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Spinal cord injury (SCI) is a tremendous disaster in a person’s life. It interrupts the brain–body neuronal
circuits, resulting in functional deficits. Pathogenesis of SCI is a progressive and comprehensive event. In
clinical trials, attempts to promote nerve regeneration and functional recovery after SCI have met with
failures. Recently, with the development of transcriptome sequencing and biomaterials, researchers have
struggled to explore novel efficient therapeutic treatments for SCI. Here, we summarize the recent pro-
gress that has been made in SCI repair based on the lesion microenvironment, neural circuits, and bioma-
terial scaffolds. We also propose several important directions for future research, including targeted-
microRNA therapy, blood vessel interventions, and multiple treatment combinations. In short, we hope
this review will enlighten researchers in the field and pave the way for SCI therapy.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

About three million people around the globe suffer from trau-
matic spinal cord injury (SCI), and approximately 250 000–500 00
0 new cases occur per year [1–3]. SCI causes life-long disability,
with motor and sensory neuronal deficits. These injuries not only
decrease the life quality of patients, but also bring considerable
social and economic burdens [4,5]. Great efforts have been made
to explore efficient therapies for SCI. However, due to the complex-
ity of SCI, current treatments have a poor prognosis with modest
functional recovery [6,7]. Thus, gaining a better understanding of
the cellular and molecular mechanisms underlying SCI will pave
the way for developing new strategies to enhance neural regrowth
and plasticity [8].

In brief, the pathophysiological process of SCI contains three
consecutive phases: primary trauma, secondary damage and, even-
tually, the chronic injury phase [9]. Physical trauma initiates the
mechanical disruption of the spinal cord and results in injuries to
local neurons and oligodendrocytes. The blood vessels and the
blood–spinal cord barrier (BSCB) in the lesion area undergo break-
down. These events trigger a multifactorial secondary injury cas-
cade, which can last for weeks. During this stage, immune cells
infiltrate the injury sites and release inflammatory cytokines. The
inflammatory response leads to additional neuronal and glial cell
death [10]. Finally, in the chronic phase, the reactive astrocytes,
microglia/macrophages, and extracellular matrix molecules form
intensive glial scars and subsequently prevent axon regrowth [9].

The injury-induced inhibitory microenvironment and the lack
of intrinsic regenerating ability in the lesion hinder successful axon
regeneration after SCI [11]. Researchers have conducted numerous
studies with the aim of improving neuroregeneration and neural
repair for SCI rehabilitation. These treatments include non-
pharmacological therapies, pharmacological therapy, gene therapy,
cell-based therapy, and biomaterials [12–15]. Neurotrophic factors,
such as neurotrophin-3 (NT-3), brain-derived neurotrophic factor
(BDNF), and nerve growth factor (NGF), can modulate neuronal
survival, axonal growth, synaptic plasticity, and neurotransmission
[16,17]. The repair effects of neurotrophic factors on SCI depend on
neurotrophic factor types, administration mode, location, and time
[18,19]. For example, NT-3 expression supports the spouting and
axonal plasticity of the corticospinal tract (CST) [20,21], alters
synaptic transmission to motoneurons (MNs) [22], modifies local
lumbar neural circuitry [23,24], and facilitates the proliferation
and differentiation of neural stem cells (NSCs) after SCI [25,26].
However, some research groups have showed that continued
spinal cord degeneration might limit the regeneration effect of
NT-3 at 12 weeks after SCI [27]. Cell-based therapy has also been
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applied in SCI with various cell types, including embryonic stem
cells (ESCs), NSCs, mesenchymal stem cells (MSCs), induced
pluripotent stem cells (iPSCs), olfactory ensheathing cells (OECs),
Schwann cells, and so on. Cell therapy combined with biological
factors or biomaterials can substitute for lost cells, provide neu-
rotrophic factors, and modulate the lesion microenvironment in
order to facilitate axon regeneration after SCI [7,28–32]. In addi-
tion, neuromodulation techniques (e.g., noninvasive magnetic
stimulation or electrical stimulation), which affect neural network
activity, have been adopted to promote neuroregeneration and
neural repair after SCI [33].

In general, these therapies follow three main directions:
① diminishing the repulsive barriers that prevent axon sprouting
to provide a permissive microenvironment; ② reconstructing the
disrupted neural circuits to promote functional recovery; and
③ providing spinal cord-like tissue grafts to support and guide
axon regeneration (Fig. 1). In this review, we focus on these three
aspects to give a brief introduction of recent achievements that
have been made in SCI therapy. We also propose several important
future directions for the effective treatment of SCI.
2. The lesion microenvironment

Unlike the peripheral nervous system (PNS), the central nervous
system (CNS) has limited regenerative ability after an injury, which
may be due to the passive microenvironment in the lesion area
[11]. Neurons, glial cells, axons, myelin, blood vessels, the cell
matrix, and neurotransmitters constitute the nerve microenviron-
ment, which is regulated by various nutrient factors and cytokines
[33]. After SCI, extensive inflammation, supportive substrates
deficiency, inhibitory growth components, and glial scar formation
hinder axon regrowth [34]. Previous studies have shown that
spinal cord axons exhibit a transient regenerative ability immedi-
ately after injury when bridged to peripheral nerve segments
Fig. 1. A schematic diagram of curren
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[35]. This result raises the possibility of facilitating SCI repair and
functional improvement by providing a hospitable environment.
Researchers have made numerous attempts to ameliorate the
regeneration-inhibitory microenvironment for SCI treatment, such
as by targeting glial and inflammatory responses [36,37] and pro-
moting remyelination [38,39].

The process of SCI is complicated and involvesmultiple cell types
(i.e., neurons, glia cells, immune cells, and so on), cellular responses,
and biological activities [8,11,40,41]. It is a critical challenge to elu-
cidate the lesion microenvironment after SCI. The growing number
of high-throughput sequencing technologies, such as RNA sequenc-
ing (RNA-seq) and single-cell RNA sequencing (scRNA-seq), provide
powerful tools for SCI investigation [42,43]. Experts have performed
a number of transcriptome analyses to uncover the complex envi-
ronment of SCI [44–46]. For example, Yu et al. [47] conducted
RNA-seq to identify significant genes and biological processes in
the rostral and caudal spinal cord segments until 28 days after a
rat hemisection SCI. This research detected the lesion environment
at the multicellular level, examined the interactions among the
multiple systems involved, and provided a comprehensive analysis
of the complicated events that follow SCI [48]. Since the spinal cord
has its maximal intrinsic growth capacity during embryogenesis
[49], Yang et al. also analyzed rat spinal cords from the embryonic
stage to adulthood using RNA-seq. They obtained the landscape of
message RNAs (mRNAs), microRNAs (miRNAs), long non-coding
RNAs (lncRNAs), small RNAs, and alternative splicing patterns dur-
ing spinal cord development. This study provides a valuable genetic
basis for the spinal cord and assists in improving technologies for
spinal cord-related tissue engineering [50].

Recently, researchers have characterized the cellular hetero-
geneity in complex tissues and identified molecular markers for
rare cell populations using scRNA-seq [51]. The complex spinal
cord environment during development and after injury has also
been uncovered using scRNA-seq technology [52–56]. These stud-
ies confirm the cellular heterogeneity in the rodent spinal cord and
t therapeutic treatments for SCI.
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provide a preliminary sketch of the interactions between cells in
the injury site. For example, by means of scRNA-seq, Li et al. [57]
identified a subset of microglia that are transiently activated in
the neonatal stage in a crush SCI model. The neonatal microglia
secrete fibronectin to form the extracellular matrix and express
certain molecules to resolve inflammation, thereby facilitating
scar-free healing [57]. This research, which focused on microglia
heterogeneity in the lesion area after a crushed SCI in neonatal
and adult mice, proposed the possibility of improving healing
and axon regrowth by modulating the injury environment. It was
also a successful attempt to combine scRNA-seq with neurological
validation, thus providing a new strategy for further investigation.
3. Neural circuits

Neuron assemblies located in the spinal cord receive activating
inputs from the brain and convey the rhythms of locomotion to
MNs and muscles, thereby generating precise locomotor move-
ments in vertebrates [58]. SCI disrupts the neural circuits with den-
dritic withdrawal or atrophy below the lesion, contributing to
impaired locomotor movements and sensory feedback [59]. Func-
tional recovery is one of the criteria and challenges for SCI therapy
[60]. It is important to promote axonal regeneration, reconnect
neural circuits, and enhance neuronal plasticity for spinal cord
repair.

As the direct cortical output to the spinal cord, corticospinal
neurons (CSNs) in the cerebral cortex are crucial in controlling
spinal motor activities [61]. By means of a retrograde labeling sys-
tem, Wang et al. [62] identified region-specific CSNs, which have
distinct spinal projections and encode different movement mod-
ules. This research illustrates the organization between CSNs and
their axons in the spinal cord, facilitating the understanding of
neuronal circuits in goal-directed motor skills. Originating from
CSNs in the cortex, the CST transmits cortical commands to the
spinal cord. Traumatic brain or spinal cord injuries, which disrupt
CST axons, result in motor function deficits [63,64]. Osteopontin
(OPN)/insulin-like growth factor 1 (IGF1) treatment promotes
CST axon regrowth and improves precision performance after
spinal cord hemisection [65]. This research presents evidence that
the activation of the intrinsic growth ability of CSNs can result in
functional recovery after SCI. Aside from neurotrophins and growth
factors, regulation of the energy metabolism is another promising
strategy to facilitate axon regeneration after injury [66]. Han
et al. [66] revealed that mitochondrial dysfunction induced by
injury contributes to CNS axonal regenerative failure. Deletion of
syntaphilin (Snph), a mitochondria protein anchor, rescued
injury-induced mitochondrial depolarization. Furthermore,
Snph–/– mice had enhanced CST regeneration, functional synapse
formation, and motor function recovery after a T8 complete spinal
transection.

Reorganization of the residual propriospinal relay connections
or plasticity modulation of MNs can also remodel motor circuits
and promote locomotor recovery after SCI [67–69]. Retrograde
transportation of NT-3 to the lumbar MNs was found to signifi-
cantly remodel lumber neural circuitry and synaptic connectivity
in a T10 contusive SCI model in mice, facilitating behavioral and
electrophysiological recoveries [70]. Further investigation revealed
that the spared descending propriospinal pathway led to this NT-3-
enhanced recovery. In addition, NT-3 reorganizes the
propriospinal-MN circuit by promoting dendritic regrowth [59].

Spinal interneurons are essential for neuroplasticity [71,72].
Chen et al. [73] identified a small molecule, CLP290, which is an
agonist of the neuron-specific K+–Cl– co-transporter (KCC2) for
SCI repair. KCC2 activation reactivates dormant spared circuitry
through spinal inhibitory interneurons, hindering the integration
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of descending inputs into relay circuits after the injury. Adminis-
tration of CLP290 can restore stepping ability by altering the dis-
turbed spinal circuits into a functional state after spinal cord
hemisection in mice. This research provides insights toward rescu-
ing motor functions by regulating inhibitory interneuron
excitability.

NSCs are self-renewing and multipotent cells that can differen-
tiate into neurons, astrocytes, and oligodendrocytes [74]. Trans-
planted NSCs may also reconnect neural circuits. Lu et al. [75]
reported that NSCs implanted with fibrin matrices containing
growth factor cocktails after rat T3 complete transection could dif-
ferentiate into mature neurons. These NSC-derived spinal cord
neurons extend axons into the host spinal cord and form projec-
tions from the sites of injury into the host spinal cord with synapse
formation. In addition, corticospinal axons were found to exten-
sively regenerate into neural progenitor cell (NPC) grafts after rat
T3 complete transection SCI. The regenerating corticospinal axons
formed a functional synapse with grafted neurons and improved
skilled forelimb function [76].
4. Biomaterial scaffolds

During the past decade, the application of natural or synthetic
biomaterials for SCI treatment has increased. These biomaterials
serve as physical scaffolds and provide structural support for axon
regrowth, guiding the newly generating axons into the lesion area.
In addition, the biomaterials act as a transporter for drugs or cells
to modulate the lesion microenvironment, facilitating SCI repair
[77–79].

As described earlier, neurotrophic factors such as NT-3 are
important in the treatment of SCI. However, the lack of efficient
delivery approaches limits the clinical applications of neurotrophic
factors. Li et al. [25] and Yang et al. [26] designed a chitosan
biodegradable carrier for the slow release of NT-3 over 14 weeks.
They then applied this NT-3-chitosan tube to bridge a 5 mm gap
in the completely transected spinal cord of rats. As a result,
endogenous NSCs in the injured spinal cord were activated, differ-
entiated into neurons, and formed functional neural networks, pro-
moting sensory and motor behavioral recovery [80]. Transcriptome
analyses indicated that this NT-3/chitosan tube can enhance neu-
rogenesis, promote angiogenesis, and reduce inflammation,
thereby providing a favorable regeneration microenvironment
[45]. Furthermore, in an adult rhesus monkey T8 spinal cord hemi-
section injury model, Rao et al. [81] used this biomaterial carrier
and found robust axonal regeneration, which provides a solid foun-
dation for the potential therapeutic application of this NT-3-
chitosan carrier.

Lin et al. [82] developed a linear-ordered collagen scaffold
(NeuroRegen), which showed good cell compatibility and guided
proper nerve outgrowth. They then used NeuroRegen scaffolds
bound with multiple functional molecules, such as BDNF, in differ-
ent SCI models and obtained improved functional recovery
[83–85]. In addition, NSCs have been implanted in NeuroRegen
scaffolds for SCI repair. To enhance the neuronal differentiation
of NSCs in a permissive microenvironment, Li et al. [86] loaded
paclitaxel (PTX)-encapsulated liposomes into the collagen
microchannel scaffold to release PTX in a sustained manner. The
results showed that this NSC-loaded collagen scaffold provided
an instructive microenvironment for the neuronal differentiation
of NSCs, axon regeneration, and locomotion recovery in a rat T8
complete transection SCI model. In a clinical context, NeuroRegen
scaffolds combined with human umbilical cord MSCs were
implanted into patients with chronic complete SCI, and showed
primary efficacy outcomes during a year of follow-up without
adverse events [87].
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As described previously, SCI damages the ascending and
descending nerve fiber tracts in the lesion, resulting in partial or
total neural circuit disruption. Thus, it is of great importance to
remold the neural circuits by promoting axon regeneration across
injured sites, reconstructing synaptic connections, and bridging
axotomized neural fibers [88]. Three-dimensional (3D) culturing
can construct functional tissue or organoids for SCI repair by com-
bining stem cells, biomaterials, and neurotrophic factors [14]. Lai
et al. [89] proposed a novel stem cell-based tissue engineering
therapeutic strategy named ‘‘tissue engineering neuronal relay”
for SCI. By implanting a gelatin sponge scaffold in the spinal cord
lesion with NT-3-modified Schwann cells and neurotrophic recep-
tor tyrosine kinase 3 (TrkC)-modified NSCs, the researchers pro-
moted the construction of a tissue engineering neural network
and reestablished an anatomical neuronal relay after T10 spinal
cord transection in rats. Mechanically, the NT-3/TrkC interaction
activates the phosphatidylinositol 3-kinase (PI3K)/Akt serine/
threonine kinase 1 (AKT)/mammalian target of rapamycin (mTOR)
pathway, stimulating the synaptogenesis of NSC-derived neurons.
Moreover, to simulate the structure of the spinal cord, Lai et al.
[90] developed a novel spinal-cord-like tissue (SCLT) in vitro by
means of a modular assembly of white-matter-like tissue (WMLT)
and gray-matter-like tissue (GMLT) from NSCs. This SCLT can func-
tion synergistically to rebuild the neural pathway and promote
functional recovery after rat T10 transection SCI. In addition, SCLT
might serve as an in vitro platform for investigating spinal cord
pharmacology and development in the future.
5. Future perspectives

5.1. miRNA-based therapy

Numerous studies have reported on the dysregulation of miR-
NAs after SCI [91–93]. miRNAs are involved in multiple processes,
such as the astrocytic response, inflammation, and demyelination
[94,95]. In most research, certain miRNAs are usually injected
directly [96–98] or transfected into transplanted cells [99,100]
for SCI treatment. Genetic-modified animal models are also used
for this purpose [101,102]. However, many obstacles exist in
miRNA-based therapy. For one thing, the mechanisms underlying
the effects of miRNAs on SCI are still unclear. Current approaches
for miRNA-based treatment usually overexpress or silence miRNAs
without cell specificity. Since the spinal cord is a complex tissue
organized with multiple cell types, it is difficult to identify the
exact effects of miRNAs without focusing on certain cell types. Bio-
material scaffold systems can provide insights for miRNA-based
therapy. Attempts to design new biomaterial nanoparticles, which
combine cell-recognized polypeptides, will realize the delivery of
miRNAs to specific cell types in the lesion area after SCI. This
method will also help to elucidate the mechanisms underlying
miRNAs for SCI. The pathogenesis of SCI is a spatiotemporal pro-
cess that can last for months. Thus, biomaterials are beneficial in
the sustained release of miRNAs in order to maintain appropriate
local effective concentrations in lesions over a long period, thereby
facilitating regeneration and functional recovery after SCI.
5.2. Blood vessel intervention for SCI

The vascular system transports oxygen and nutrients, takes
away metabolic waste, and provides a supportive microenviron-
ment for the nervous system [40]. SCI disrupts the blood vessels
in the lesion area and increases vascular permeability, which
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further accelerates the inflammation response and tissue damage.
Moreover, the injury-triggered endogenous angiogenesis is
insufficient and usually malfunctions [103,104]. Thus, obtaining a
further understanding of the vascular alterations in the injury
lesion and developing new strategies to reduce blood vessel loss,
compromise BSCB disruption, and promote effective vessel forma-
tion will be a promising therapy for SCI [105]. Recently, the role of
vascularization after SCI has received an increasing amount of
attention. Research has shown that ubiquitously transcribed tetra-
tricopeptide repeat on chromosome X (UTX)/lysine demethylase
6A (KDM6A) deletion can increase endothelial cell tube formation
in vitro and promote angiogenesis after T10 contusion SCI in mice,
resulting in functional recovery [106].
5.3. Combination of multiple treatments

Although numerous therapies have been shown to prevent fur-
ther damage after SCI and to promote axon regeneration in animal
models, the same therapies have no relevant efficacies when
applied clinically [7]. One possible reason for this situation is that
SCI is a multifaceted, concomitant, and consecutive pathological
process, which requires comprehensive treatments. Thus, rather
than current therapeutic strategies aimed at one or two patho-
physiologies, an integrated therapy composed of multiple treat-
ments might facilitate SCI repair [9]. For example, Anderson et al.
[107] developed a combined therapeutic method that reactivates
neuron growth capacity, induces growth-supportive substrates,
and chemoattracts propriospinal axons. Biomaterials are also
applied in this method for spatially and temporally controlled
release of factors. As a result, mice and rats have been shown to
achieve robust axon regrowth and enhanced functional recovery
of remodeling circuits after a completely crushed SCI [107]. Cur-
rent therapies for SCI are based on promoting axon regeneration
[79], elevating interneuron excitability [108], diminishing inflam-
mation response [109], or increasing revascularization [78,110].
In the future, we will be able to combine these therapies with cell
implantation [7,15], factor administration, and biomaterial scaf-
folds. Our research group will also aim to identify the mechanisms
and effects of critical regulatory factors (e.g., OPN, IGF1, BDNF,
ciliary neurotrophic factor (CNTF), NT-3, or miRNAs) on different
propriospinal pathways and reconnect brain–spinal cord neurite
circuits. Modified biomaterials with stem cells, cytokines, drugs,
or miRNAs will be implanted into the injury area to improve the
lesion microenvironment and support axon regeneration after
SCI. Our research group will also conduct additional rehabilitative
training and physical stimulation to facilitate the outcome of SCI
repair.
6. Conclusion

Research in the field of SCI therapy is still a long way from iden-
tifying a therapy that leads to significant recovery after SCI.
Although more work is needed in the future, the previous efforts
offer great hope for axonal regrowth and functional recovery after
SCI, based on sound basic and clinical neuroscience research [111].
We hope that our present review of current therapeutic SCI treat-
ments will facilitate the development of efficient therapies to
obtain sustained nerve regeneration and functional recovery after
SCI (Fig. 2).



Fig. 2. A schematic diagram of potential combined therapeutic treatments for SCI in the future.
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