
ease (NAFLD)-derived HCC is increasing worldwide, with some
HCC cases developing in steatotic livers without advanced fibrosis
or cirrhosis [85,86]. Investigations of HCV core gene transgenic
mice as a model of steatosis-derived HCC will provide clues for
assessing how dietary interventions are harmful or useful for
Fig. 4. Mechanism of HCC induced by the HCV core protein. The HCV core protein
induces HCC in transgenic mice via multiple pathways. Oxidative and ER stress
drive malignant transformation. The activation of PPARa–RXRa upregulates c-Myc,
c-Fos, ERK, and cyclin D1 to induce aberrant cell proliferation. Furthermore, the
activation of NF-jB, AP-1, JNK, STAT, and MAPK pathways, as well as hyperinsu-
linemia, affects cell proliferation. The combination of the above factors promotes
hepatocarcinogenesis.

1801
HCC associated with NAFLD. In this section, we summarize the
impact of high-fat diets, a high-iron diet, ethanol, and dietary
restriction on steatosis-derived hepatocarcinogenesis.

4.1. Saturated fatty acid-rich diet

Saturated fatty acids (SFAs) are typical FAs that are abundantly
found in animal products (e.g., red meat and dairy products) and
plant products (e.g., palm oil and coconut oil) [87]. Excessive SFA
intake is associated with obesity, insulin resistance, NAFLD, non-
alcoholic steatohepatitis (NASH), and HCC [88–90]. When HCV core
protein transgenic mice were treated with a control diet or an iso-
caloric SFA-rich diet for 15 months, macrovesicular LDs were more
numerous in the SFA-treated group regardless of similar calorie
intake [9]. Aggravation of hepatic steatosis by the SFA-rich diet
was mainly due to the enhancement of FA synthesis in hepatocytes
via the lipogenic enzymes acetyl-CoA carboxylase (ACC) a and b,
FAS, and stearoyl-CoA desaturase 1 (SCD1). The prevalence of liver
tumors increased significantly with the SFA-rich diet. Although
there was no obvious hepatic fibrosis in the SFA-treated transgenic
mice [9] (Table 1 [8–11,91,92]), the activation of NF-jB due to Toll-
like receptor 4 (TLR4) and inflammasome signaling, JNK/AP-1 acti-
vation, induction of cyclin D1, and upregulation of the p62–nuclear
factor erythroid 2-related factor 2 (NRF2) axis were presumably
associated with the promotion of liver tumors [9].

4.2. Trans fatty acid-rich diet

Trans fatty acids (TFAs) are naturally present at low levels in
dairy products and animal meat, while industrially generated TFAs
are contained in hardened vegetable fats such as margarine and
shortening, as well as in snack foods and fried foods. TheWHO esti-
mates that excessive TFA consumption leads to more than 500 000
deaths yearly from cardiovascular disease, and has called on gov-
ernments to promote the REPLACE project in order to eliminate
dietary TFAs [93]. Excessive TFA intake is associated with not only
cardiovascular disease, but also shorter life expectancy, NAFLD,
and cognitive disorders [94–96]. Earlier, we investigated the
impact of a TFA-rich diet on hepatic tumorigenesis in HCV core
gene transgenic mice [10]. Compared with the control diet group,
TFA-rich diet-fed mice had significantly higher tumor prevalence.
The TFA-rich diet significantly increased oxidative and ER stress,
as evidenced by elevated levels of 4-hydroxynonenal (4-HNE),
nicotinamide adenine dinucleotide/nicotinamide adenine dinu-
cleotide phosphoric acid dehydrogenase 1 (NQO1), and CCAAT/en-
hancer binding protein homologous protein (CHOP). Increased
oxidative and ER stress damage DNA and contribute to liver
tumorigenesis. The TFA-rich diet also stimulated TLR2 and inflam-
masome signaling, activated NF-jB and p62–NRF2, and promoted
fibrogenesis. Subsequently, the diet upregulated cyclin D1, ERK,
c-Myc, Wnt/b-catenin signaling, and proliferating cell nuclear anti-
gen (PCNA), driving the uncontrollable proliferation of transformed
cells [10] (Table 1).

4.3. Cholesterol-rich diet

Animal-derived foods contain various amounts of cholesterol.
The main dietary sources of cholesterol include red meat and egg
yolks [97]. While cholesterol is essential for constructing cell mem-
branes [98], its excessive intake is related to not only atherosclero-
sis and cerebrocardiovascular diseases, but also chronic hepatitis C
progression [83,98–100]. Indeed, a cohort study using data from
the hepatitis C antiviral long-term treatment against cirrhosis
(HALT-C) project revealed elevated cholesterol intake to be associ-
ated with diminished clinical outcomes (death, variceal bleeding,
hepatic decompensation, peritonitis, and HCC) [83]. When HCV



Table 1
Impact of lifestyle interventions on hepatic tumorigenesis in HCV core gene transgenic mice.

Factors associated with hepatic
tumorigenesis

SFA-rich diet
[9]

TFA-rich diet [10] Cholesterol-rich
diet [8]

Iron-rich
diet [91]

Ethanol
intake [92]

Dietary restriction [11]

Lipid metabolism FAS", ACC",
SCD1"

CD36 mRNA", ACC mRNA", SCD1
mRNA"

CD36 mRNA" ? ? FAS mRNA;, ACC mRNA;,
SCD1 mRNA;

Inflammasomes " " " ? ? ;
TLR TLR4" TLR2" TLR2" ? ? �
NF-jB " " " � ? ;
Oxidative and ER stress NQO1" 4-HNE", NQO1", CHOP" 4-HNE", CHOP" HO-1",

NQO1"
ROS" 4-HNE;, CHOP;

Apoptosis DR5", BAX" � DR5", BAX" ? ? �
p62–NRF2 " " " � ? ;
Cell proliferation Cyclin D1",

JNK"
Cyclin D1", ERK", PCNA", c-Myc",
Wnt/b-catenin"

PCNA" ? ERK", MAPK" Cyclin D1;, STAT3;,
STAT5;, ERK;

Fibrogenesis � aSMA", CTGF", OPN" aSMA" ? ? �
Autophagy � ? ? ? ? LC3", Atg5–Atg12"
Senescence ? ? ? ? ? PGC1a", AMPKa", SASP;

": Upregulated; ;: downregulated; �: unchanged; ?: undetermined.
HNE: hydroxynonenal; SMA: smooth muscle actin; AMPK: adenosine 50-monophosphate-activated protein kinase; Atg: autophagy related; CD36: cluster of differentiation
36; CHOP: CCAAT/enhancer binding protein homologous protein; CTGF: connective tissue growth factor; DR: death receptor; HO: heme oxygenase; NQO: nicotinamide
adenine dinucleotide/nicotinamide adenine dinucleotide phosphoric acid dehydrogenase; NRF: nuclear factor erythroid 2-related factor; OPN: osteopontin; PCNA: prolif-
erating cell nuclear antigen; PGC: PPARc coactivator; SASP: senescence-associated secretory phenotype; TLR: Toll-like receptor.
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core protein gene transgenic mice were fed a cholesterol-rich diet
for 15 months, all of the mice experienced HCC [8]. The expression
of cluster of differentiation 36 may have been related to steatosis
caused by cholesterol in HCV core protein transgenic mice. More-
over, a cholesterol-rich diet induced NASH with pericellular fibro-
sis, promoted liver cell division, upregulated cellular stress,
activated NF-jB and p62–NRF2, and ultimately accelerated liver
tumorigenesis [8] (Table 1). These results helped in understanding
the results of HALT-C: that higher cholesterol consumption was
associated with disease progression in HCV-infected patients.
4.4. Iron-rich diet

Iron is an essential auxiliary factor for life [101]. Since the ele-
ment may generate free radicals through the Fenton reaction, it
is reasonable to presume that excessive iron accumulation may
increase cellular damage [91,102,103]. Indeed, hepatic iron accu-
mulation was associated with the progression of chronic hepatitis
C, and iron-depleting therapies such as phlebotomy attenuated
disease-related hepatocyte damage [103,104]. When mice were
fed a normal diet for 15 months, the hepatic iron content was sig-
nificantly higher in HCV core gene transgenic mice as compared
with normal mice [91]. After 3 months of an iron-rich diet, HCV
core gene transgenic mice had significantly increased intrahepatic
ROS levels in comparison with the control mice. The induction of
anti-oxidant enzymes, such as heme oxygenase-1 (HO-1) and
NQO1, was inhibited in transgenic mice, and diminishment of the
iron-induced augmentation of HO-1 was confirmed in HepG2 cells
expressing the core protein. This attenuation was not dependent
on NRF2. Since enhanced oxidative stress may lead to nuclear
DNA damage and promote the occurrence of HCC [91] (Table 1),
it will be important to evaluate whether a long-term dietary iron
overload promotes hepatic tumorigenesis in this transgenic mouse
line in the future.
4.5. Ethanol

Ethanol is the main cause of pathogenesis in chronic liver dis-
ease, eventually leading to steatosis, steatohepatitis, fibrosis, and
HCC [105]. The oxidative metabolism of ethanol disrupts signal
transduction pathways and hampers the transcriptional control
of some genes [106]. In HCV-infected patients, ethanol consump-
tion was found to be significantly associated with the risk of HCC
1802
[107]. When a diet containing 5% ethanol was administered for
3 weeks, intrahepatic ROS levels increased significantly and ERK
and p38 MAPK were activated in HCV core transgenic mice [92]
(Table 1). Such findings strongly indicated that persistent ethanol
intake promoted liver tumorigenesis in those mice. Further inves-
tigations are required to verify this hypothesis.

4.6. Dietary restriction

In recent years, calorie restriction has received considerable
attention for health promotion and disease control. This method
has been shown to have a preventive effect on obesity, metabolic
syndrome, T2DM, and the progression of NAFLD/NASH, and is
expected to be used to prevent and treat cancer in the future
[108–111]. Earlier, we investigated whether dietary restriction
could avert steatosis-associated liver tumorigenesis in HCV core
protein transgenic mice [11]. Restricting the amount of food to
70% of a normal diet improved hepatic steatosis and significantly
reduced the prevalence of liver tumors. Dietary restriction also
markedly decreased hepatic oxidative and ER stress, significantly
inhibited NF-jB activity and the expression of proinflammatory
cytokines and senescence-associated secretory phenotypes, down-
regulated growth signaling via STAT3, STAT5, ERK, and insulin–Akt
pathways, and activated autophagy [11] (Table 1). Indeed, dietary
restriction may be a promising intervention to prevent NAFLD-
associated hepatocarcinogenesis through multiple beneficial
effects.
5. Conclusions

Techniques to generate transgenic mice expressing HCV pro-
teins have opened new gateways in the fields of hepatology and
virology by partially reproducing the phenotypes of HCV-infected
patients and revealing the direct pathogenicity of HCV proteins
in vivo. Only HCV core gene transgenic mice show hepatic insulin
resistance, hepatic steatosis, and HCC and thus serve as a good
model for determining the molecular events in steatosis-
associated hepatocarcinogenesis. This mouse line illustrates the
importance of a metabolic approach in the pathological analysis
of liver disease. In addition, sequential studies using HCV core gene
transgenic mice have shed light on the impact of dietary interven-
tions on steatosis-derived HCC, which may be applicable to
NAFLD-associated HCC in humans. HCV core gene transgenic mice
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will bolster the discovery of preventive agents against steatosis-
derived HCC. This valuable animal model straddles the intersection
of virology, hepatology, metabolism, and nutrition, and highlights
the importance of new engineering developments to bring about
innovative discoveries in medical research.
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