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Recent technological advancements and developments have led to a dramatic increase in the amount of
high-dimensional data and thus have increased the demand for proper and efficient multivariate regres-
sion methods. Numerous traditional multivariate approaches such as principal component analysis have
been used broadly in various research areas, including investment analysis, image identification, and
population genetic structure analysis. However, these common approaches have the limitations of ignor-
ing the correlations between responses and a low variable selection efficiency. Therefore, in this article,
we introduce the reduced rank regression method and its extensions, sparse reduced rank regression and
subspace assisted regression with row sparsity, which hold potential to meet the above demands and
thus improve the interpretability of regression models. We conducted a simulation study to evaluate
their performance and compared them with several other variable selection methods. For different appli-
cation scenarios, we also provide selection suggestions based on predictive ability and variable selection
accuracy. Finally, to demonstrate the practical value of these methods in the field of microbiome research,
we applied our chosen method to real population-level microbiome data, the results of which validated
our method. Our method extensions provide valuable guidelines for future omics research, especially
with respect to multivariate regression, and could pave the way for novel discoveries in microbiome
and related research fields.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction interest in multivariate regression analysis [4,5]. Multivariate
Biology and medicine have long since entered the age of big
data, accelerated by the development of analytical methods and
diagnostic techniques in sequencing, proteomic analysis, metabolic
analysis, and so forth. For example, next-generation sequencing in
the last decade has made sequencing individual genomes and
metagenomes feasible, even for single research laboratories, com-
pared with the international efforts and years-long work on the
Human Genome Project [1]. Microbiome research, which has also
been accelerated by sequencing techniques [2], has revealed the
importance of microbial communities in human health and
diseases [3], among other fields. All these developments have
produced an unprecedentedly large volume of data with high
dimensionality, which in turn has promoted general research
regression aims to model the relationships between a set of
responses and a set of features, in contrast to common regression,
which usually depicts a one-to-one relationship [6,7]. Response
variables (or dependent variables) are the outcomes of an experi-
ment that researchers hope to explain, and predictor variables
(or independent variables) are the controlled inputs that may
cause the variation in the responses. For example, in a genomics
study, the responses in such regressions could be human traits,
and the features could be genetic or environmental factors. There-
fore, multivariate regression can be applied in all aspects of our
daily lives. For example, it is broadly used in economics to investi-
gate the factors that influence stock returns [8]. It is also familiar
and common in the field of biology [9]. For example, it is applied
in clinical trials to help researchers explain the relationships
between drug ingredients and pesticide effects [10]. Recently, in
genomics research, including metagenomics research and in com-
bination with metabolomics, proteomics, and so forth, multivariate
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regression has played a significant role in understanding the asso-
ciation and potential causation of important traits [11].

Various attempts have been made to use multivariate methods
to address specific challenges. Principal component analysis (PCA)
is one of the oldest and best-known eigenvector-based multivari-
ate analysis techniques [12]. It is widely used to find a linear com-
bination of variables that describe the most variance using
orthogonal transformation when the number of variables is large.
By projecting the data to a lower-dimensional space showing the
dominant gradients, PCA can reveal the internal structure of data
[13,14]. In practice, principal component regression (PCR) is a lin-
ear regression model that uses PCA to estimate the regression coef-
ficient matrix. Canonical correspondence analysis (CCA) is another
approach that is often used to explain the relationships between
two sets of variables by reducing dimensionality [15]. It aims to
find a linear combination that can describe the maximum correla-
tions between predictor variables and responses. Another method
often used to find the relations between two matrices is partial
least-squares (PLS) regression [16]. It summarizes covariance
structure by projecting the response variables and predictor vari-
ables into a new space to build a linear regression model. Although
the above methods are widely used in studies, three main statisti-
cal problems arise. The first problem is that traditional methods
often ignore the possible interrelations between the response vari-
ables of observational data. The second problem is that some of the
approaches do not allow variable selection, which is essential in
exploratory experiments when the number of predictor variables
is large. Third, some real databases often have large total numbers
of variables and small sample sizes, leading to unreliable solutions
[17,18].

Based on these considerations, we analyzed a class of new
methods (reduced rank regression (RRR) and its extension) that
improve the interpretability of regression models by considering
the correlations between responses [19,20]. RRR is a data reduction
method similar to PCA that creates new variables to summarize a
large amount of information in the original data [21]. In particular,
it defines a set of linear combinations of predictor variables to best
explain the total variance in the response variables, and has many
desirable characteristics such as simplicity, computational effi-
ciency, and outstanding predictive performance. When the number
of predictor variables is large, the selection of important variables
is another issue of interest to researchers. Although some tradi-
tional methods are available—such as random forest, which makes
predictions by constructing a multitude of decision trees—they are
more suitable for cases with a single response variable. Therefore,
some RRR-based approaches have adopted the ideas of group
selection methods such as the group least absolute shrinkage and
selection operator (group lasso) method, which is used for variable
selection when determining the group structure among variables.
In nutritional epidemiology and genetics, many reports use RRR
approaches; yet comprehensive analysis of the properties of differ-
ent RRR-based approaches, as well as their applicability to real
data—especially metagenomic-centered data—remains to be con-
ducted [22–25]. Here, we used simulated data with different
dimensionalities to compare the performance of various RRR-
based approaches with that of other multivariate regression meth-
ods with similar properties, examined their strengths and limita-
tions under different scenarios, and finally applied them to large-
scale public metagenomic datasets.

2. Methods

2.1. Description of the approaches tested in this study

In this study, we used the basic multivariate linear regression
method as the starting point, and then included a few RRR-based
1726
approaches and other multivariate regression approaches for com-
parison. For each method, the definition and rationale are
explained below.

2.1.1. Multivariate linear regression
A multivariate linear regression model is composed of multiple

predictor variables X1, X2, . . ., Xp and multiple response variables
Y1, Y2, . . ., Yq. Each response variable is represented by a linear
regression of the predictors; that is,

Yj ¼
Xp

k¼1
Xkckj þ �j; j ¼ 1;2; � � � ; q ð1Þ

where ckj is the regression coefficient relating Xk to Yj, and �j is the
error term with mean zero.

In addition, this formula can be rewritten with n observations,
as follows:

Y ¼ XCþ E ð2Þ
where X is an n� p predictor matrix, Y is an n� q response matrix,
C is a p� q matrix of regression coefficients, and E is an n� q error
matrix.

We estimate the coefficient matrix C based on the least squares
criterion; that is

min
C kY � XCk2 ð3Þ

where k � k denotes the Frobenius norm.
Using the ordinary least-squares (OLS) method, we obtain the

estimate of C, bC, which is calculated as following:

bC ¼ XTX
� ��1

XTY ð4Þ
2.1.2. Reduced rank regression
However, the OLS method provides a rough estimate since it

ignores the possible interrelationships between response variables
and simply performs a separate estimation for each response vari-
able. Therefore, here, we introduce RRR, which constrains the rank
of coefficient matrix C. We suppose C is of lower rank,
r ¼ rank Cð Þ � min p; qð Þ, and C can be expressed as a product of

two rank r matrices, C ¼ BAT, where B has p� r dimensions and
A has q� r dimensions. The multivariate regression model (2)
could be rewritten as

Y ¼ XBAT þ E ð5Þ
In addition, XB has n� r dimensions representing a set of r lin-

ear combinations of X, which can be interpreted as the latent fac-
tors driving the variation in Y. Therefore, RRR helps reduce the
dimensionality of the predictor variables and improves computing
efficiency.

We can rewrite the optimization function (3); that is

min
A;B kY � XBATk2 ð6Þ

The set of solutions bA and bB is given as

bA ¼ V ð7Þ

bB ¼ R�1
XXRXYV ð8Þ

where RXX ¼ 1=nð ÞXTX, RXY ¼ 1=nð ÞXTY, and V represents the eigen-
vectors of RYXR

�1
XXRXY corresponding to the eigenvalues, in which

RYX ¼ 1=nð ÞYTX [26].



X. Hu, Y. Ma, Y. Xu et al. Engineering 7 (2021) 1725–1731
2.1.3. Sparse reduced rank regression (SRRR)
SRRR is an extensive RRR approach that focuses on not only

dimensionality reduction, but also variable selection [26,27]. It
imposes the sparsity of the coefficient matrix by adding a penalty
to the least-squares estimation, and thus has unique properties.
Compared with RRR, which uses all predictor variables to build
the latent factors, SRRR can be used to select the useful ones from
a large number of variables and exclude the redundant ones by
introducing a group lasso penalty [28]. Therefore, the optimization
formula (6) can be rewritten as follows:

min
A;B

kY � XBATk2 þ
Xp

i¼1

kikBik s:t: ATA ¼ I ð9Þ

where ki is the penalty parameter. The constraint ATA ¼ I is applied
to satisfy the identifiability conditions, where I denotes the identity

matrix. In addition, if kBik is set to zero, the entire i-th row of matrix
B will be zero, and the i-th predictor variable will be inactive.

By using the subgradient method or variational method, the
optimization problem can be solved, but defining p penalty param-
eters (ki) by cross-validation (CV) could be time consuming. To
reduce the number of tuning parameters, two strategies are usu-
ally used [26]:

(1) Group lasso penalty: Set all ki values equal to k.
(2) Adaptive weighting lasso penalty: Calculate each ki based

on the original data structure as ki ¼ 1=k eCik
c
� k, where C

�
is a

root-n consistent estimator of C and c is a positive integer [29].

2.1.4. Subspace assisted regression with row sparsity (SARRS)
SARRS also focuses on solving the issues of low rankness and

sparsity in the coefficient matrix [30]. This new estimation scheme
can be used in adaptive sparse reduced rank multivariate regres-
sion and achieves the goals of dimensionality reduction and vari-
able selection. Furthermore, compared with SRRR as discussed
above, SARRS improves performance when the number of predic-
tor variables exceeds the sample size.

During the process of optimizing the regression with group
sparsity, two penalty functions can be used:

(1) Group lasso penalty: q B; kð Þ ¼ kkBk, where k is the penalty
parameter and B is the parameter matrix to be optimized.

(2) Group minimax concave penalty (MCP): q B; kð Þ ¼
k � R kBk

0 1� t=ckð Þþdt, where c is a positive integer greater than 1
and 1� t=ckð Þþ denotes its positive part, that is 1� t=ckð Þþ ¼
1� t=ckð Þ�1 1�t=ckð Þ�0f g[31].

2.1.5. Sparse partial least-squares regression (SPLS)
SPLS method is based on PLS and further encourages sparsity in

the multidimensional direction in predictor space; thus, it achieves
variable selection [17]. It first selects the predictor variables that
have strong correlations with the responses, and then adds addi-
tional ones that have strong partial correlations. SPLS employs a
Table 1
Methods comparison.

Methods Data reduction method
(low rankness)

Variable selection
(sparsity)

Explains int
between res

RRR
p

—
p

SRRR
p p p

SARRS
p p p

SPLS
p p p

REmMap —
p p

PCR
p

— —
Group lasso —

p
—

Random forest —
p

—

1727
different reduced rank structure than SRRR and does not directly
focus on the prediction of the response variables, creating a possi-
ble weakness in its prediction.

2.1.6. Regularized multivariate regression for identifying master
predictors (REmMap)

REmMap method is different from the above methods since it
assumes not only that only some of the predictors are correlated
with the responses, but also that these predictors may influence
only some of the responses [32]. This is reasonable because in real
situations, researchers often pay more attention to specific
responses than to others. REmMap can fit multivariate regression
models with high dimensionality and small sample sizes, and can
introduce both overall sparsity and group sparsity into the coeffi-
cient matrix to detect master predictors.

2.1.7. Summary
The characteristics of the methods discussed in this article are

summarized in Table 1.

2.2. Test of method performance based on simulated data

2.2.1. Simulation setups
To illustrate and compare the performance of SRRR, SARRS,

SPLS, REmMap, and some traditional approaches (PCR, group lasso,
and random forest), we first introduce a simulation study to gener-
ate data and analyze them using the above approaches. We use a
similar simulation setup as Chen and Huang [26]. The central idea
of the simulation study is to analyze some predictor variables that
are correlated with the response variables and some that are
uncorrelated. Then, we use these methods to examine which of
them can most accurately determine the relationship and achieve
good predictive performance.

We generate data with the multivariate linear equation
Y ¼ XBAT þ E. In this model, the n� p design matrix X follows a
multivariate normal distribution N 0;RXð Þ, where RX has diagonal
elements of 1 and off-diagonal elements of qx. Matrix B and matrix
A comprise the coefficient matrix of the model. In p� r matrix B,
the first p0 rows follow N 0;1ð Þ, and the remaining p� p0 rows
are zero. The q� r matrix A is generated from N 0;1ð Þ. Matrix E is
a random noise matrix defined by N 0;r2RE

� �
, where r2 is the mag-

nitude of the noise and RE has diagonal elements of 1 and off-
diagonal elements of qe. Then, the n� qmatrix Y is calculated from
the above model.

We generate three sets of data including a training set, valida-
tion set, and test set. The training set is used to fit the models based
on the various approaches. The validation set is used to tune the
parameters inside the models and estimate the noise variance.
Lastly, we use the data from the test set to evaluate the perfor-
mance of the models we built.

To explore the methods’ applicability in different situations, we
conduct the simulation study using several different cases. First,
errelation
ponses

Features

Restricts the rank of the regression coefficient matrix
Uses a group lasso penalty to allow row-wise sparsity
Suitable when the number of predictors exceeds the sample size
Uses PLS to impose sparsity
Each response has different relevant predictors
Projects the predictors into a lower-dimensional space
Enables variable selection considering group structure
Used to rank the importance of predictor variables
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since it is sometimes difficult for researchers to obtain sufficient
samples to carry out trials, we want to test the performance of
the approaches when applied to both small sample sizes and large
sample sizes. Second, we are also interested in the influence of the
number of variables. Real data such as microbiological data and
genetic data often include high-dimensional predictor variables
or response variables. Based on the above considerations, we sim-
ulate six cases as follows, where n is the sample size of the data and
p and q are the numbers of variables in X and Y, respectively.

Case 1: Small sample size, n < p
Case 1a: n = 20; p = 100; q = 25
Case 1b: n = 20; p = 25; q = 25
Case 1c: n = 20; p = 25; q = 100

Case 2: Large sample size, n > p
Case 2a: n = 200; p = 100; q = 25
Case 2b: n = 200; p = 25; q = 25
Case 2c: n = 200; p = 25; q = 100

The simulation procedure and the methods discussed are coded
in R using the spls, rrpack, remMap, pls, glmnet, and randomForest
packages; the code for the SARRS method was provided by the
authors of the respective packages. The computational procedure
has been specified and listed in Appendix A.
Fig. 1. Overall evaluation of all methods, shown as a heatmap. The x-axis denotes
the different cases, and the y-axis denotes the methods. The color of each cell
represents the corresponding overall rating. A higher overall rating indicates better
performance. glasso: group lasso penalty; adglasso: adaptive weighting group lasso
penalty; gMCP: group MCP penalty.
2.2.2. Evaluation of various methods
In each case, we repeat the simulation procedure 500 times and

use the following metrics to measure and compare the perfor-
mance of the above multivariate regression methods:

(1)Mean square error (MSE): The MSE is used to show the pre-
dictive accuracy of these methods, and is defined as follows:

MSE ¼ 1
n

Xn
i¼1

bY i � Yi

� �2
ð10Þ

where bY i is the predicted value of Yi.
(2) R squared: The R2 index is the proportion of the variance in

the response variables that can be explained by the predictor vari-
ables. It is often used to describe how well a model fits data. A lar-
ger R2 indicates a better goodness of fit for the model.

(3) Theil inequality coefficient (TIC): The TIC is another indica-
tor used to reflect the difference between the fitted values and the
true values. It is defined as follows:

TIC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
Pn
i¼1

bY i � Yi

� �2
s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
Pn
i¼1

bY i
2

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

Y2
i

s ð11Þ

The TIC ranges from zero to one, and a smaller TIC indicates a
higher prediction accuracy.

(4) Sensitivity (TPR) and specificity (SPC): TPR and SPC are
commonly used to evaluate the accuracy of variable selection.
TPR is the ability to select the true relevant variables and is calcu-
lated as the ratio of the number of correct selections with respect
to the total number of correlated input variables. SPC is the ability
to select the true irrelevant variables and is calculated as the ratio
of the number of correct selections with respect to the total num-
ber of uncorrelated input variables. A method that has both high
TPR and high SPC means can select the relevant variables
accurately.

(5) Area under the curve (AUC): The AUC is also used to mea-
sure the rate of correctly selecting the true relevant variables [33].

(6) Overall rating: The overall rating index is calculated by
using the above evaluation metrics. The method with better per-
formance has a higher overall score.
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2.3. Application to real population-level microbiome data

To illustrate the practicality of the above methods for real-
world problems, we apply them to data from the Belgian Flemish
Gut Flora Project (FGFP; discovery cohort: n = 1106) from the work
of Falony et al. [34]. This research is aimed at discovering the rela-
tionships between microbiota variation and environmental factors
such as host features, geography, and medication intake. Sixty-six
clinical and questionnaire-based variables are discussed as possi-
ble predictors, with 74 microbiome species as responses after
selection.

We conducted CV to randomly split the data into a training set
and a test set. A model was built to fit the data, and its performance
was evaluated by the above metrics. We repeated the process 50
times to examine the stability of variable selection.
3. Results

3.1. Simulation study reveals the distinct properties of each method

In the simulation, we applied SRRR (with the group lasso pen-
alty and adaptive weighting group lasso penalty), SARRS (with
the group lasso penalty and group MCP penalty), SPLS, REmMap,
PCR, group lasso, and random forest to the different cases and used
CV to tune the low-rankness parameters for each approach. Their
overall performance is shown in Fig. 1.

The heat map shows that all the methods perform worse in case
1 than in case 2, which is consistent with our prediction. In addi-
tion, it is clear that SARRS (with the group MCP penalty) best fits
all the cases and, when the sample size becomes larger, SRRR (with
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the adaptive weighting group lasso penalty) and SPLS are also
applicable and perform equally well.

The performance of each method is measured by the criteria
detailed above, and the result for case 1 is shown in Fig. 2.

In case 1a, we have an extremely small sample size, and the
number of predictor variables is greater than that with the small
size; therefore, most methods do not have good predictive and vari-
able selection performance. Except for PCR, which could not select
the relevant variables, the methods’ SPCs are approximately 0.75,
and their TPRs are approximately 0.55, indicating under selection.
However, comparedwith the traditionalmethods (PCR, group lasso,
and random forest), the new approaches discussed in this article all
perform better, especially the SARRS method with the group MCP
penalty. This method has the lowest MSE and TIC as well as the
highest R2, SPC, and AUC. This outcome is consistent with the dis-
cussion in the methodology section, which specifically noted that
SARRS is the most suitable and accurate method when the number
of predictor variables is much larger than the sample size.

In cases 1b and 1c, the number of predictor variables and the
sample size become closer. We find that all the models fit the sim-
ulated data better than in case 1a due to the higher R2 and the
lower TIC. The plot also shows the superiority of SRRR in terms
of prediction accuracy, since SPLS and REmMap have larger MSEs
than SRRR and SARRS. Furthermore, regarding variable selection,
we can see that SARRS (with the group MCP penalty), SRRR (with
the adaptive weighting group lasso penalty), and SPLS have better
performance, with much higher SPCs, than the others, indicating a
balance in selecting the true relevant variables and avoiding
overselection.

In case 2, we explore a situation with a large sample size; it is
obvious that all methods have better performance than in case 1,
as shown in Fig. 3.
Fig. 2. Performance evaluation of all methods for cases 1a, 1b, and 1c, shown as a radar p
circle indicates 1. Therefore, if a method has a high R2, TPR, SPC, and AUC, and a low TIC an
The NO.Var index gives the number of variables selected with each method, where the c

Fig. 3. Performance evaluation of all methods for cases 2a, 2b, and 2c, shown as a radar p
circle indicates 1. Therefore, if a method has a high R2, TPR, SPC, and AUC, and a low TIC an
The NO.Var index gives the number of variables selected with each method, where the c
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We first discuss case 2a, in which there are many more predic-
tor variables than response variables. Regarding predictive perfor-
mance, the new methods that we are interested in all have an
extremely low MSE for the coefficient matrix, even approaching
0, an average TIC of approximately 0.27, and an average R2 of
approximately 0.72, indicating a good model fit. Furthermore, the
traditional methods still behave poorly in this aspect. Regarding
variable selection, all methods have higher TPRs and AUCs than
in case 1. SARRS (with the group MCP penalty), SRRR (with the
adaptive weighting group lasso penalty), and SPLS also have extre-
mely high SPCs, indicating that they could accurately select all of
the relevant variables and reject all of the irrelevant variables.

In case 2b, we reduce the number of predictor variables to be
the same as the number of response variables, thereby increasing
the difference between the sample size and the number of vari-
ables. Under this circumstance, all the new methods perform well
in terms of prediction. However, in variable selection, the out-
comes of the methods are polarized. The best method is still SRRR
(with the adaptive weighting group lasso penalty), followed by
SARRS (with the group MCP penalty) and SPLS, whose selection
accuracies approach 1. However, for the other methods, the SPC
is generally low, indicating an overselection problem. As case 1c
is similar to case 1b, case 2c is also similar to case 2b. However,
compared with cases 1b and 1c, the increase in the sample size
causes cases 2b and 2c to display much better performance in
terms of both prediction accuracy and variable selection.

3.2. Application to real population-level microbiome data

The data characteristics of the case study, in which the sample
size (n ¼ 1106) is far greater than the number of variables
(p ¼ 66; q ¼ 74), are consistent with case 2b in the above simula-
lot. The center of the circle indicates 0. For R2, TIC, TPR, SPC, and AUC, the edge of the
d MSE of the response matrix, we conclude that this method has good performance.
enter of circle indicates 0 and the edge indicates the number of predictor variables.

lot. The center of the circle indicates 0. For R2, TIC, TPR, SPC, and AUC, the edge of the
d MSE of the response matrix, we conclude that this method has good performance.
enter of circle indicates 0 and the edge indicates the number of predictor variables.



Fig. 4. Performance evaluation of the SRRR (with the adaptive weighting group lasso penalty) for real population-level microbiome data. (a) A bar plot using the TIC index to
demonstrate the predictive performance of the SRRR model for each response variable. We display the 20 variables with the lowest TICs in this plot. (b) A plot showing the
percentage of selection in 50 cross-validations for each predictor variable.

X. Hu, Y. Ma, Y. Xu et al. Engineering 7 (2021) 1725–1731
tion study. Based on the former discussion, we know that the most
suitable method to apply for this dataset is SRRR (with the adaptive
weighting group lasso penalty). Therefore, we build an SRRR model
to analyze the relationships between the environmental indexes
and bacterial composition, and discuss the predictive accuracy
and variable selection outcomes. The results are shown in Fig. 4.

The average TIC of the model is 0.56, which is higher than the
0.26 for case 2b in the simulation study. However, since we know
that the real data are noisier than the simulated data, we conclude
that this TIC is acceptable but not convincing in terms of adequate
model prediction. However, upon a closer examination of each
response variable, we find that the variables with a low TIC are
those reported in many previous studies, including the FGFP [34],
such as Faecalibacterium (with a TIC of 0.24), Blautia (0.32), Bac-
teroides (0.33), Roseburia (0.35), and Ruminococcus (0.40). These
are key butyric-producing bacteria that are involved in many dis-
eases when they are at a low abundance, as low butyrate produc-
tion by the microbiome leads to a higher level of inflammation and
metabolic disorders [35,36]. Therefore, these variables were
explained well by the predictors selected by SRRR and could be
predicted by the coefficient matrix calculated by SRRR.

Finally, we examined the robustness of the variable selection.
Since we repeated the CV procedure 50 times, the predictor
variables that were selected in more than 80% of the cases are
the most meaningful. Fig. 4(b) shows the 34 variables that were
selected most frequently, including gender, smoker, red blood cell
count (RBC), creatinine, stool score, mean corpuscular hemoglobin
concentration (MCHC), and many kinds of medications. This
outcome is consistent with the importance of the effects of
medications, as discussed in a previous study [37].
4. Conclusion

As the volume and dimensionality of data increase in nearly
every field of research, biomedical research will continue to be
1730
one of the most important and fast-developing areas. When
extracting the maximum value from data, obtaining correct, useful,
and meaningful associations between different measures or omics
levels poses an important challenge [38]. Here, we examined some
representative methods, including extensions of RRR and other
multivariate regression methods, and used both simulated data
and real microbiome-centered data to address the strengths and
limitations of these methods, which might be instructive for future
applications to microbiome and other related omics data.

We included a total of nine method–parameter combinations,
including seven methods; furthermore, for two of them, two differ-
ent penalties were used. We simulated data with different sample
sizes/dimensionalities and compared the predictor and response
variables with/without large differences in dimensionality. From
the results when comparing case 1 and case 2, the importance of
a large sample size became clear, which could greatly improve
the performance of all methods. In particular, compared with case
1, SPLS has much better predictive accuracy in case 2, indicating
that it is more applicable when the sample size is large. Under a
situation similar to case 1, when the sample size is small, the best
method is SARRS with a group MCP penalty, which has outstanding
performance in terms of both prediction and variable selection.
When the sample size is large, as in case 2, SARRS (with the group
MCP penalty), SRRR (with the adaptive weighting group lasso pen-
alty), and SPLS all perform very well; upon closer examination,
SRRR (with the adaptive weighting group lasso penalty) performs
slightly better than the other two methods.

We used this information to select the bestmethod for a real sce-
nario: namely, the published FGFP data, for whichmicrobiome data
and the environmental factors identified in the study are available.
With roughly similar dimensionalities for the two types of variables,
we decided to use SRRR with the adaptive weighting group lasso
penalty. First, we identified the bacterial groups that are best
explained by the environmental changes. The identified bacterial
groups confirm previous assertions that the butyrate-producing
bacteria are of great importance in human health and may serve as
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a link to those environmental factors. In addition, since environmen-
tal factors were considered to be predictors (i.e., features selected to
be associated with bacterial groups), we also managed to replicate
the most important features in the published study, again demon-
strating the reliability and robustness of the selected method.

Researchers should carefully choose a proper penalty when fit-
ting models. For example, in the SRRR method, when n > p, the
adaptive weighting group lasso penalty improves both the predic-
tion accuracy and variable selection. When n < p, the adaptive
weighting results in a lower TPR but higher SPC than those for
the unweighted group lasso penalty. This could be explained by
the fact that when we introduced weighting to the SRRR calcula-
tion procedure, the variables that were filtered out earlier had lar-
ger weights for their penalty terms and were no longer included in
the model. Therefore, SRRR with an unweighted penalty will select
more variables and lead to a high SPC.

In conclusion, we examined the applicability of several multi-
variate regression approaches and tested their performance under
different omics scenarios, which in reality may differ vastly in their
sample sizes and dimensionalities. Based on this, we were able to
recommend the best method. Admittedly, our preliminary analysis
could not be further expanded at this stage to incorporate the phy-
logenetic information between different measures (e.g., species) in
many omics data, since this would require a priori information
regarding the connectedness and similarity between those mea-
sures. We also used a renowned microbiome dataset to show that
our method of choice can largely recapitulate the findings obtained
by single-variate analysis and improve the consideration between
variables and combined feature selection. These findings will
facilitate the choice of methods in future, larger scale omics
research, including microbiome-centered studies.
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