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a b s t r a c t

Stochastic differential equations (SDEs) are mathematical models that are widely used to describe com-
plex processes or phenomena perturbed by random noise from different sources. The identification of
SDEs governing a system is often a challenge because of the inherent strong stochasticity of data and
the complexity of the system’s dynamics. The practical utility of existing parametric approaches for iden-
tifying SDEs is usually limited by insufficient data resources. This study presents a novel framework for
identifying SDEs by leveraging the sparse Bayesian learning (SBL) technique to search for a parsimonious,
yet physically necessary representation from the space of candidate basis functions. More importantly,
we use the analytical tractability of SBL to develop an efficient way to formulate the linear regression
problem for the discovery of SDEs that requires considerably less time-series data. The effectiveness of
the proposed framework is demonstrated using real data on stock and oil prices, bearing variation, and
wind speed, as well as simulated data on well-known stochastic dynamical systems, including the gen-
eralized Wiener process and Langevin equation. This framework aims to assist specialists in extracting
stochastic mathematical models from random phenomena in the natural sciences, economics, and engi-
neering fields for analysis, prediction, and decision making.

� 2022 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nature, industry, and human society are teeming with phenom-
ena, processes, and systems that evolve with the effects of random
noise. Examples of such systems include the motion of Brownian
particles in a fluid [1], evolution of tumors driven by tumor-
immune interactions [2], price of stocks, and movement of winds.
Stochastic differential equations (SDEs) are a powerful
mathematical approach for modeling and analyzing systems
affected by random noise. The study of SDEs originates in one of
Einstein’s annus mirabilis papers [1], which theorizes the fluctua-
tion of Brownian particles in a thermal bath. Since then, the appli-
cation of SDEs has spread across numerous scientific and
engineering fields [3–7]. Traditionally, SDEs have been employed
to model random phenomena based on the statistical properties
of data or the experience of specialists. However, in many cases,
the statistical properties of data may not resemble those of well-
understood SDEs, and are thus less helpful for the discovery of
underlying SDEs. Additionally, the governing SDEs of random phe-
nomena are typically unknown or elusive. Therefore, it is crucial to
develop a data-driven method for identifying the underlying SDEs
of random phenomena. However, the complex behavior and strong
stochasticity often present in SDE-governed systems makes the
accurate identification of SDEs particularly challenging.
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The key to determining an SDE is the identification of its drift
and diffusion terms. The growing body of work on this subject
can be roughly divided into two categories. The first lies in non-
parametric identification, which seeks to build a model-free
input–output mapping for drift and diffusion terms from time-
series data. The Kramers–Moyal average introduces histogram-
based regression (HBR) to formulate a suitable mapping for the
drift and diffusion terms [8]. However, this method requires a large
amount of data even for one-dimensional SDEs, and the required
amount of data increases exponentially with the SDE’s dimension-
ality. Realistically, this data requirement aggravates the burdens of
sensor cost, data storage, and computational resources, which may
be difficult to meet in some cases. To improve identification accu-
racy with a limited amount of data, kernel-based regression (KBR)
[9] and polynomial-based method [10] have been proposed as
more efficient mapping methods for one-dimensional SDEs. In
addition, non-parametric Bayesian estimation provides another
mapping approach to mitigate the high demand for time-series
data [11–14]. Markov chain Monte Carlo (MCMC) methods
[11,12] and Gaussian process regression (GPR) [13] have recently
been proposed for the identification of SDEs. Furthermore, sparse
GPRs have been developed to learn SDEs with high computational
efficiency [13,14]. While the aforementioned methods can predict
drift and diffusion terms adequately, they cannot model stochastic
dynamical systems because they only provide black-box
representations.

In contrast, parametric approaches focus on identifying the
model structures of the drift and diffusion terms of an SDE, and
are more advantageous in revealing the underlying physical laws
of stochastic dynamical systems. For scalar homogeneous SDEs
with known model structures, the KBR and least-squares methods
are combined to estimate parameters [15]. For non-linear dynami-
cal systems, a framework called sparse identification of non-linear
dynamics (SINDy) has been applied to determine governing equa-
tions under the assumption that the model structure is sparse in
the space of possible basis functions [16]. Based on HBR and SINDy,
sparse learning approaches have been proposed to identify drift
and diffusion terms [17,18]. However, these approaches exhibit
the same drawbacks as HBR because they initially rely on HBR to
estimate the drift and diffusion terms.

An emerging technique for identifying model structures in the
fields of system identification and signal processing is sparse
Bayesian learning (SBL) [19–25], which aims to find a parsimo-
nious representation from basis functions based on input–output
data by striking a balance between model complexity and accu-
racy. The present study leverages this technique to discover the
underlying SDEs of stochastic dynamical systems using relatively
limited time-series data. The implementation of the proposed
algorithm can be summarized in terms of the following two
stages. First, theoretical expressions for the drift and diffusion
terms are derived by discretizing SDEs with the Euler–Maruyama
method. Then, the discovery problem of SDEs is cast into an
input–output regression problem for the drift and diffusion terms
based on the central limit theorem. Although the binning opera-
tion can be used to estimate the values of the drift and diffusion
terms at the selected point to formulate the input–output regres-
sion problem, this operation is data-hungry and suffers from the
curse of dimensionality. Owing to the analytical tractability of
SBL, a more efficient method that can be implemented using rela-
tively limited quantities of time-series data in practice is pro-
posed herein. The enhanced capabilities and robustness of the
proposed algorithm, named Bayesian identification of SDEs
(BISDEs), were demonstrated on well-known SDEs against those
of the state-of-the-art method. Additionally, the proposed BISDE
algorithm was validated over a wide range of simulated and
real-world systems.
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2. Methods

2.1. Mathematical expressions for the drift and diffusion terms

In this study, we consider the n-dimensional SDEs in a general
form as follows:

dx tð Þ ¼ f x tð Þð Þdt þ G x tð Þð Þ12dW tð Þ ð1Þ
where x tð Þ2 Rn is the state vector at time t, f x tð Þð Þ2 Rn is the state-
dependent drift vector, G x tð Þð Þ 2 Rn�n is the positive-definite diffu-
sionmatrix, andW tð Þ is ann-dimensional standardBrownianmotion
orWiener process. It is assumed that each entry for f x tð Þð Þ andG x tð Þð Þ
is a continuous function. However, the exact model structures for
f x tð Þð Þ andG x tð Þð Þ are unknown. The objective of this study is to iden-
tify them from the relatively limited time-series data of x tð Þ.

Because analytical solutions for SDEs are generally unavailable,
we resort to the Euler–Maruyama discretization. To ensure the
existence and uniqueness of the solution of the SDE in Eq. (1)
and the feasibility of the Euler–Maruyamamethod, we assume that
the drift and diffusion terms satisfy the local Lipschitz and
Khasminskii-type conditions (Section S1 in Appendix A). Further-
more, under these conditions, the numerical solution based on
the Euler–Maruyama method converges to the exact solution in
probability [26,27].

Applying the Euler–Maruyama method to the SDE in Eq. (1), we
have

bx kþ 1ð ÞDtð Þ � bx kDtð Þ ¼ f bx kDtð Þ� �
Dt þ G bx kDtð Þ� �1

2
ffiffiffiffiffiffi
Dt

p
�k ð2Þ

where k is the discretization time index, Dt is the discretization
time step, bx kDtð Þ is the numerical solution of x kDtð Þ, and
�k � N 0; Inð Þ, a normal distribution with mean 0 and covariance
matrix In with In as an n� n identity matrix. It is more convenient
to perform the analysis by considering continuous-time approxima-
tions. Hence, for any t 2 kDt; kþ 1ð ÞDtð Þ, we set

bx tð Þ ¼ bx kDtð Þ ð3Þ
Given bx kDtð Þ, it is evident that bx kþ 1ð ÞDtð Þ in Eq. (2) satisfies

the Gaussian distribution. This implies that, for any t � 0,

bx t þ Dtð Þ j bx tð Þ � N bx tð Þ þ f bx tð Þ� �
Dt;G bx tð Þ� �

Dt
� � ð4Þ

From Eq. (4), we can derive expressions for the drift and diffu-
sion terms. First, for any point n2 Rn, the drift f nð Þ can be obtained
by the conditional expectation as follows:

f nð Þ ¼ 1
Dt

E x̂ t þ Dtð Þ � bx tð Þ j bx tð Þ ¼ n
� � ð5Þ

where E denotes the expectation operator.
Similar to the case of drift, the diffusion G nð Þ is given by the con-

ditional covariance as follows:

G nð Þ ¼ 1
Dt

E x̂ t þ Dtð Þ � bx tð Þ � f x̂ tð Þð ÞDt� �
x̂ t þ Dtð Þð� �

bx tð Þ � f x̂ tð Þð ÞDt�T j bx tð Þ ¼ n
i

ð6Þ

where T denotes the transpose operator.
While the drift and diffusion terms are estimated based on the

numerical solution bx tð Þ, we can prove that when Dt ! 0, all entries
of f bx tð Þ� �

and G bx tð Þ� �
converge to the corresponding entries of

f x tð Þð Þ and G x tð Þð Þ in probability, respectively. The following
proposition summarizes the result, in which the subscript for the
entry index is omitted for notational simplicity.

Proposition 1. Suppose that the SDE in Eq. (1) satisfies the local
Lipschitz and Khasminskii-type conditions, and each entry of the
drift and diffusion terms is a continuous function. Then, for any
s > 0,
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lim
Dt!0

sup
0�t�s

j f bx tð Þ� �� f x tð Þð Þ j
� �

¼ 0 ð7Þ

in probability, and

lim
Dt!0

sup
0�t�s

j G bx tð Þ� �� G x tð Þð Þ j
� �

¼ 0 ð8Þ

in probability.
Proof: refer to Section S2 in Appendix A.
According to the central limit theorem, f nð Þ can be computed

approximately from the collected time series bx tið Þ	 
m

i¼1 based on
Eq. (5). However, computing G nð Þ is more complicated. From
Eq. (6), we notice that computing G nð Þ requires not only the data
but also f nð Þ. One viable method is to use the identified drift to
estimate the value of f nð Þ.

2.2. Inferring the drift term

After collecting the time series bx tið Þ	 
m

i¼1, f nð Þ can be estimated
according to the central limit theorem as follows:PK

s¼1 x̂ tjsþ1
� �� bx tjs

� � j bx tjs
� � ¼ n

� �
KDt

� f nð Þ þ e1 ð9Þ

where K is the number of bx tjs
� �

equal to n with bx tjs
� � 2 bx tið Þ	 
m

i¼1,
and e1 is a vector in which each entry is Gaussian distributed with
mean zero and variance proportional to 1/K . This equation bridges
the empirical estimation with the SBL, as the noise can be modeled
as Gaussian noise. Thus, the drift identification problem can be
transformed into an input–output regression problem. This equa-
tion also implies that drift entry can be identified independently.
Without loss of generality, suppose that n ið Þ 2 Rn, f r n ið Þð Þ 2 R,
i ¼ 1;2; � � � ;N denote the input–output data of the rth drift entry,
and f r n ið Þð Þ is estimated using Ki time-series data points from Eq.
(9). Let

X ¼
j j j

n 1ð Þ n 2ð Þ � � �
j j j

j
n Nð Þ
j

2
64

3
75

T

;

Y ¼ f r n 1ð Þð Þ f r n 2ð Þð Þ � � � f r n Nð Þð Þ½ 	T
ð10Þ

We assume that the rth drift entry is a linear combination of
some basis functions that belong to a library of candidate func-
tions. It is usually desirable to make the library sufficiently large
to allow for a thorough search and determination of the underlying
model structure. For many practical systems, the drift is sparse in
the space spanned by the basis functions because it comprises only
a few terms. In addition, any available prior knowledge of the con-
sidered stochastic dynamical system can guide us in selecting the
basis functions more efficiently. An example library can consist
of constant, linear, and polynomial terms as follows:

U ¼ 1 X X2 X3 � � �
h i

ð11Þ

where X2;X3; and so on, denote higher polynomials. For example,
each column of X2 can be specified as the element-wise product
of n ið Þ and n jð Þ (where i can be equal to j). The remaining problem
lies in estimating the basis functions’ weights. Precise identification
of the sparse weight vector is crucial for identifying the model
structure of the rth drift entry.

To estimate the weight vector, we can approximately solve the
following regression equation derived from Eq. (9):

Y ¼ Uhþ e ð12Þ
where U 2 R

N�M is the constructed library matrix, M is the number
of basis functions, and h ¼ h1 h2 � � � hM½ 	T is the weight vector. The
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noise vector e is assumed to follow a Gaussian distribution N 0;Wð Þ,
where W is a diagonal matrix with the ith element being r2/Ki, and
r2 is a scale parameter of variance. First, given that the model struc-
ture of the drift is sparse in the span of the selected basis functions,
we impose a sparsity-promoting Gaussian prior with mean zero and
variance ci on weight hi. Hence, h is denoted as a random vector
with the initial probability distribution p h; cð Þ, where
c ¼ c1 c2 � � � cM½ 	T: Based on the maximum a posteriori (MAP)
principle, the mean of the posterior distribution of h,

p h j Y ;W; cð Þ / p Y j h;Wð Þp h; cð Þ ð13Þ
is selected as the estimate of h. Here, p Y j h;Wð Þ is the likelihood
function arising from Eq. (12). However, the estimation of h involves
c. In order to set a reasonable value of c, we can maximize the type-
II likelihood function p Y ;W; cð Þ ¼ R

p Y j h;Wð Þp h; cð Þdh. Conse-
quently, after obtaining its optimal value, denoted as c
, we have
the following:

h ¼ UTW�1Uþ C
�1
� ��1

UTW�1Y ð14Þ

where C
 ¼ diag c
ð Þ.
For a system of interest, it may be difficult to obtain many mea-

surements bx tið Þ being equal to n. A useful trick to approximate the
conditional expectation f nð Þ is to treat any data point bx tjs

� �
that

falls into a small neighborhood of n as n; or, specifically,

PK
s¼1 x̂ tjsþ1

� �� bx tjs
� � j bx tjs

� � 2 n� d; nþ dð Þ� �
KDt

� f nð Þ þ e1 ð15Þ

where d ¼ d1 d2 � � � dn½ 	T is thehyperparameter vector that is used to
control the neighborhood size. This technique, known as the binning
operation, has proven to be effective in Refs. [8,17,18]. In thismanner,

the data points are divided into
Qn
j¼1

max x̂ j tið Þ� ��	�
min x̂ j tið Þ� �


=2djÞ

bins for an n-dimensional SDE, where bxj tið Þ is the jth entry of bx tið Þ.
Consequently, this approach suffers from the curse of dimensionality
as an increase in an SDE’s dimensionality leads to an exponentially
increasing number of bins and data, if one intends to preserve overall
approximation accuracy. It is also difficult to balance the number of
bins and the accuracy of approximation. To address the above issues,
wedeveloped amore efficient strategy for formulating the regression
equation to identify the model structure of drift. First, we employed
an equivalent realization of the regression equation in Eq. (12) to
derive an identical weight vector.

Theorem 1. The weight vector identified from

Y
�
¼ U

�
h
�
þ e

� ð16Þ

that is, eh is identical to that identified in Eq. (12), that is, h, where

Y
�
¼ f

�
r n 1ð Þð Þ f

�
r n 2ð Þð Þ � � � f

�
r n Nð Þð Þ

 �T
ð17Þ

f
�
r n jð Þð Þ ¼ 1

Dt
bxr tj1þ1
� �� bxr tj1

� �� � j bx tj1
� � ¼ n jð Þ ; � � � ;


1
Dt

bxr tjKjþ1

� �
� bxr tjKj

� �� �
j bx tjKj

� �
¼ n jð Þ

�
ð18Þ

U
�
¼

aT
1 �U1

..

.

aT
N �UN

2
664

3
775; ai ¼ 1 � � � 1½ 	|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Ki

ð19Þ

where � is the Kronecker product, bxr is the rth entry of bx; Ui is the
ith row ofU, and ee follows the Gaussian distributionN 0;r2I

� �
with

I as a
PN

i¼1Ki �
PN

i¼1Ki identity matrix.
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Proof: refer to Section S2 in Appendix A.
Remark 1. For any permutation matrix P, we have

P Y
�
¼ PU

�
h
�
þ P e

�
: Hence, the elements of eY can be rearranged in

the order of time sequence.
Theorem 1 shows a constructive method for identifying h in

Eq. (12) by considering the alternate regression equation in
Eq. (16). Its advantages are significant. First, Eq. (16) implies that
the ‘‘derivative” can be used as the output, obviating the need for a
binning operation to reduce the amount of required data and avoid
the curse of dimensionality in practice. Second, unlike the binning
operation, the value of bx tjs

� � 2 n� d; nþ dð Þ is kept instead of being
replaced with n when we formulate the library matrix and output
vector, which avoids the consequent approximation error. Finally,
our experiments consistently suggest that the amount of required
data is reduced and robust against the SDE’s dimensionality.
2.3. Inferring the diffusion term

Once the drift is successfully identified, a regression equation
can be formulated to identify the diffusion term. Based on Eq. (6)
for diffusion, we consider
PK

s¼1
bx tjsþ1ð Þ�bx tjsð Þ�f bx tjsð Þ

� �
Dt

� � bx tjsþ1ð Þ�bx tjsð Þ�f bx tjsð Þ
� �

Dt
� �T

j bx tjsð Þ ¼ n

n o
KDt

� G nð Þ þ e2 ð20Þ

where e2 is a matrix with each entry being Gaussian distributed
with mean zero and variance proportional to 1/K. The identified
drift was used to estimate the corresponding exact drift value. Fol-
lowing similar lines as in the identification of the drift, we can for-
mulate a regression equation to identify the diffusion term and
leverage the SBL approach to solve it. Note that the selection of
basis functions here can be different from those used for drift
identification.
2.4. Model validation

Next, we evaluated the proposed BISDE algorithm through
simulations and experiments. For simulations, because the exact
model structures are known, we can compare the mean squared
error (MSE) between the data generated by the true drift (diffu-
sion) and the fitted drift (diffusion) at the measurements to assess
the identified models’ performance. For real experimental data,
owing to the absence of ground truth, we designed three criteria
to assess the identified models’ performance.

Criterion 1: If a widely accepted model exists, we can leverage
it to assess the identified model. If a good consistency is found
between them, the effectiveness of such a model is cross verified.
Otherwise, obvious inconsistency may imply the potential to
determine a more efficient model whose performance can be
assessed by Criteria 2 or 3.

Criterion 2: If the real dynamic process is approximately sta-
tionary, we can compare the analytic probability density function
(PDF) of the identified model derived by solving the stationary
Fokker–Planck equation with the empirical PDF of the time-
series. A good match between them suggests the soundness of
identification. Non-stationary processes can be transformed into
stationary processes by constructing algebraic or logarithmic
increments, or by other methods [28].

Criterion 3: When the PDF cannot be solved analytically or
estimated numerically for stationary processes, we can run the
identified model with initial conditions identical to those of real
data, and then assess the identified model’s performance by com-
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paring the empirical PDF of the simulated data to that of the real
data.

3. Results

3.1. Discovering the Langevin equation using simulated data

We first applied the proposed BISDE algorithm to the Langevin
equation (Section S3.1 in Appendix A), which plays an important
role in physics [29,30], as shown in Fig. 1. Despite its simple math-
ematical form, it took physicists nearly a hundred years to discover
this equation. Specifically, the Langevin equation describes the
dynamics of Brownian particles over all time scales, which over-
comes the shortcomings of Einstein’s theory in Ref. [1]. Consider
a Brownian particle immersed in a fluid (Fig. 1(a)). Its random
movements are driven by collision with liquid molecules from all
directions due to thermal motion, and its velocity follows the
Langevin equation.

The data were obtained by uniformly discretizing the time
interval [0, 1000] with a time step Dt ¼ 0:04. The basis functions
consist of the constant term, polynomials in x up to the order of
15, and exponential functions with exponents from x to 10x. In this
example, the same basis functions were employed for both drift
and diffusion identification. If prior information relating to drift
or diffusion, such as symmetry and periodicity, is available, the
basis functions should be specified for each term. Figs. 1(b) and
(c) show that BISDE successfully identifies the Langevin equation
with very high accuracy. This example with the Langevin equation
highlights the ability of BISDE to assist physicists in identifying the
underlying SDEs of random phenomena from relatively limited
quantities of time-series data.

3.2. Discovering the dynamics of bearing vibration from experimental
data

Next, we showcase the discovery of the dynamics of the rolling
bearing vibration from the Case Western Reserve University
(CWRU) bearing dataset. With the rapid development of modern
industries, rotating machines are being widely used in manufactur-
ing systems and household appliances. Although the rolling bear-
ing has found wide and indispensable use in these machines, it is
also ranked as the top component related to machinery defects
[31–33]. A bearing fault reduces machine life and performance,
lowers the quality of workpieces, and causes safety risks and even
casualties in extreme cases. Consequently, bearing fault diagnoses
have become a popular topic in the engineering community. In
general, vibration signals are considered the most informative data
for evaluating bearing defects, as any fault in the bearings can
affect the vibration dynamics [34]. Therefore, determining the
dynamics of bearing vibration signals at the fault-free and faulty
stages can provide knowledge about potential bearing defects.

The CWRU dataset is an open-source dataset that is used to
explore the dynamics of normal and faulty bearings. The original
test stand and its cross-sectional view are shown in Figs. 2(a)
and (b), respectively. The stand consists of an electric motor, an
encoder or torque transducer, and a dynamometer. Data were col-
lected at 48 kHz under three different states: ① normal bearings
(NBs), ② inner race faults (IRFs), and ③ ball faults (BFs). Single-
point faults were introduced to the drive-end and fan-end bearings
with fault diameters of 7, 14, and 21 mils (1 mil = 0.0254 mm).
Every faulted bearing was reinstalled into the motor and tested
for motor loads of 1–3 horsepower (hp; 1 hp = 0.7457 kW).

We focus on the results of normal and faulted fan-end bearings
of 1 hp herein; a more comprehensive comparison can be found in
Section S3.2 in Appendix A. Because there is a sufficient amount of
data, the binning operation can provide reasonable estimates for



Fig. 1. Pipeline of the BISDE algorithm on the Langevin equation. (a) A Brownian particle (red dot) immersed in a fluid with its velocity satisfying the Langevin equation;
(b, c) formulate the linear regression equation to identify the drift and diffusion from the space of candidate basis functions, respectively.

Fig. 2. Discovering the dynamics of normal and faulted fan-end bearings. (a) Bearing experimental platform of the CWRU dataset; (b) a cross-sectional view of the original
test stand, consisting of a motor (left), a torque transducer/encoder (center), and a dynamometer (right); (c, d) identification results for NBs of 1 and 2 hp, respectively;
(e, f) identification results for BF and IRF with the fault diameter of 7 mils, respectively (motor loads: 1 hp); (g, h) identification results for BF and IRF with the fault diameter of
14 mils, respectively (motor loads: 1 hp).
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the drift and diffusion terms. Moreover, the estimates can be used
as benchmarks to verify the identification results of BISDE. To illus-
trate that our method can reduce the required amount of data,
BISDE only used about one-tenth of the dataset to discover the
underlying dynamics. We present the comparison between the
drift and diffusion estimates of the binning operation and the cor-
responding drift and diffusion identified by BISDE under different
operating conditions in Figs. 2(c)–(h); the identified model’s per-
formance was assessed using the MSE. This demonstrates that
the identified drift and diffusion can accurately capture the
dynamics of the bearing vibration signals. The identified models
of NBs under different motor loads can aid operators or practition-
ers in conducting early diagnoses of faults to prevent disastrous
consequences and reduce maintenance expenses.

3.3. Discovering the canonical stochastic models and applications

Finally, we applied the proposed BISDE algorithm to determine
several canonical and real-world SDEs. The simulation models are
based on common physical systems and stochastic processes
(Sections S3.3–S3.5 in Appendix A). A two-dimensional simulation
model is used to validate the power of the BISDE algorithm in iden-
Fig. 3. Summary of the BISDE algorithm applied to numerous examples. BISDE has been
real-world systems, where each type is marked with a specific background color.
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tifying multidimensional SDEs from a limited amount of data. Real-
world systems include stock price fluctuations, wind speeds, and
oil prices (Sections S3.6–S3.8 in Appendix A). Enabling an identifi-
cation framework for such stochastic dynamical systems can help
practitioners improve system design and develop more efficient
system management strategies for different scenarios. A more
detailed illustration can be found below and in Section S3. Addi-
tionally, data and code implementations are available at https://
github.com/HAIRLAB/BISDE.

Fig. 3 summarizes the simulated and real-world systems to be
identified. Each category of three examples is marked with a
specific background color. The first and fourth rows illustrate
the simulated and real-world systems, respectively. The second
row shows the simulated sample paths with colors denoting their
probability density values, whereas the fifth row only shows real
sample paths due to the lack of ground-truth information. The
third and sixth rows assess the performance of the identified
models. For simulated systems, we can compare the MSE between
the data points generated by the real and identified drift/diffusion
at measurements to assess its performance. We adopted Criteria
1, 2, and 3 to assess the identified models’ performance of real-
world systems.
tested on three simulated systems, including a two-dimensional system, and three

https://github.com/HAIRLAB/BISDE
https://github.com/HAIRLAB/BISDE
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Comparison with state-of-the-art method: To demonstrate
that BISDE can identify SDEs from relatively limited quantities of
time-series data, we compared it with the state-of-the-art method
in Ref. [17], which is referred to as SDE_SINDy hereinafter for
convenience. Fig. 4 presents a visual comparison of BISDE and
SDE_SINDy on the simulated systems. When the amount of data
was relatively limited, SDE_SINDy failed to identify the underlying
model structures for all cases, whereas BISDE yielded a near-
perfect identification result.

Financial economics—stock prices: Stock prices are mutually
influenced by many economic, financial, and political factors. The
dynamics of stock prices can be considered a stochastic process
because random noise introduces uncertainty when predicting
future stock prices. In the 1970s, the weak-form efficient market
hypothesis proposed by Eugene Fama, a recipient of the 2013
Nobel Prize in Economics, stated that future stock prices cannot
be predicted by analyzing historical data [35]. Based on this
Fig. 4. Comparison of BISDE and SDE_SINDy on the simulated systems. The identification
well potential with state dependent diffusion, and (c) synthetic two-dimensional stocha

Fig. 5. Discovering the stock price behavior of Facebook. (a) Financial institutions (dat
analyses; (d) identified SDE used to describe the stock price behavior of Facebook; (e) s
August 2020; (f) investors or technical analysts; (g) investment strategy made by invest

250
hypothesis, stock prices are usually assumed to follow a Markov
process. Lengthy historical data sequences are unhelpful in deter-
mining the dynamics of stock prices as these dynamics change over
time [3]. Therefore, we collected the stock price data of Facebook
every minute over three months from 1 July 2020 to 30 September
2020 (Figs. 5(a) and (b)).

After applying the proposed BISDE algorithm (Fig. 5(c)), the
identified geometric Brownian motion model describing Face-
book’s stock price behavior is shown in Fig. 5(d). Geometric Brow-
nian motion is the most widely accepted model for describing
stock price behaviors [3], which is one of the assumptions used
to derive the Black–Scholes–Merton formula to price European call
and put options [36,37]. Surprisingly, the identified volatility
(0.4039) almost coincides with the estimated volatility (0.4087)
using the method suggested in Ref. [3], demonstrating the accuracy
of the identified model. Compared with the one-year annual per-
centage yields (APY) provided by different banks (Fig. 5(e)), one
results of BISDE and SDE_SINDy on (a) the generalized Winner process, (b) double
stic model.

a acquisition); (b) stock price of Facebook over three months; (c) stock price data
ummary of the APY on one-year certificates of the deposit of different US banks in
ors by integrating investment information.
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can infer that the expected return on buying Facebook stock is sev-
eral times the return on saving money in the given banks. Based on
the identified model and one-year APY, investors can choose a
strategy to balance the expected return and the uncertainty or risk
of the stock to achieve better income (Figs. 5(f) and (g)). Overall,
this application reveals that BISDE is a powerful tool for identifying
the dynamics of stocks. The identified model can provide insights
into stocks for investors and help determine price of stock options
for stock exchanges [3].

Power systems—wind speed fluctuations: As a widely dis-
tributed, sustainable, and renewable energy source, wind plays
an important role in power grids across many countries. Globally,
wind has accounted for approximately 5% of total power genera-
tion up to the end of 2020. Because wind speeds are uncontrollable
and fluctuating under both spatial and temporal scales, the power
production of a wind farm may vary from one minute to the next
even when the total yearly production remains almost constant.
Wind speed fluctuations affect the nominal power output, some-
times eroding power quality and reliability, as well as causing
extreme gust and wind turbine fatigue loading [7,38,39]. Therefore,
determining the dynamics of wind speed fluctuations is essential
for power production and load design to ensure the safety and
economy of wind energy resources.

To illustrate the applicability of BISDE for this problem, we col-
lected wind speed data for the first half of 2020 from Greta Point
Cws, Wellington, New Zealand, located at 174.80574�E,
41.30243�S, and 3 m above the mean sea level [40]. Wind speed
fluctuations were obtained by calculating differences in wind
speed data, resulting in the conversion of a non-stationary series
(wind speed) to a stationary series (wind speed fluctuations). The
identified model can be seen as the Ornstein–Uhlenbeck process
with an added quadratic state-dependent term in the diffusion.
Next, by solving the stationary Fokker–Planck equation, an analyt-
ical PDF for the identified model is derived. Its performance was
verified by the high similarity between the analytic PDF and the
empirical PDF generated by the measurements (Fig. 3). BISDE suc-
cessfully identified an SDE to describe wind speed fluctuations. By
embedding the identified model into wind turbine models, we can
perform dynamic studies and thus maintain control of wind tur-
bines [41,42].

Energy economies—oil price fluctuations: Despite the grow-
ing importance of renewable energy, oil continues to be the dom-
inant resource in most countries. In contrast to almost all other
commodities, oil has a considerable impact on the macroeconomy
owing to its irreplaceability and high degree of liquidity in the
international marketplace [43,44]. Oil price fluctuations cause sig-
nificant losses or profits for both exporting and importing coun-
tries. Furthermore, oil price fluctuations may lead to inflation,
increases in transportation costs, and changes in business policies,
affecting not only industries but the daily lives of individuals and
families. Because oil prices are affected by many independent
and interrelated factors, an accurate model is challenging to
formulate.

We applied the BISDE algorithm to resolve this challenging
problem. To this end, we used crude oil prices collected from the
US Energy Information Administration from the beginning of
1986 to the middle of 2017. First, we calculated the daily changes
in oil prices. After determining the oil price fluctuations, we
applied BISDE to discover the underlying dynamics. To illustrate
the quality of the identified model, we generated a sample path
based on the identified SDE with the same initial value as that of
the real data. Then, we compared the empirical PDFs of the real
and simulated data. The identified model yields a PDF very close
to that of the real data in the high-probability region (Fig. 3). Given
current oil price fluctuations, the identified model can help predict
the next fluctuation and address the corresponding uncertainties
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in terms of firms and policymakers, which are useful for avoiding
unnecessary losses.

4. Discussion

This study provides a novel parametric algorithm called BISDE
for the discovery of SDE-governed systems. This algorithm has sev-
eral significant advantages. First, unlike non-parametric methods
which cannot provide interpretable models [13], our algorithm
identifies the model structures of the drift and diffusion terms to
determine the underlying mechanisms of stochastic dynamical
systems. Second, existing state-of-the-art data-driven algorithms
project multidimensional systems to low-dimensional ones to
reduce the required quantities of data [17,18]. In contrast, BISDE
can directly discover original multidimensional systems with a
limited amount of data. This capability was verified by the identi-
fication of a two-dimensional SDE and can be generalized naturally
to higher-dimensional SDEs. Finally, although BISDE employs the
Euler–Maruyama discretization method as in previous studies
[10,13,14], we specified the limit conditions of the drift and diffu-
sion terms, performed convergence analyses between the to-be-
identified and real terms, and bridged non-parametric estimation
with parametric identification. Overall, BISDE is a viable method
for identifying the underlying dynamics of stochastic dynamical
systems with relatively limited quantities of time-series data,
and it possesses the potential to help researchers model natural
phenomena and engineered systems perturbed by random noise
from different sources.

Despite the advantages of BISDE, several questions remain.
First, we note that prior knowledge is helpful in choosing basis
functions, making the identification of model structures faster
and more accurate. However, the lack of prior information makes
it difficult to build libraries. To make matters potentially worse,
true models may be approximated using polynomials, kernels,
and other functional forms [22]. There is also the question of estab-
lishing a verification method for non-stationary processes without
knowing the exact model structures, because in many cases, we
need to explore the intrinsic characteristics of state variables
directly. Finally, two different SDEs may produce the same PDF
(Section S4 in Appendix A), in which case they would possess the
same statistical properties but involve two completely different
mechanisms, which may mislead researchers.
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