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Polysaccharides are widely present in herbs with multiple activities, especially immunity regulation and
metabolic benefits for metabolic disorders. However, the underlying mechanisms are not well under-
stood. Functional metabolomics is increasingly used to investigate systemic effects on the host by iden-
tifying metabolites with particular functions. This study explores the mechanisms underlying the
metabolic benefits of Astragalus polysaccharides (APS) by adopting a functional metabolomics strategy.
The effects of APS were determined in eight-week high-fat diet (HFD)-fed obese mice. Then, gas
chromatography–time-of-flight mass spectrometry (GC–TOFMS)-based untargeted metabolomics was
performed for an analysis of serum and liver tissues, and liquid chromatography–tandemmass spectrom-
etry (LC–MS/MS)-based targeted metabolomics was performed. The potential functions of the metabo-
lites were tested with in vitro and in vivo models of metabolic disorders. Our results first confirmed
the metabolic benefits of APS in obese mice. Then, metabolomics analysis revealed that APS supplemen-
tation reversed the HFD-induced metabolic changes, and identified 2-hydroxybutyric acid (2-HB) as a
potential functional metabolite for APS activity that was significantly decreased by a HFD and reversed
by APS. Further study indicated that 2-HB inhibited oleic acid (OA)-induced triglyceride (TG) accumula-
tion. It was also found to stimulate the expression of proteins in lipid degradation in hepatocytes and TG
lipolysis in 3T3-L1 cells. Moreover, it was found to reduce serum TG and regulate the proteins involved in
lipid degradation in high-fat and high-sucrose (HFHS)-fed mice. In conclusion, our study demonstrates
that the metabolic benefits of APS are at least partially due to 2-HB generation, which modulated lipid
metabolism both in vitro and in vivo. Our results also highlight that functional metabolomics is practical
for investigating the mechanism underlying the systemic benefits of plant polysaccharides.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Obesity is the basis for most metabolic disorders characterized
by dysregulated lipids metabolism, inflammation, and insulin (INS)
resistance [1–5]. Excessive energy intake or activated de novo syn-
thesis of fatty acids accelerates the development of obesity and
obesity-related metabolic disorders [6,7]. Over 1.9 billion adults
in the world are overweight [8]. Unfortunately, very few options
are available for body weight reduction with sufficient safety and
effectiveness [9].

Traditional Chinese medicine (TCM) has been practiced in China
and other Asian countries for thousands of years [10]. Herb-
derived polysaccharides are a class of active macromolecules with
multiple benefits for maintaining health and for disease prevention
[11]. Recently, Chang et al. [12] and Wu et al. [13] reported that
polysaccharides extracted from Ganoderma lucidum and Hirsutella
sinensis exhibited an obvious anti-obesity effect in high-fat diet
(HFD)-fed mice. Astragalus membranaceus is the medicinal part of
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the dry root of Astragalus (Fisch.) Bge. or Astragalus membranaceus
(Fisch.) Bge. var. mongholicus (Bge.) Hsiao [14]. Astragalus mem-
branaceus is widely used in TCM for improving immunity, and as
a dietary supplement [15]. Astragalus polysaccharides (APS) are
extracted from Astragalus membranaceus and show well-
established benefits in mice with metabolic disorders [16–18].
Our recent study indicated that APS is also effective in attenuating
obesity and modulating the gut microbiota in HFD-fed mice [19].
However, the underlying mechanism of APS is not clear.

Metabolomics is an omics approach for monitoring the meta-
bolic status of the host under pathophysiological conditions by
measuring the relative or absolute levels of metabolites in biologi-
cal samples such as blood, urine, feces, or tissues [20]. Increasing
evidence has demonstrated that many endogenous metabolites
are not only the readouts of host or gut microbiota, but also mole-
cules with potent functions for host energy metabolism such as ita-
conate, short-chain fatty acids, and bile acids [21–23]. As a result,
functional metabolomics is emerging as an important strategy to
investigate the potential biological functions of identified metabo-
lites in disease formation or treatment based on untargeted or tar-
geted metabolomics.

In this study, we adopted an untargeted and targeted metabolo-
mics approach to investigate the mechanisms underlying the
metabolic benefits of APS in HFD-fed obese mice. Our results con-
firmed that APS is effective in attenuating body weight gain and
obese-related disorders. We then identified dozens of differential
metabolites that were significantly altered in either HFD or APS-
supplemented mice in serum and liver tissues, which were sub-
jected to further testing of their biological functions in lipids meta-
bolism. We determined that 2-hydroxbutyric acid (2-HB), a
bacteria-related metabolite, was reversely altered by APS supple-
mentation, which was effective in improving lipids metabolism
both in vitro and in vivo.
2. Materials and methods

2.1. Cell culture

All cells used in this research were provided by the Institute of
Biosciences Cell Resource Center, Chinese Academy of Sciences,
Shanghai, China. HepG2, RAW264.7, and 3T3-L1 cells before and
after differentiation were cultured in a basic medium—that is,
Dulbecco’s modified Eagle’s medium (DMEM; Gibco, USA) contain-
ing 10% fetal bovine serum (FBS; Gibco), penicillin (200 units�mL�1),
and streptomycin (200 mg�mL�1). AML12 cells were cultured in
DMEM/nutrient mixture F-12 (DMEM/F-12; Invitrogen, USA) sup-
plemented with 10% (v/v) heat-inactivated FBS, 1% insulin transfer-
rin selenium (ITS) liquid media supplement (100�; Sigma-Aldrich,
USA), dexamethasone (40 ng�mL�1; Sigma-Aldrich), sodium bicar-
bonate (1.2 g�L�1), penicillin (200 units�mL�1), and streptomycin
(200 mg�mL�1). All cells were cultured in a humidified cell culture
CO2 incubator (Esco Micro Pte. Ltd., Singapore) at 37 �C and 5% CO2.
2.1.1. INS resistance model
HepG2 cells were seeded into 12-well plates at a density of

about 1.25 � 105 cells�cm�2 and the medium was changed every
24 h for 2 d after seeding until the culture reached approximately
80% confluence. For the INS resistance model, 2.5 mmol�L�1 of glu-
cosamine (GS; Shanghai Biyuntian Biotechnology Co., Ltd., China)
was added for 18 h without FBS, the medium was then changed
to 10% FBS DMEM with the presence of GS and 2-HB (Sigma-
Aldrich). After 24 h, the cells were treated for 20 min with INS
(ganshulin recombinant human INS injection). Finally, the cells
were collected and protein was extracted for subsequent
determination.
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2.1.2. Lipid aggregation model
AML12 cells were seeded into 24-well plates at a density of

about 1.25 � 105 cells�cm�2. The medium was changed every
24 h until the culture reached approximately 80% confluence. For
the lipid aggregation model, the cells were treated for 24 h with
0.2 mmol�L�1 oleic acid (OA; Sigma-Aldrich), or different doses of
2-HB were added. Then the cells were collected for subsequent
determination.

2.1.3. Inflammation model
RAW264.7 cells were seeded into 24-well plates at a density of

4.0 � 105 cells�cm�2 and the culture medium was changed every
24 h. For the inflammation model, cells were first treated with dif-
ferent doses of 2-HB for 0.5 h; they were then stimulated with
100 ng�mL�1 lipopolysaccharide (LPS; Sigma-Aldrich) for 4 h.
Finally, the cells were collected and message RNA (mRNA) was
extracted for the determination of mRNA content.

2.1.4. Adipocyte culture and treatment
3T3-L1 cells were seeded into six-well plates, and the medium

was changed every 24 h. After contact inhibition for 48 h, differen-
tiation solution was added to promote cell differentiation into adi-
pocytes. First, the medium was changed to differentiation medium
A, which contained high-glucose DMEM, 10% (v/v) heat-inactivated
FBS, INS (10 mg�L�1), dexamethasone (1 lmol�L�1), and isobutyl
methylxanthine (IBMX) (0.5 mmol�L�1). After 48 h, the medium
was changed to differentiation medium B, which contained high-
glucose DMEM, 10% (v/v) heat-inactivated FBS, and INS (10mg�L�1).
After 48 h, the medium was changed to 0% FBS DMEM. The cells
were cultured in the basic medium for 6–8 d, and the medium
was changed every 48 h. The cells were then observed under a
microscope. If the cell morphology was round and there were yel-
low lipid droplets in the cells, then the differentiation was success-
ful. The cells were treated with 2-HB for 24 h, and then collected
for subsequent determination.

2.2. Extraction method of APS

In this study, APS was extracted from Astragalus membranaceus
(Shanghai Kangqiao Chinese Medicine Tablet Co., Ltd., China) using
a well-established polysaccharide extraction method involving
water extraction and alcohol precipitation [24]. To summarize, dis-
tilled water was added to the Astragalus membranaceus with the
volume of ten times, eight times and six times, respectively, and
each mixture was decocted for one hour. The three filtrated decoc-
tions were then combined and concentrated to a third of the vol-
ume at a temperature less than 60 �C. Ethanol was then added
up to 70% and precipitated overnight. Next, the precipitate was
dried under vacuum at a temperature less than 60 �C.

2.3. Characterization of the monosaccharide composition of APS

The extracted APS was hydrolyzed into monosaccharides with
trifluoroacetic acid (TFA), and the hydrolyzed monosaccharides
from APS along with authentic monosaccharide standards were
then acetylated according to a previously reported method [25].
After that, the acetylated samples were analyzed using a 7890B
gas chromatograph (Agilent Technologies, USA) equipped with a
3% OV-225/AW-DMCS-Chromosorb W column (3 mm � 2.5 m;
Shimadzu Global Laboratory Consumables Co., Ltd., Japan). The
heating program for the gas chromatography (GC) analysis was
as follows: The initial temperature was 140 �C. The temperature
was then increased to 198 �C at a rate of 2 �C�min�1 and main-
tained for 4 min. Next, it was increased to 214 �C with a tempera-
ture gradient of 4 �C�min�1, and then increased to 217 �C at a speed
of 1 �C�min�1 and maintained for 4 min. Finally, the temperature



B. Li, Y. Hong, Y. Gu et al. Engineering 9 (2022) 111–122
was increased to 250 �C at the rate of 3 �C�min�1 and held constant
for 5 min. The component determination result is shown in Appen-
dix A Fig. S1. The APS used in this study was found to be composed
of five monosaccharides: rhamnose (1.60%), arabinose (23.39%),
xylose (0.84%), glucose (70.55%), and galactose (3.61%).
2.4. Animal experimentation

All the mice used in the experiments were four weeks old when
they were purchased from Laboratory Animal Center (Shanghai,
China). They were housed in a regulated barrier system facility at
23–24 �C with 60% ± 10% relative humidity and a 12 h light/dark
cycle. After a week of adaptation, all mice were randomly divided
into different groups for the experiments. All the animal experi-
ments were approved by the Animal Experiment Institution of
Shanghai University of Traditional Chinese Medicine (Shanghai,
China), and the protocol was approved by the Institutional Animal
Ethics Committee.

The APS administration experiment was carried out as follows.
Male C57BL/6J mice (four weeks old) were treated with a chow diet
(control; Jiangsu Cooperative Pharmaceutical Bioengineering Co.,
Ltd., China) or an HFD (D12492; Research Diets Inc., USA) with or
without APS supplementation (4% APS in HFD) for eight weeks
(HFD, APS).

The 2-HB administration experiments were carried out as fol-
lows. Mice were divided into three groups: a control group fed a
chow diet, a high-fat and high-sucrose (HFHS) group fed an HFD
and 30% sucrose added in drinking water, and a 2-HB group fed
an HFHS diet along with oral gavage of 2-HB (0.01 mL�g�1 body
weight) daily for two weeks at a dosage of 250 mg�kg�1 body
weight. For the 2-HB injection administration experiment, the
mice had been fed with chow or an HFHS diet for eight weeks prior
to the two weeks of 2-HB administration (250 mg�kg�1 body
weight, intraperitoneal injection). The 2-HB solution was prepared
with phosphate buffered saline (PBS) at 25 mg�mL�1. Finally, the
mice were sacrificed after anesthesia with 10% chloral hydrate
intraperitoneally in order to collect the liver and white adipose tis-
sues, blood, and cecum contents after overnight fasting (16 h).
Serum samples were obtained by centrifuging blood at
4000 r�min�1 at 4 �C (5424R; Eppendorf, Germany). Part of the liver
and white adipose tissues were fixed with 10% formalin; other tis-
sues were quickly frozen in liquid nitrogen and then stored at
�80 �C (New Brunswick Science U570-86; Eppendorf).
2.5. Triglyceride content determination

To determine the intracellular triglyceride (TG) content, the
cells were washed twice with 4 �C pre-cooled PBS, and a consider-
able amount of lysis solution (Shanghai Biyuntian Biotechnology
Co., Ltd.) was added for the complete lysis of proteins. The scraped
cells were placed in a 1.5 mL Eppendorf micro test (EP) tube, and
magnetic beads added in a grinding machine (BiHeng Biotechnol-
ogy Inc., China) for grinding. 2.5 lL of the mixed cell lysate was
taken out from the EP tube and added to a 96-well plate; 200 lL
of the working solution (Nanjing Jiancheng Bioengineering Insti-
tute, China) was added thereto. The 96-well plate was incubated
in an oven at 37 �C for 10 min (Shanghai Fuma Laboratory Instru-
ment Co., Ltd., China). The absorbance of reaction mixture was then
measured at 510 nm using a microplate reader (SPARK 10 M;
TECAN, Switzerland). The remaining mixed cell lysates were cen-
trifuged at 13 000 r�min�1 for 10 min at 4 �C. The supernatant
was then taken and the protein concentration was determined by
means of the bicinchoninic acid (BCA) method (Thermo Fisher Sci-
entific (China) Co., Ltd., China). Protein concentration was used to
correct the TG content.
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2.6. Protein analysis

Snap-frozen tissues and treated cells were added to the appro-
priate lysate, ground with magnetic beads, and centrifuged at
12 000 r�min�1 for 10 min at 4 �C. The supernatant was then taken
to determine the protein concentration by means of the BCA
method. For Western blotting, the protein concentration was
adjusted and a loading buffer (Shanghai Biyuntian Biotechnology
Co., Ltd.) was added. Next, each of the mixture was heated at
100 �C for 10 min; after that, it was allowed to cool naturally. Equal
amounts of proteins were separated on concentration gel at a volt-
age of 80 or 120 V (Bio-Rad Laboratories, Inc., USA). The current
was fixed at 380 mA during membrane transfer, and the transfer
time was adjusted according to the molecular weight. Next, the
proteins were transferred onto polyvinylidene fluoride (PVDF)
membranes. The PVDF membranes were sealed for 90 min using
5% skimmed milk. An antibody was then added and each mixture
was left overnight at 4 �C on an orbital shaker (Haimen Kylin-
Bell Lab Instruments Co., Ltd., China). The blots were then reacted
with Horseradish peroxidase (HRP)-linked anti-rabbit
immunoglobulin G (IgG) or anti-mouse IgG, followed by enhanced
chemiluminescence (Shanghai Biyuntian Biotechnology Co., Ltd.).
Information about the antibodies is provided in Appendix A
Table S1.

2.7. Oil red staining

The treated cells were washed twice with pre-cooled PBS; next,
10% neutral formalin (Sinopharm Chemical Reagent Co., Ltd.,
China) was added and the mixture was left for 30 min. Oil red
(Sigma-Aldrich) was then added and the mixture was left for
15 min. The oil red contained 40% pure water (Millipore). After
mixing, the oil red was filtered using a microporous membrane.
Next, filtered hematoxylin (Sigma-Aldrich) was added and the
mixture was left for 7 min. Finally, the cells were washed with PBS.

2.8. Quantitative real-time polymerase chain reaction analysis

Trizol (Thermo Fisher Scientific (China) Co., Ltd.) was used to
extract RNA from cells or tissues and reverse the RNA to comple-
mentary DNA (cDNA) with a one-step method according to the
kit procedure. Next, the primers of the target genes were added
to the cDNA samples. The mixture of cDNA, polymerase chain reac-
tion (PCR) master mix (YEASEN, China) and water was performed
for PCR amplification (Bio-Rad Laboratories, Inc.). The primer
sequences of the genes are provided in Appendix A Table S2.

2.9. Untargeted metabolomics analysis

The extracted samples were analyzed to obtain global metabo-
lite profiles using an untargeted metabolic profiling platform, the
XploreMETTM (Metabo-Profile, China), measured by a time-of-
flight mass spectrometer (TOFMS; Leco, USA) with GC (Agilent)
and a robotic online derivatization station. Raw data were pro-
cessed in XploreMET to determine the ion peaks, followed by
denoising baseline correction. State-of-the-art GC–TOFMS technol-
ogy with fast scan rates can resolve hundreds of metabolite peaks
with a deconvolution algorithm in a single injection. A typical GC–
TOFMS chromatogram of biological samples generates 600–1000
individual deconvoluted signals. However, molecules containing
multiple reactive groups (i.e., OH, NH, SH, and NH2) may formmul-
tiple (oxime) tetramethyl silane (TMS) derivatives and produce
multiple derivatives for the same metabolite. XploreMET identifies
all of the TMS derivatives using the knowledge of an existing data-
base, JiaLibTM 1500+ (Metabo-Profile), which was built from the
pure chemical standard; calculates the sum of the derivatives;
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and reports it as a single annotated metabolite for the same
metabolite. The ratios of the two adjacent metabolites were calcu-
lated from the known metabolic relation network (Kyoto Encyclo-
pedia of Genes and Genomes (KEGG)). XploreMET used the score
values of one model dimension (t1, t2, etc.) from a multivariate
model—in this case, within a principal component analysis (PCA)
as the control chart y-variable—and yielded a multivariate control
chart (MCC) based on the combination of all the x-variables—that
is, the metabolite signals. Hence, the MCC displays the data which
has been measured on the process over time and can monitor
variations produced by a series of laboratory procedures. In the
determination process, all the actual samples were within the
control limits and fluctuated beyond and below the x-axis, while
the quality control (QC) samples were separated from the actual
samples. More details have been described in a previous
publication [26].
2.10. Targeted metabolomics analysis

Methanol was used to remove the protein from the serum sam-
ples and liver samples, and the supernatant after centrifugation
was determined by means of liquid chromatography–tandemmass
spectrometry (LC–MS/MS). The analysis was carried out using
high-performance liquid chromatography (HPLC; Shimadzu Global
Laboratory Consumables Co., Ltd.) coupled with an AB SCIEX 4500
(USA). Gradient elution was used at 0.3 mL�min�1 with acetonitrile
as the organic phase and 0.1% formic acid as the water phase. The
proportion of the organic phase was 3% in the first 0.8 min; it then
increased to 50% at 0.9 min and maintained for 0.6 min. Finally,
keep the proportion of organic phase in 3% over a period of 1.6–
3.0 min. The injection volume was 1 lL. Electrospray was per-
formed using the negative ionization mode. An ion spray voltage
of �4500 V, a heated nebulizer temperature of 550 �C, and curtain
gas (N2), nebulizing gas (N2), and heater gas (N2) pressures of
275.800, 379.225, and 413.700 kPa, respectively, were set for the
quantification of the precursor to product ion transitions in multi-
ple reaction monitoring (MRM) mode. The Q1 mass/Q3 mass for 2-
HB was 103.0/57.1. Medium collision-activated dissociation (CAD)
and �16 V collision energy (CE), �8 V collision cell exit potential
(CXP), �10 V entrance potential (EP), and �44 V declustering
potential (DP) were used for the analysis. The linear range was
15.625–1000.000 ng�mL�1, and the dwell was 650 ms. For 2-HB
with a confirmed identity, the corresponding peak in the ion chro-
matogram was integrated using MultiQuant v.2.1 (AB SCIEX) to
determine the area under the curve (AUC). For comparisons of
metabolite levels between samples, data were calculated based
on the AUC values, normalized to the corresponding liver weight.
The extracted ion chromatograms (XIC) of 2-HB at the [M�H] ion
are shown in Appendix A Fig. S2.
2.11. Pathway analysis

First, we entered the names of all 24 differential metabolites in
MetaboAnalysty. Next, we selected Fisher’s exact test for pathway
enrichment analysis and out-degree centrality for pathway topology
analysis. The p values were obtained by pathway enrichment analy-
sis, while pathway impact values were obtained by pathway topol-
ogy analysis. All of the analysis was based on the KEGG version
pathway library. The metabolome view shows all matched pathways
according to the p values and pathway impact values (for more infor-
mation, see Appendix A Table S3). We then chose the important
pathways on the basis of the p values and pathway impacts.
y https://www.metaboanalyst.ca/MetaboAnalyst/home.xhtml.
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2.12. Statistical analysis

Data are shown as means ± standard error of mean (SEM) unless
otherwise noted. Statistical significance was determined with the
unpaired two-tailed Student’s t-test. A p < 0.05 was considered to
be statistically significant.
3. Results

3.1. APS inhibits body weight gain and hepatic steatosis in HFD-fed
mice

Male C57BL/6J mice were fed with either a normal chow diet or
an HFD with or without APS supplementation for eight weeks. First
of all, we found that the body weight of the mice in HFD group was
significantly heavier than those in the control group, and was
reduced by APS supplementation during the experiment. In addi-
tion, APS supplementation attenuated the HFD-induced metabolic
phenotypes, including the TG contents in liver tissues, the weight
and index of white adipose tissues (WAT), the degree of hepatic
steatosis, and the volume of adipocytes (Fig. 1). The results indi-
cated that APS supplementation attenuated metabolic disorders
in HFD-fed obese mice.
3.2. Untargeted and targeted metabolomic analysis on serum and liver
tissues

Given the non-absorptivity of most herbal polysaccharides, we
speculated whether the metabolic benefits of APS were associated
with the modulation of the endogenous metabolism. We therefore
performed GC–TOFMS-based untargeted metabolomics on both
the serum and liver tissues of mice. In general, a total of 166 and
112 metabolites, respectively, were determined in the serum and
liver tissues. The alteration of these metabolites among groups
were visualized with heatmaps (Appendix A Figs. S3 and S4). The
166 determined metabolites in the serum samples were composed
of 34% amino acids, 18% carbohydrates, 14% organic acids, 12%
fatty acids, 7% nucleotides, 5% lipids, 3% indoles, and 7% others,
while the 112 metabolites in liver tissues contained 26% amino
acids, 21% carbohydrates, 18% organic acids, 14% fatty acids, 8%
nucleotides, 4% lipids, and 9% others. PCA was then conducted on
the basis of these metabolites in serum or liver tissues. Clear sepa-
ration was consistently observed among the groups, with 53.1%
and 41.4% interpretation powers, respectively (Figs. 2(a) and (b)).
The accumulated R2X of the two PCA models were 0.531 and
0.413, while the Q2 were 0.347 and 0.105, respectively. These
results suggested that APS supplementation dramatically altered
the metabolic profiles of the serum and liver tissue of HFD-fed
mice.

Next, we screened the differential metabolites in the serum and
liver tissues among the groups with the double criteria of variable
importance for the projection (VIP) > 1 and p < 0.05 in multivariate
and univariate statistical analysis simultaneously. A total of 18 and
6 differential metabolites and ratios of metabolites were identified
in serum or liver tissues, respectively, which were reversely altered
by HFD and APS (Figs. 2(c) and (d)). The 18 differential metabolites
within the serum included ten amino acids and amino acid ratios
(including 2-HB, dimethylglycine, b-alanine, citrulline, lysine, b-
alanine/aspartic ratio, citrulline/arginine ratio, allantoic acid, urea,
and 1-tyrosine/phenylalanine ratio), four fatty acids (including
linoleic acid, OA, myristic acid, and dodecanoic acid), and four
other metabolites (including 3-indolepropionic acid (IPA), inositol,
myoinositol, and galactonic acid). The 6 differential metabolites
within the liver tissues were 2-HB, a-aminobutyric acid, ornithine,
arachidonic acid, arachidic acid, and docosahexaenoic acid. The
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Fig. 1. APS attenuates hepatic steatosis and WAT lipid accumulation in HFD-fed
mice. Male C57BL/6J mice (four weeks old) were treated with a chow diet (control)
or HFD with or without 4% APS supplementation for eight weeks. (a) Body weight at
the end of the experiment (n = 9, 10, and 10 per group). (b) Hepatic TG levels (n = 8,
9, and 8 per group). (c) Liver weight (n = 9, 10, and 10 per group). (d) Liver index
(n = 9, 10, and 10 per group). (e) WAT weight (n = 9 per group). (f) WAT index (n = 9
per group). (g) Mice body, representative photomicrographs of liver tissues with
hematoxylin eosin (HE) staining, and representative photomicrographs of WAT
with HE staining (n = 3 per group). Significance was measured by an unpaired two-
tailed Student’s t-test, with ##p < 0.01 compared with the control group, and
*p < 0.05 and **p < 0.01 compared with HFD group. Results are presented as
means ± SEM.
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metabolic pathway and functional analysis were then performed
with these 24 (18 in serum and 6 in liver tissues) metabolites
together. Four key metabolic pathways were enriched: the path-
ways of arginine and proline metabolism, propanoate metabolism,
ascorbate and aldarate metabolism, and linoleic acid metabolism
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(Figs. 2(e) and (f)). Based on the well-established functions of
short-chain fatty acids in metabolic diseases [27], we focused on
the altered propanoate metabolism pathway [28-49], in which 2-
HB was consistently altered in both serum and liver tissues by
APS supplementation (Fig. 2(g), Appendix A Tables S3 and S4).
Next, the 2-HB contents in both serum and liver tissues were quan-
tified with targeted metabolomics. The results showed that 2-HB
was consistently reduced in the HFD group, and was reversed by
APS supplementation (Figs. 2(h) and (i)). These results suggested
that APS supplementation could reverse the metabolic alteration
in serum and liver tissues in HFD-fed mice.

3.3. 2-HB regulates lipids metabolism, improves insulin sensitivity, and
inhibits inflammation in vitro

To test whether the metabolic benefits of APS were associated
with the increased production of 2-HB in mice, we first explored
the effects of 2-HB on lipids metabolism in both hepatocytes and
adipocytes. An OA-induced TG accumulation model was built in
AML12 cells with obvious lipid droplets and a clear increase in cel-
lular TG levels. 2-HB (0.1–10.0 mmol�L�1) intervention signifi-
cantly reduced OA-induced TG accumulation and improved cell
viability at 10 mmol�L�1 concentration (Figs. 3(a)–(c)). Moreover,
we observed that 2-HB treatment stimulated the expression of adi-
pose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL),
and carboxylesterase 1 (CE1) proteins in AML12 cells (Figs. 3(d)–
(h)), which suggested that 2-HB stimulated lipolysis [50–52]. In
addition, 2-HB increased the expression of ATGL protein and the
release of glycerin in 3T3-L1 cells (Figs. 3(i)–(k)).

Along with disordered fatty acid metabolism, inflammation and
INS resistance are important risk factors of metabolic disorders
[53]. To test whether 2-HB could attenuate inflammation and INS
resistance, macrophage RAW264.7 cells were exposed to LPS with
or without 2-HB pretreatment (0.01–10.00 mmol�L�1) [54]. The
expression of tumor necrosis factor-a (TNF-a) was determined
with quantitative real-time PCR (qRT-PCR). Our results showed
that pretreatment with 2-HB significantly inhibited the
LPS-induced up-regulation of TNF-a mRNA, which suggested that
2-HB inhibited inflammation (Fig. 4(a)). In addition, the effect of
2-HB on INS sensitivity was evaluated in HepG2 cells, which were
treated with GS followed by INS stimulation with or without 2-HB
pretreatment [55,56]. Our data showed that 2-HB pretreatment
increased the ratios of p-insulin receptor (p-IR)/IR, p-insulin recep-
tor substrate 1 (p-IRS1)/IRS1, and p-protein kinase B (p-AKT)/AKT
in the context of GS cultivation, suggesting an improvement in
INS sensitivity (Figs. 4(b)–(e)). Collectively, these results indicated
that 2-HB stimulated lipolysis and improved INS sensitivity in
hepatocytes, as well as reducing inflammation in macrophage cells.

3.4. 2-HB reduces serum TG levels and regulates lipid metabolism in
HFHS-fed mice

Given the in vitro evidence of 2-HB on metabolic disorders, we
next investigated the effects of orally administered 2-HB on lipids
metabolism in a short-term HFHS-fed mouse. The final body
weight after two weeks of HFHS feeding was higher than that in
the control group, while no difference was observed between the
HFHS and 2-HB groups (Fig. 5(a)). Interestingly, serum TG levels
were significantly increased in the HFHS group but were reduced
by 2-HB (Fig. 5(b)). In addition, there were no significant differ-
ences in the weight or index of the WAT or liver tissues between
the HFHS and 2-HB groups, and no significant difference in the
hepatic TG levels (Figs. 5(c)–(g)). The results of a glucose tolerance
test (GTT) showed that the short-term intervention of 2-HB did
not significantly improve the INS sensitivity of HFHS-fed mice
(Fig. 6(a)).



Fig. 2. Metabolomics reveals alteration of metabolic profiles and significant increases of 2-HB in APS-supplemented mice. Serum and liver samples were determined by GC–
TOFMS; the untargeted metabolites in the study samples were annotated with the mammalian metabolite database JiaLib using a strict matching algorithm incorporated in
XploreMET system. Next, the key metabolites that were obtained after screening was verified using LC–MS/MS. (a) Overview of the serum metabolic profiles of three groups
using a three dimensional (3D)-PCA scores plot (n = 8, 10, and 10 per group). PC: principal component. (b) The differences in expression among the three groups of serum
differential metabolites were visualized with a heatmap. (c) Overview of the liver metabolic profiles of the three groups using a 3D-PCA scores plot (n = 8, 10, and 10 per
group). Red and blue entries indicate metabolites that showed respectively more and less expression in each sample. (d) The differences in expression among the three groups
of liver differential metabolites were visualized with a heatmap. Red and blue entries indicate metabolites that showed respectively more and less expression in each sample.
(e) Overview of pathway analysis; MetaboAnalyst was used to analyze the metabolic pathways on the KEGG website of the differential metabolites of APS-supplemented
mice. (f) Differential metabolites contained in four metabolic pathways. (g) Selection of potential functional metabolites. Among the identified metabolites, metabolites that
were significantly altered between groups (variable importance for the projection (VIP) > 1 and p < 0.05) were selected. To screen for differential metabolites associated with
the role of APS in regulating lipid metabolism, metabolic pathway enrichment and a functional analysis were chosen. Expression of the selected key metabolite 2-HB in
(h) serum and (i) liver was determined by targeted metabolomics LC–MS/MS. Significance was measured by an unpaired two-tailed Student’s I-test, with ##p < 0.01 compared
to the control group and *p < 0.05 compared with HFD group. Results are presented as means ± SEM.
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To further characterize whether 2-HB could modulate the lipids
metabolism in mice, the mRNA or protein expression of the genes
involved in lipids metabolism were investigated in the WAT and
liver tissues, such as sterol-regulatory element-binding proteins
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(SREBP), fatty acid synthase (FAS), carbohydrate response
element-binding protein (ChREBP), acetyl-CoA carboxylase (ACC),
ATGL, HSL, CE1, and carnitine palmitoyltransferase-1 (CPT-1). We
found that 2-HB treatment inhibited the HFHS-induced expression



Fig. 3. 2-HB regulates lipid metabolism in vitro. In vitro experiments were designed to investigate the effect of 2-HB intervention on lipid metabolism. (a) Representative
photomicrographs of AML12 cells with oil red O staining; cells were treated with 2-HB and OA for 24 h. (b) TG levels of AML12 cells after incubation with 2-HB and OA for
24 h (n = 4 per group). (c) Cell viability of AML12 cells after incubation with 2-HB and OA for 24 h (n = 6 per group). (d)–(h) Effect of 2-HB 24 h treatment on the protein
expression of the lipid-degrading proteins HSL, ATGL, and CE1 on AML12 cells (n = 3–4 per group). (i) and (j) Effect of 2-HB 24 h treatment on ATGL protein expression on 3T3-
L1 cells (n = 3 per group). (k) Glycerin levels on differentiated 3T3-L1 cells after treatment with 2-HB for 24 h (n = 3 per group). Significance was measured by an unpaired
two-tailed Student’s t-test, with #p < 0.05 and ##p < 0.01 compared with the control group, and *p < 0.05 and **p < 0.01 compared with the OA group. Results are presented as
means ± SEM.
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of genes or proteins in WAT, including the mRNA of FAS and ACC,
and the proteins of SREBP and FAS (Figs. 6(b)–(e)). In contrast, 2-HB
treatment increased the expression of ATGL and HSL proteins in
WAT (Figs. 6(f)–(h)). Meanwhile, HFHS feeding resulted in suppres-
sion of CE1 and up-regulation of SREBP and FAS proteins in liver
tissues, all of which were obviously reversed by 2-HB treatment
(Figs. 6(i)–(k)).

We further tested the effects of 2-HB on lipids metabolism
by means of a two-week intraperitoneal injection in HFHS-fed
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mice. In line with the results of oral administration, the data
showed that 2-HB injection reduced serum TG levels and
reversed the expression of SREBP, FAS, and CE1 proteins in liver
tissues, albeit with no effect on body weight gain (Appendix A
Fig. S5).

Taken together, these results indicated that the metabolite 2-HB
resulting from APS treatment was effective in modulating lipids
metabolism and INS sensitivity both in vitro and in vivo, which
might contribute to the metabolic benefits of APS.



Fig. 4. 2-HB suppresses inflammation levels and enhances INS sensitivity in vitro. The inflammatory model and INS resistance model were established on macrophage
RAW264.7 and human hepatocyte HepG2, respectively. (a) The mRNA expression level of pro-inflammatory cytokine TNF-a on RAW264.7 cells with 2-HB and LPS
intervention (n = 4 per group). (b) The phosphorylated and total protein expression level of IRS1, IR, and AKT on HepG2 cells with 2-HB, GS, and INS intervention were
detected. (c)–(e) The ratios of IRS1, IR, and AKT phosphorylated protein to total protein on HepG2 cells (n = 4 per group). Significance was measured by an unpaired two-tailed
Student’s t-test, with #p < 0.05 compared with the control group, *p < 0.05 compared with INS or LPS group, and &p < 0.05 and &&p < 0.01 compared with GS group. Results are
presented as means ± SEM.

Fig. 5. 2-HB regulates serum lipid level and liver damage in HFHS-fed mice. Male C57BL/6J mice (four weeks old) were treated with a chow diet (control) or a HFHS (30%
sucrose supplementation in water, g�L�1) diet with or without 250 mg�kg�1 2-HB intervention by stomach perfusion for two weeks. (a) Body weight at the end of the
experiment (n = 10, 12, and 10 per group). (b) Energy intake (n = 10, 12, and 10 per group). (c) Serum TG levels (n = 10, 12, and 10 per group). (d) Liver TG levels (n = 8, 10, and
10 per group). (e) and (f) Serum ALT and AST levels (n = 8, 10, and 9 per group). IU: international unit. (g) Mice body, liver, and WAT. Significance was measured by an
unpaired two-tailed Student’s t-test. Results are presented as means ± SEM.
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Fig. 6. 2-HB regulates lipid metabolism in HFHS-fed mice. Male C57BL/6J mice (four weeks old) were treated with a chow diet (control), or a HFHS (30% sucrose
supplementation in water, g�L�1) diet with or without 250 mg�kg�1 2-HB intervention by intraperitoneal injection for two weeks. (a) GTT curve (n = 6, 10, and 9 per group).
(b) The mRNA expression levels of SREBP, FAS, ChREBP, ACC, and CPT-1 in WAT (n = 10, 6, and 10 per group). (c)–(h) Protein expression levels of SREBP, FAS, ACC, ATGL, HSL,
and CPT-1 in WAT (n = 4–7 per group). (i)–(k) Protein expression levels of CE1, SREBP, and FAS in liver tissues (n = 6–9 per group). Significance was measured by an unpaired
two-tailed Student’s t-test, with #p < 0.05 and ##p < 0.01 compared with the control group, and *p < 0.05 and **p < 0.01 compared with the HFHS group. Results are presented
as means ± SEM.
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4. Discussion

This study indicated that APS is effective in improving meta-
bolic disorders in obese mice by reducing body weight gain, atten-
uating hepatic steatosis, and decreasing adiposity. Furthermore,
untargeted and targeted metabolomics revealed that APS supple-
mentation resulted in an increase of 2-HB in serum and liver tis-
sues. We further demonstrated that 2-HB can modulate mRNA or
the protein expression of the genes involved in fatty acid metabo-
lism, inhibit inflammation, and improve INS sensitivity in HepG2
or 3T3-L1 cells; it also reduces serum TG and lipids metabolism
in HFHS-fed mice.

The metabolic benefits of most plant polysaccharides are well
established. The mechanisms underlying the protective effect of
polysaccharides are mainly recognized to be associated with
modulation of the gut microbiota [57], because of the non-
absorption of such polysaccharides in the gastrointestinal tract
[58]. However, the exact metabolism improved mechanisms of
plant polysaccharides are not well understood. Our previous
observations indicated that the anti-obesity effect of APS was
associated with modulation of the gut microbiota [19]. Moreover,
we found that APS did not inhibit TG accumulation in OA-treated
HepG2 cells (data not shown), which excluded the possibility of
the direct action of APS on lipids metabolism.

Increasing evidence has shown that endogenous or microbiota-
derived metabolites usually perform vital functions in maintaining
health, disease development, and drug activity [59–61]. Changes in
metabolites are not only readouts of a disturbance occurring at the
gene or protein level; they also serve as signaling molecules to
modulate the pathophysiological status [62]. Therefore, functional
metabolomics is extremely valuable for investigating the potential
functions of identified differential metabolites [63]. Since the
mechanisms underlying the metabolic benefits of most plant
polysaccharides, including APS, are largely unclear, we adopted
untargeted metabolomics to investigate whether the metabolic
benefits of APS were associated with modulation of the endoge-
nous metabolism. The metabolomics results showed that APS sup-
plementation obviously restored the metabolic changes induced by
HFD in both serum and liver tissues, which suggests that the meta-
bolic benefits of APS are probably associated with modulation of
the host metabolism. Further analysis revealed 18 and 6 differen-
tial metabolites in serum and liver tissues, respectively, that were
reversely altered by an HFD or APS supplementation. More than
half of the differential metabolites are amino acids, which may
have functions within the host such as regulating cellular signals,
gene expression, acting as building blocks for protein synthesis
or phosphorylation, or enabling hormone synthesis [64].

To determine the metabolites that may be associated with the
activity of APS, we performed metabolic pathway enrichment with
the 24 identified metabolites (18 from serum and 6 from liver tis-
sues) and literature research. We then obtained four main meta-
bolic pathways that were significantly altered by HFD and APS
supplementation, including the pathways of arginine and proline
metabolism, propanoate metabolism, linoleic acid metabolism,
and ascorbate and aldarate metabolism. We paid a great deal of
attention to the propanoate metabolism pathway containing
beta-alanine and 2-HB, because this pathway had low p values
and high pathway impacts, in addition to the well-established
roles of short-chain fatty acids, which containing propionic acid,
in metabolic diseases [65,66]. The metabolite 2-HB was selected
based on the following reasons: First of all, the chemical structure
of 2-HB is similar to that of b-HB and butyric acid, which have
important functions in affecting the development of metabolic dis-
eases [67,68]. Second, although increased levels of 2-HB have been
observed in patients with diabetes, obesity, or metabolic
syndromes, which suggests that 2-HB is probably a biomarker for
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metabolic syndrome or diabetes [69,70], the biological functions
of 2-HB in metabolic diseases are unclear. Third, in addition to
the endogenous origin of 2-HB from precursors such as 3-HB, 2-
aminobutyric acid, a-ketobutyric acid, 2-oxobutyric acid, and
amino acids including methionine, threonine, and homoserine
[71,72], 2-HB could be produced by bacteria through lactate dehy-
drogenase (LDH) enzymes [73–77]. In addition, our previous study
observed that alteration of the gut microbiota with vancomycin
increased the production of 2-HB [78]. Given the fact of gut micro-
biota modulation by APS supplementation [19], we considered that
the metabolic benefits of APS supplementation might be associated
with the production of 2-HB. Although we cannot clearly deter-
mine the origin of 2-HB in the current study, the increased produc-
tion of 2-HB in APS-supplemented mice may be derived from
either the host metabolism or the gut microbiota in the context
of modulation of the gut microbiota by APS.

Dysregulated lipids metabolism is the basis for the develop-
ment of metabolic diseases [79]. A previous study indicated that
2-HB could inhibit lipid synthesis in the cerebral cortex of rats
[80]. Proteins of ATGL and HSL catalyze the hydrolysis of TG mainly
in adipocytes, and in hepatocytes as well [81], whereas CE1 is
specifically expressed in hepatocytes for TG hydrolysis [82]. Our
in vitro experiment indicated that 2-HB stimulated the expression
of HSL, ATGL, and CE1 proteins in hepatocytes and glycerin release
in 3T3-L1 cells, suggesting enhanced lipids degradation by 2-HB.

INS resistance and inflammation are important risk factors of
metabolic diseases [53,83–86]. 2-HB treatment inhibited the
expression of pro-inflammatory cytokine TNF-a in macrophages,
and improved INS sensitivity in hepatocytes. The in vitro results
suggested that 2-HB might be beneficial for attenuating metabolic
disorders. No significant differences were observed in the weight
or index of WAT and liver tissues, or in the TG levels in liver tissues,
between the 2-HB and HFHS groups. However, the results showed
that either intragastric or intraperitoneal injection of 2-HB for two
weeks could reduce serum TG level, inhibit the expression of FAS
and SREBP proteins, and stimulate ATGL, HSL, and CE1 expression
in WAT and liver tissues in HFHS-fed mice. The in vitro and
in vivo results suggest that 2-HB was effective in modulating lipids
metabolism, especially in regulating the expression of the key
genes at the mRNA or protein level that are involved in fatty acid
synthesis or lipolysis. It should be noted that the biological func-
tions of 2-HB were only tested in short-term HFHS-fed mice in
the current study, in which the mice were characterized by an
obvious increase of serum TG, instead of hepatic TG levels. It was
found that 2-HB reduced the TG levels in the serum and reversed
the expression of genes and proteins that are critically involved
in lipids metabolism in WAT or liver tissues of HFHS-fed mice after
a two-week intervention. Although we did not observe the reduc-
tion of hepatic TG after two weeks of 2-HB treatment, the signifi-
cant modulation of the expression of the genes and proteins that
are critically involved in fatty acid synthesis and oxidation sug-
gested that more comprehensive effects of 2-HB on lipids metabo-
lism could be expected if a long-term intervention of 2-HB was
performed.

In conclusion, this study confirms the metabolic benefits of APS
in HFD-fed mice and identifies a functional metabolite, 2-HB, that
is increased in serum and liver tissues by APS supplementation.
Further investigation revealed that 2-HB modulates lipids metabo-
lism both in vitro and in vivo, especially by inhibiting or stimulating
the expression of proteins involved in de novo fatty acid synthesis
or lipid degradation. Our results suggest that the metabolic bene-
fits of APS in HFD-fed mice may at least partially occur through
the production of 2-HB in mice. Further investigation is warranted
to confirm the functions of 2-HB in long-term HFD-fed animals,
and to determine the exact origin of 2-HB in APS-supplemented
mice.
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