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Carbapenem resistance presents a major challenge for the global public health network, as clinical infec-
tions caused by carbapenem-resistant organisms (CRO) are frequently associated with significant mor-
bidity and mortality. Ceftazidime–avibactam (CAZ–AVI) is a novel cephalosporin/b-lactamase inhibitor
combination offering an important advance in the treatment of CRO infections. CAZ–AVI has been
reported to inhibit the activities of Ambler classes A, C, and some class D enzymes. However, bacterial
resistance has been emerging shortly after the introduction of this combination in clinical use, with an
increasing trend. Understanding these resistance mechanisms is crucial for guiding the development of
novel treatments and aiding in the prediction of underlying resistance mechanisms. This review aims
to systematically summarize the epidemiology of CAZ–AVI-resistant strains and recently identified resis-
tance mechanisms of CAZ–AVI, with a focus on the production of b-lactamase variants, the hyperexpres-
sion of b-lactamases, reduced permeability, and overexpressed efflux pumps. The various mechanisms of
CAZ–AVI resistance that have emerged within a short timescale emphasize the need to optimize the use
of current agents, as well as the necessity for the surveillance of CAZ–AVI-resistant pathogens.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Severe clinical infections caused by multidrug-resistant (MDR)
Gram-negative bacteria (GNB) have become a critical threat to
the public health worldwide [1]. Treatment strategies for infec-
tions caused by b-lactamase-producing GNB are limited, especially
for those caused by carbapenem-resistant bacteria. Therapy with
‘‘last-line” agents (e.g., polymyxins and tigecycline) may be com-
promised by resistance, suboptimal pharmacokinetics, and/or high
toxicity rates [2–4]. In February 2015, the US Food and Drug
Administration (FDA) approval of a novel cephalosporin/b-
lactamase inhibitor complex, ceftazidime–avibactam (CAZ–AVI),
largely alleviated many of the concerns regarding traditional treat-
ment options for MDR GNB infections [5–7].

Avibactam (formerly known as AVE1330A and NXL104) is a
member of a class of b-lactamase inhibitors called diazabicy-
clooctanes (DBOs) [8]. It has the capacity to rapidly acylate a
wide range of b-lactamases while minimizing the liability of
hydrolysis. CAZ–AVI thus exhibits activity against various clini-
cally important b-lactam-resistant bacteria producing class A
(e.g., extended-spectrum b-lactamases (ESBLs) and Klebsiella
pneumoniae (K. pneumoniae) carbapenemases (KPCs)), class C
(e.g., AmpC b-lactamases), and certain class D (e.g., oxacillinase
(OXA)-48) enzymes, but not against the metallo-b-lactamases
(MBLs) of class B (e.g., New Delhi metallo-b-lactamase (NDM),
Verona integron-encoded metallo-b-lactamase (VIM), and
imipenemase (IMP)) [9].

However, bacterial resistance is a potential risk from antibacte-
rial usage. In the brief time since the introduction of CAZ–AVI in
clinical use, pathogens developing resistance have been reported
worldwide [10–14]. Therefore, there is an urgent need to under-
stand the genetic basis for the emergence of CAZ–AVI resistance
during treatment over a short timescale. In this work, we system-
atically review recent insights into the epidemiology, resistance
mechanisms, and clinical use of CAZ–AVI, and discuss additional
treatment options for CAZ–AVI-resistant GNB infections in order
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to provide possible clues for the development of novel strategies
against the emerging problems.
2. Characterization of avibactam and other b-lactamase
inhibitors approved for clinical use

At present, six b-lactamase inhibitors have been approved for
clinical use. Sulbactam and tazobactam are penicillanic acid sul-
fones, and clavulanic acid is a clavam. All of these inhibitors function
as ‘‘suicide” inactivators and take advantage of conserved active-site
residues to interact with their targets, resulting in an irreversible
inactivity of the targeted b-lactamase. The spectrum of these inhibi-
tors is largely limited to some of the class A serine b-lactamase
enzymes, such as temoneira (TEM)-1 [15]. The other three recently
approved inhibitors are DBOs (avibactam and relebactam) [16,17]
and boronic acid (vaborbactam) [18]. Unlike the ‘‘suicide” inactiva-
tors, they function as a competitive inhibitor by binding to targeted
b-lactamases in a covalent but slowly reversible manner, followed
by the regeneration of the active enzyme and intact inhibitor
[16,19]. Although vaborbactam was initially designed to inhibit
KPC-type carbapenemases, it also exhibits activity against other
class A and class C b-lactamases [19]. However, meropenem–vabor-
bactam shows less activity against strains that lack porins or that
overexpress efflux pumps [18]. In 2019, the FDA approved relebac-
tam in combination with imipenem and cilastatin. Imipenem–rele-
bactam is active against carbapenem-resistant Enterobacterales
(CRE) and carbapenem-resistant Pseudomonas aeruginosa (P. aerug-
inosa, CRPA), which produce KPC and class C b-lactamases. In some
cases, imipenem–relebactam has shown good activity against
carbapenem-resistant strains that lack porins, such as porin D
(OprD)-deficient P. aeruginosa and outer membrane proteins
OmpF/OmpK35 inactivate CRE [17,20]. Neither vaborbactam nor
relebactam is able to inhibit class B and class D b-lactamases.

The addition of avibactam to ceftazidime can restore antibacte-
rial activity against Enterobacterales and P. aeruginosa strains that
produce a wide range of class A and class C b-lactamases [8,21].
Remarkably, avibactam is the only approved b-lactamase inhibitor
that can assist ceftazidime to inhibit certain class D b-lactamases,
such as OXA-48. In vitro studies have demonstrated that avibactam
is highly efficient at inhibiting b-lactamases, such that only 1–5
molecules of avibactam are enough to inhibit one b-lactamase
molecule, in comparison with 55–214 molecules of tazobactam
and clavulanic acid [8]. It is notable that the reaction of KPC-2 with
avibactam is irreversible, in that a b-lactam/b-lactamase inhibitor
complex forms, which results in the hydrolysis of avibactam and
regeneration of free KPC-2 [22]. In comparison with the other
approved inhibitors, avibactam has the advantage of high effi-
ciency in inhibiting b-lactamases, especially in the inhibition of
OXA-48-type carbapenemase.
3. Clinical use of CAZ–AVI

CAZ–AVI has been approved in the United States and Europe for
the treatment of complicated urinary tract infections (cUTI),
including pyelonephritis; complicated intra-abdominal infections
(cIAI); and hospital-acquired pneumonia (HAP), including
ventilator-associated pneumonia (VAP) [23,24]. In Europe, this
combination is also approved for the treatment of infections
caused by aerobic GNB in adult patients with limited treatment
options [24]. Thus far, the drug has been approved in more than
40 countries and regions around the world, including China as of
May 2019. This agent appears to be well tolerated in healthy sub-
jects and hospitalized patients (pediatric and adult), with most
adverse events being mild or moderate in intensity [25,26]. CAZ–
AVI-based therapy has been reported to be associated with a
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significantly higher degree of both clinical success and survival rate
in comparison with the other regimens employed for carbapenem-
resistant K. pneumoniae (CRKP) infections [5]. A study showed that
the hospital mortality 30 days after patients were treated with
either CAZ–AVI or colistin for CRE infections was 9% versus 32%,
respectively [6], indicating a uniform superiority of CAZ–AVI over
colistin. In addition, the rate of acute kidney injury has been found
to be lower in patients receiving CAZ–AVI than in those treated by
aminoglycoside combinations or colistin combinations [5]. These
clinical studies consistently support a role for CAZ–AVI as a poten-
tial alternative to some ‘‘last-line” agents in the treatment of infec-
tions caused by carbapenem-resistant bacteria. The use of CAZ–AVI
has been evaluated in 21 clinical studies, including one phase IV,
six phase III, five phase II, and nine phase I studies as of April
2020 (Table S1 in Appendix A).
4. Resistance mechanisms of CAZ–AVI

4.1. Resistance induced by CAZ–AVI exposure

The emergence of CAZ–AVI resistance has been reported in both
in vitro and in clinical practice. Livermore et al. [27] conducted an
in vitro study to predict resistance-associated mutations using
CAZ–AVI-susceptible KPC-3-producing Enterobacter cloacae (E.
cloacae) and K. pneumoniae clinical strains. They revealed that
CAZ–AVI selected mutants at up to 16� minimal inhibitory con-
centration (MIC), with frequencies of around 1 � 10–9. The first
clinical case of CAZ–AVI resistance was detected in a KPC-
producing K. pneumoniae (KPC-Kp) strain obtained from a patient
with no history of CAZ–AVI therapy prior to the availability of
CAZ–AVI [10]; treatment-emergent CAZ–AVI resistance has subse-
quently been reported in multiple centers worldwide [11–14]. The
CAZ–AVI resistance mechanism is summarized in Table 1 [11–
13,28–44] and Table S2 in Appendix A. Current knowledge shows
that the CAZ–AVI resistance mechanisms are complex and may
be simultaneously mediated by multiple mechanisms in a single
cell (Fig. 1). These are discussed below in detail.
4.1.1. Mutations in blaKPC genes
To date, most cases of CAZ–AVI resistance have been caused by

mutated blaKPC-2 and blaKPC-3 in K. pneumoniae (Fig. S1 in Appendix
A). Structural studies revealed that these mutations frequently
occur within the conserved motif region of class A b-lactamases
named the X-loop, which encompasses amino acid residues
Arg164 to Asp179 of KPC [45]. Remarkably, certain single amino
acid substitutions within the X-loop, particularly at positions
164, 167, 169, and 179, can significantly reduce the susceptibility
to CAZ–AVI [12,27,37,46]. Gaibani et al. [31] described the evolu-
tion of CAZ–AVI resistance by sequencing longitudinal clinical iso-
lates from a patient with KPC-Kp bloodstream infection
undergoing CAZ–AVI treatment. Using whole genome sequencing,
a single amino acid substitution (D179Y) was found in KPC-3 pro-
duced by CAZ–AVI-resistant strains, when compared with the sus-
ceptible strain. The mutation of D179Y increases ceftazidime
hydrolysis by creating a deeper pocket that traps the ceftazidime
molecule for longer periods and avoids the binding of avibactam
[47]. This dual effect exerted by the D179Y mutation thus largely
enhances the resistance to CAZ–AVI. Another study showed that
CAZ–AVI resistance was caused by the occurrence of a single muta-
tion, L169P, in the KPC-2 enzyme produced by a K. pneumoniae
strain. The strain was isolated from a patient who had accepted
CAZ–AVI combination therapy with gentamicin for the treatment
of VAP. Compared with the parental enzyme, the KPC-2 variant
conferred an eight-fold increase to the MIC value of CAZ–AVI in
Escherichia coli (E. coli) DH5a [12]. It is notable that CAZ–AVI



Table 1
Summary of CAZ–AVI resistance mechanisms developed in vivo.

Protein name Resistance mechanism Year Location Countries Species References

KPC-8 V240G substitution of KPC-3 2017, 2020 Plasmid USA, Argentina K. pneumoniae [11,28]
KPC-28 A two-amino-acid (G–T) deletion at positions 242 and

243 of KPC-3
2019 NA France Escherichia coli [29]

KPC-31 D179Y substitution of KPC-3 2017, 2018, 2019 Plasmid or
NA

USA, Italy,
Germany

K. pneumoniae [11,30–32]

KPC-41 Insertion of P–N–K between positions 269 and 270 of
KPC-3

2019 Plasmid Switzerland K. pneumoniae [33]

KPC-50 Insertion of E–A–V between positions 276 and 277 of
KPC-3

2020 Plasmid Switzerland K. pneumoniae [34]

— T243M substitution of KPC-3 2017 NA USA K. pneumoniae [30]
— Insertion of E–L between positions 165 and 166 of KPC-3 2017 NA USA K. pneumoniae [30]
KPC-14 A two-amino-acid (G–T) deletion at positions 242 and

243 of KPC-2
2020 Plasmid or

NA
USA, Italy K. pneumoniae [35,36]

KPC-33 D179Y substitution of KPC-2 2018, 2019, 2020,
2021

Plasmid or
NA

USA, Greece, Italy K. pneumoniae [13,35,37,38]

KPC-35 L169P substitution of KPC-2 2019 Plasmid USA K. pneumoniae [12]
KPC-44 15 amino acid insertion after position 269 of KPC-2 2021 Plasmid Greece K. pneumoniae [38]
KPC-57 D179V substitution of KPC-2 2021 Plasmid Greece K. pneumoniae [38]
— P170S substitution of CTX-M-14 2017 Plasmid Germany K. pneumoniae [39]
OXA-539 D149 duplication of OXA-2 2017 Chromosome Spain P. aeruginosa [40]
VEB-14 T216del of VEB-1 2020 Plasmid Greece K. pneumoniae [41]
VEB-25 K234R substitution of VEB-1 2020 Plasmid Greece K. pneumoniae [41,42]
KPC-3 Increased expression 2017 Plasmid USA K. pneumoniae [43]
RamR An 8 bp insertion in ramR caused a frameshift from

amino acid 46
2017 Chromosome USA K. pneumoniae [44]

OmpK35 Disruptions (frameshifts or >2 amino acid insertions/
deletions)

2019 NA USA K. pneumoniae [37]

— T333N substitution of OmpK36 2017 NA USA K. pneumoniae [43]
OmpK36 Disruptions (frameshifts or >2 amino acid insertions/

deletions)
2019 NA USA K. pneumoniae [37]

OmpK37 Disruptions (frameshifts or >2 amino acid insertions/
deletions)

2019 NA USA K. pneumoniae [37]

VEB: vietnamese extended-spectrum b-lactamase; G: glycine; T: threonine; P: proline; N: asparagine; K: lysine; E: glutamic acid; A: alanine; V: valine; L: leucine; bp: base
pairs; NA: not available; CTX-M: cefotaximase; RamR: a multidrug-resistance regulator; —: the protein was unnamed.

Fig. 1. A depiction of the bacterium with various resistance mechanisms of CAZ–AVI indicated. (I) Mutations occur in b-lactamases, including KPC, AmpC, CTX-M, and
OXA-48; (II) production of metallo-b-lactamases that are unhindered by AVI; (III) overexpression of hydrolytic enzymes; (IV) enhanced efflux activity (AcrA/B–TolC and
MexA/B–OprM); and (V) reduced cell permeability. AVI: avibactam; CAZ: ceftazidime; MBL: metallo-b-lactamase; PBP: penicillin-binding protein.
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resistance caused by X-loop substitutions can occur through the
exertion of ceftazidime-related effects—that is, enhanced kinetics
of ceftazidime—which are supposed to prevent the binding of
avibactam. This mechanism has been confirmed in vitro
[27,30,46] and in vivo [12].

Substitutions and deletions occurring in theX-loop and causing
CAZ–AVI resistance have also been detected, such as V240G and
T243M. Shields et al. [48] reported the development of CAZ-AVI
resistance during the treatment of CRE infections for the first time
since CAZ–AVI was approved for clinical use. CAZ–AVI-resistant K.
pneumoniae emerged in three out of 37 patients after CAZ–AVI
treatment courses, which was associated with treatment failure.
An analysis of longitudinal CAZ–AVI-susceptible and -resistant iso-
lates showed that the resistance was caused by amino acid substi-
tutions in the KPC-3 enzyme (D179Y & T243M, D179Y, and
V240G). Compared with the wild type, the three KPC-3 variants
all increase the MIC values of CAZ–AVI (� 128-fold, � 16-fold,
and � 4-fold) by being cloned into E. coli DH5a. The results suggest
that, in ranking order, the impact of blaKPC-3 mutations on CAZ–AVI
resistance is D179Y & T243M > D179Y > V240G [11]. However, the
underlying resistance mechanism of substitutions in the X-loop
remains unclear.

In addition to amino acid substitutions, amino acid insertions or
deletions can confer CAZ–AVI resistance. Insertions of 1–15 amino
acids in KPC-2 and/or KPC-3 have been reported to cause CAZ–AVI
resistance (Table 1 and Table S2). For example, three KPC-2
mutants were identified in three CAZ–AVI-resistant K. pneumoniae
strains isolated from three patients. Two of these strains harbored
a D179Y and D179V substitution in the X-loop of KPC-2, respec-
tively. A 15 amino acid insertion after position 259 was found in
the third strain, and was designated as KPC-44 in that study [38].
A KPC-3 variant (designated as KPC-41), which obtained a three-
amino-acid (P–N–K) insertion between position 269 and 270,
was identified in a K. pneumoniae isolate, resulting in resistance
to CAZ–AVI [33]. In addition, a variant of KPC-3 with a two-
amino-acid deletion (D242-G–T-243), designated KPC-28, has been
demonstrated to cause CAZ–AVI resistance in K. pneumoniae [29].
The same deletion is also found in a variant of KPC-2, KPC-14,
resulting in a similar functional alteration for CAZ–AVI resistance
in K. pneumoniae [36].

It is notable that mutated blaKPC genes conferring CAZ–AVI
resistance can result in reduced or abolished carbapenemase activ-
ity [11–13,29,30,37,49] and become ESBL producers [30]. For
example, the catalytic properties of KPC-2 harboring the D179Y
substitution show impaired inhibition by avibactam with signifi-
cant residual activity for ceftazidime hydrolysis [46]. However, this
variant abolished the hydrolysis of aztreonam and imipenem.

4.1.2. Mutations in blaCTX-M genes
CTX-M-type enzymes are a group of class A ESBLs that have

widely disseminated worldwide, and are originally inhibited by
avibactam [50]. The acquisition of CAZ–AVI resistance due to
mutations in the blaCTX-M-14 gene has been detected in a clinical
K. pneumoniae isolate. Two nonsynonymous single-nucleotide
polymorphisms were identified in the blaCTX-M-14 gene, resulting
in two amino acid changes (P170S and T264I), one of which
(P170S) was located within the X-loop. Compared with the
blaCTX-M-14 wild type, the expression of the blaCTX-M-14 variants in
the E. coli TOP10 strain showed a greater than 64-fold increase in
ceftazidime MIC (from 4 to > 256 mg�L–1) and a 16-fold increase
in CAZ–AVI MIC (from 0.5 to 8.0 mg�L–1) [39]. Another study
reported that the simultaneous occurrence of two amino acid sub-
stitutions (L169Q and S130G) in CTX-M-15 caused CAZ–AVI resis-
tance in vitro [51]. The dual substitutions resulted in the mutant
being partially inhibited by avibactam at concentrations as high
as 50 000 lmol�L–1, with neither of the substitutions being able
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to function independently [51]. Livermore et al. [52] identified
one altered CTX-M-15 with a substitution of D182Y, which raised
the CAZ–AVI MIC from 0.25 to 2 mg�L–1, but abrogated other
cephalosporin resistance by plating ESBL producers on agar con-
taining CAZ–AVI (1 or 4 mg�L–1). CAZ–AVI resistance mediated by
mutations of CTX-M may have epidemiological significance in
the future, as CTX-M is one of the most prevalent types of ESBL.

4.1.3. Mutations in blaVEB genes
Vietnamese extended-spectrum b-lactamases (VEBs) are a

group of non-TEM, non-sulphydryl variable (SHV) ESBLs of Ambler
class A. The residues comprising the avibactam binding pocket are
known to be either identical or functionally conserved in various
VEBs; thus, they can be inhibited by avibactam [53]. Most recently,
mutations occurring in VEB-1 were found to cause CAZ–AVI resis-
tance [53]. A novel variant of VEB-1, designated as VEB-25, was
detected in two different KPC-Kp isolates resistant to CAZ–AVI.
The isolates were obtained from two patients who had not received
the drug in Greek hospitals in 2019. The avibactam was not able to
inhibit the mutated VEB-1 enzyme due to a novel substitution,
K234R [42]. Immediately following that publication, another group
reported an outbreak caused by a CAZ–AVI-resistant K. pneumo-
niae strain coproducing KPC-2 and VEB-25 in a hospital in Athens,
Greece. A total of seven patients were found to be colonized by
CAZ–AVI-resistant K. pneumoniae strains, and three of them devel-
oped infections. The triple combination of CAZ–AVI + meropenem
+ fosfomycin or CAZ–AVI + aztreonam + fosfomycin was successful
in the treatment of two of the cases at Day 14, while the combina-
tion of CAZ–AVI + meropenem was reported as a failure in the
remaining case; unfortunately, all of the infected patients died by
Day 28. This research group also reported a single hospitalized
patient who was colonized by a CAZ–AVI-resistant KPC-Kp strain
after receiving CAZ–AVI treatment one year before the outbreak.
This strain was confirmed to produce another VEB-1 variant,
VEB-14 (T216del, per Ambler numbering scheme), which exhibited
decreased inactivation by avibactam [41]. The emergence of VEB-1
variants is a warning for us to maintain a sharp vigilance for occur-
rences of novel resistance mechanisms.

4.1.4. Hyperexpression and mutations of ampC genes
Alterations of Ambler class C b-lactamases are also involved in

CAZ–AVI resistance. To understand the mechanism of resistance
to CAZ–AVI and ceftolozane/tazobactam, Zamudio et al. [14] ana-
lyzed 24 P. aeruginosa isolates obtained from cystic fibrosis (CF)
patients. They found that the resistance to ceftolozane/tazobactam
and CAZ–AVI resulted from AmpC overexpression caused by 1,6-
anhydro-N-acetylmuramyl-L-alanine amidase AmpD mutations.
Likewise, elevated ampC gene expression was detected in six of
nine CAZ–AVI-resistant P. aeruginosa strains isolated from adults
with CF [54]. Alterations in the X-loop region of AmpC can induce
CAZ–AVI resistance as well. For example, CAZ–AVI resistance was
induced in three ceftazidime-resistant P. aeruginosa isolates
in vitro, and various deletions (including five, seven, and 19 amino
acid residues) were detected in the X-loop region of AmpC. The
function of these mutations was demonstrated in the CAZ–AVI
resistance [55]. Livermore et al. [52] consistently found that vari-
ous AmpC modifications occurring in AmpC-derepressed Enter-
obacterales led to an increased MIC of CAZ–AVI, including
substitutions of R168P/H, G176R/D, and N366Y, and deletions at
positions 309–314. In another study, Compain et al. [56] cloned
the N346Y variants of three highly divergent chromosomal and
plasmid-borne AmpC b-lactamases to construct recombinant plas-
mids. After introducing each of the recombinant plasmids into
E. coli TOP10, they found that the variants showed increased MICs
of CAZ–AVI, and discovered that N346Y substitution was a likely
route of acquisition of resistance to CAZ–AVI in AmpC b-
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lactamases. Given that some clinically important species of Enter-
obacterales, such as K. pneumoniae and E. cloacae, intrinsically carry
ampC genes, it will be important to determine the occurrence of
CAZ–AVI resistance caused by alterations of AmpC in these species
in the future.

4.1.5. Mutations in blaOXA genes
At present, CAZ–AVI is the only approved b-lactamase inhibitor

that is active against OXA-48; therefore, it has been used to treat
infections caused by OXA-48-producing Enterobacterales [57].
However, CAZ–AVI resistance caused by OXA-48 mutations has
been detected after exposure to CAZ–AVI in vitro. Double amino
acid substitutions (P68A and Y211S) were induced in OXA-48,
resulting in a five-fold reduction in the inhibitory activity of AVI
[58]. The P68A substitution increases the flexibility and changes
the plasticity of the substrate binding site, allowing the hydrolysis
of bulkier drugs. The Y211S mutation affects the enzyme stability
and confers higher ceftazidime resistance by altering the hydrogen
bonding network. Together, the double substitutions reduce the
inhibitory activity of AVI and specialize the carbapenemase toward
ceftazidime hydrolysis [58]. Fortunately, no clinical OXA-48-
producing isolates with CAZ–AVI resistance have been reported
to date, which suggests that the mechanism mediated by OXA-48
mutations may be costly to bacteria.

It is notable that mutations in narrow-spectrum OXA b-
lactamases can also cause CAZ–AVI resistance. In a clinical study,
a CAZ–AVI-resistant P. aeruginosa strain was isolated from a
patient with surgical infection. A three-base-pair insertion was
identified in a blaOXA-2 gene, leading to the duplication of a key
residue, D149. This duplication was demonstrated to be the deter-
minant of CAZ–AVI resistance [40]. However, the underlying mech-
anism remains unknown.

4.1.6. Reduced permeability and overexpressed efflux pumps
As a ubiquitous strategy for drug resistance, porin mutations

and efflux activity are involved in CAZ–AVI resistance as well
[44,54,59,60]. Porin-deficiency, mutations, and downregulation
are frequently identified in CAZ–AVI-resistant bacteria and syner-
gize with other mechanisms, such as high ceftazidime hydrolysis
activity [61] and KPC variants [49]. Although the entry of cef-
tazidime into the periplasmic space is thought to be less dependent
on major porins (e.g., OmpK35 and OmpK36) than the entry of car-
bapenems [9], some clinical studies have claimed that major porins
play a role in CAZ–AVI resistance. In an elegant study, two K. pneu-
moniae isolates were obtained from a single patient on two consec-
utive hospital days; one of the isolates was CAZ–AVI-susceptible
and the other was CAZ–AVI-resistant. Both isolates encoded a non-
functional OmpK35; the CAZ–AVI-resistant isolate additionally
harbored a T333N substitution in OmpK36 and displayed higher
expression of blaKPC-3 gene compared with the susceptible one
[43]. The study demonstrated that the T333N substitution of
OmpK36 decreased the susceptibility to CAZ–AVI; furthermore, a
two-fold decrease of the CAZ–AVI MIC value was observed when
the OmpK36 mutant was replaced by its wild type in the CAZ–
AVI-resistant isolate. Likewise, the role of OmpK35 deactivity in
CAZ–AVI resistance has been identified. A study showed that the
expression of ompK35 decreased 28.5-fold in KPC-2-producing K.
pneumoniae isolates with CAZ–AVI MIC greater than or equal to
1 mg�L–1 compared with those with MIC less than or equal to
0.5 mg�L–1. The ompK35 downregulation was caused either by fra-
meshift or overexpressing of negative regulators. The susceptibility
phenotype was able to be restored by a functional OmpK35, result-
ing in a two- to four-fold decrease in the MICs of CAZ–AVI [61].
Similar conclusions have been confirmed in other studies [54,59].

Efflux is not the primary pathway for CAZ–AVI resistance, yet
the combination of enhanced efflux activity with other mecha-
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nisms associated with the resistance phenotype has been identi-
fied [44,60]. Nelson et al. [44] showed that mutations in the
acrAB efflux operon regulator ramR result in the hyperexpression
of the AcrAB–TolC efflux system in K. pneumoniae. With alterations
of porins, such mutations contribute to CAZ–AVI resistance
together. In addition, increased activity of the efflux pump
MexAB–OprM and a high level of expression of ampC jointly pro-
mote CAZ–AVI resistance in P. aeruginosa isolated from CF patients
[62]. The role of efflux pumps in CAZ–AVI resistance has been fur-
ther demonstrated in a study that identified a variety of substitu-
tions of OprD in ten CAZ–AVI-resistant clinical P. aeruginosa
strains; the MIC value of CAZ–AVI dramatically decreased after
the usage of efflux pump inhibitors. The study thus suggested that
the major barrier for CAZ–AVI is membrane permeability and drug
efflux [60]. Out of the nine CAZ–AVI-resistant P. aeruginosa isolates
with elevated ampC gene expression described in Section 4.1.4, a
loss of OprD was detected in seven strains, suggesting that porins
and AmpC are co-involved in CAZ–AVI resistance [54]. Hence, the
resistance mechanisms of CAZ–AVI among P. aeruginosa isolates
are multifactorial, and may vary according to sample sources. It
would be interesting to understand the fitness cost and prevalence
of the various mechanisms involved in CAZ–AVI resistance, which
could assist in determining empirical treatment with the rational
use of CAZ–AVI in clinical settings.
4.2. Production of b-lactamases unhindered by AVI

The presence or acquisition of a b-lactamase (e.g., MBLs and
most of class D enzymes) unhindered by AVI is a common mecha-
nism of CAZ–AVI resistance [63,64]. MBLs hydrolyze most clinically
available b-lactams, including carbapenems, and, thus far, cannot
be inhibited by any of the commercially available b-lactamase inhi-
bitors [65]. According to the zinc ion dependence and sequence
similarity, MBLs are classified into three subclasses (B1, B2, and
B3); the B1 subclass (i.e., NDMs, IMPs, and VIMs) is currently the
most clinically important [65]. Class B1 MBLs are plasmid encoded
and readily transferable among Enterobacterales with clinical sig-
nificance, such as K. pneumoniae and E. coli [66], suggesting that
the wide dissemination of MBLs presents a large challenge for
the clinical use of CAZ–AVI. It is notable that, in contrast to the
emergence of resistance described above, the production of b-
lactamases unhindered by AVI can be regarded as baseline CAZ–
AVI resistance.
5. Global epidemiology of CAZ–AVI-resistant pathogens

The recent introduction of CAZ–AVI improves our ability to treat
infections caused by MDR GNB, and especially those caused by
CRE. However, with the increasing use of CAZ–AVI in clinical set-
tings, the resistance rate is expected to continuously increase. As
described above, it is of greater concern that CAZ–AVI resistance
is mainly mediated by the mutations of resistance genes carried
by self-transmissible plasmids, which greatly increases the wide-
spread risk of CAZ–AVI resistance in the near future.

According to the available data, CAZ–AVI-resistant GNB mainly
belong to Enterobacterales and P. aeruginosa. In a global surveil-
lance program, the resistance rate of CAZ–AVI was evaluated for
isolates recovered from respiratory and blood specimens collected
from 879 patients with nosocomial-associated pneumonia. The
resistance rate of Enterobacterales (n = 370) was 1.4% and that of
P. aeruginosa (n = 129) was 11.6% [67]. In another global surveil-
lance study (not including North America), Enterobacterales
(n = 59828) were found to have a resistance rate of less than
1.6% [68]. However, the resistance rate of CAZ–AVI seems to be
geographically dependent. The data from Latin America showed
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that Enterobacterales (n = 7665) was highly susceptible to CAZ–
AVI, with a low resistance rate of 0.3%, while the resistance rate
of P. aeruginosa (n = 1794) was much higher, reaching 12.6% [69].
Results from the China Antimicrobial Surveillance Network in
2017 showed that the resistance rates were 5.4% and 13.5% for
Enterobacterales (n = 1774) and P. aeruginosa (n = 524), respec-
tively [70]. Taken together, all data consistently indicate that the
CAZ–AVI resistance rate of Enterobacterales is much lower than
that of P. aeruginosa. It is of greater concern that the P. aeruginosa
isolated from CF patients showed a much higher resistance rate
of CAZ–AVI, ranging from 24% to 57% [54,71,72]. We suppose that
the higher resistance rate of CAZ–AVI observed in P. aeruginosa in
comparison with that of Enterobacterales could be caused by vari-
ous carbapenem-resistance mechanisms employed between them.

A recent epidemiological study tested 872 CRKP collected
before the clinical use of CAZ–AVI in China, and showed that the
resistance rate of CAZ–AVI was 3.7% [73]. Among the resistance
isolates, more than half (53.1%) were MBL-producing K. pneumo-
niae, 40.6% were KPC-Kp, and the others (6.3%) were MBL and
KPC co-producers. In another report of 232 CRKP isolates collected
from a university hospital in China, the CAZ–AVI resistance rate
was 8.2%. It was notable that nine of them were considered to be
CAZ–AVI-resistant hypervirulent CRKP (hvCRKP) according to the
results of a Galleria mellonella infection model and a mouse lethal-
ity assay [74]. Taken together, these data suggest that CAZ–AVI
resistance in CRKP has emerged before the clinical use of CAZ–
AVI, and that the newly emerged CAZ–AVI-resistant hvCRKP
strains may represent another serious threat to the public health
network.
y https://clinicaltrials.gov/ct2/show/record/NCT03329092
6. Clinical prospects

At present, KPCs and OXAs are the major carbapenemases found
in clinical settings, and are the targets of CAZ–AVI. We expect that
the usage of this novel drug may change the epidemiological
trends of carbapenemases, such as from KPCs to MBLs as major
types [75]. In addition, the emergence of resistance with compli-
cated mechanisms and an increasing trend caused by the horizon-
tal transfer of self-transferable plasmids (e.g., KPCs are frequently
plasmid borne) would alter the repertoire of drug-resistant bacte-
ria in clinical settings [76]. Hence, active surveillance of the emer-
gence of CAZ–AVI resistance is warranted. We advocate routine
CAZ–AVI susceptibility testing for Enterobacterales, even in the
absence of prior drug exposure.

An understanding of the local epidemiological patterns is
important to guide the rational use of CAZ–AVI and to prevent
the wide dissemination of CAZ–AVI resistance. It is also incumbent
upon healthcare providers to share their clinical experience on the
use of CAZ–AVI and other new b-lactamase inhibitors.

The reversion to carbapenem susceptibility that is caused by
mutated blaKPC implies a possibility for carbapenems to be used
to treat CAZ–AVI-resistant GNB [12]. Some have suggested the
use of dual carbapenems plus CAZ–AVI therapy for CRE infections,
which could theoretically attack both wild-type and mutated KPC-
producing isolates [12]. Avibactam may protect carbapenems
against hydrolysis by carbapenemases, and carbapenems can
counter-select against blaKPC mutations that lead to CAZ–AVI resis-
tance. However, the safety and efficacy of this combination in a
clinical setting remains to be determined, and the stability of
restored carbapenem susceptibility is transient. Furthermore, it is
unknown whether other resistance mechanisms would be devel-
oped in this setting, which could result in treatment failure. It
should be noted that other drugs may be used as salvage therapy
once CAZ–AVI resistance is induced during treatments. For exam-
ple, Athans et al. [37] reported a clinical case of meropenem–
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vaborbactam being used as a salvage therapy for CAZ–AVI-
resistant K. pneumoniae infection. Meropenem plus colistin treat-
ment for 14 days was used successfully to treat recurrent pneumo-
nia caused by CAZ–AVI-resistant K. pneumoniae [11]. In general,
understanding the resistance mechanism of CAZ–AVI is crucial
for making tailored strategies to effectively treat CAZ–AVI-
resistant bacteria infections.

Although the addition of avibactam greatly improves the activ-
ity of ceftazidime against most species of Enterobacterales, avibac-
tam is unable to improve the activity of ceftazidime against
Acinetobacter species or against most anaerobic bacteria (except
for Prevotella spp. and Porphyromonas spp.) [77,78]. Currently,
one of the greatest challenges in countering CRE is the develop-
ment of inhibitors for MBLs. One promising product is aztreonam,
which is a monobactam that is active against MBLs but inactive
against isolates producing ESBLs, KPCs, and AmpC b-lactamases
[79]. Therefore, the combination of avibactam plus aztreonam
extends their potential utility against MBL-producing isolates that
also encode serine b-lactamases. The activity of this combination
against Enterobacterales coproducing MBLs and class A or class C
b-lactamases has been demonstrated in a few studies [21,80]. For
example, a study evaluated the activity of avibactam with cef-
tazidime, ceftaroline, or aztreonam against 57 well-characterized
GNB and found that the aztreonam–avibactam combination was
the only agent tested in the susceptible range (MIC, 0.12 mg�L–1)
for VIM-1–TEM-1-producing E. cloacae isolates [80]. However, the
aztreonam–avibactam combination would be inactive against the
isolates coproducing MBLs and KPCs when variants are induced
in KPCs by the aztreonam–avibactam treatment. Aztreonam–
avibactam is currently in phase III clinical trialsy. It remains to be
determined whether other carbapenemase inhibitors currently in
trials will be equally vulnerable to the rapid evolution of resistance
and which genetic background may be particularly problematic.
7. Conclusion

While the novel carbapenemase inhibitors currently fulfill an
important need, they are unlikely to end the CRE epidemic due
to the continuous emergence of complicated resistance mecha-
nisms. The current status may be further fueled by polymyxin
and carbapenem exposure. Our review highlights the need to opti-
mize the clinical use of CAZ–AVI in order to minimize the emer-
gence of resistance and to track the evolution of resistance in
order to guide the development of novel treatments. A few out-
standing questions still need to be answered in the near future:
①Would the clinical usage of CAZ–AVI change the epidemiological
trends of CRE or the prevalent genotypes of carbapenemases?
②What is an effective salvage therapy for CAZ–AVI treatment fail-
ure? ③ How can we develop clinically safe and efficient inhibitors
of MBLs (e.g., NDMs and IMPs) and other class D carbapenemases
with clinical significance (e.g., OXA-23)? ④ How can we obtain
the additional epidemiological data that is necessary to understand
the prevalent resistance mechanism of CAZ–AVI in clinical
settings?
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