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Chronic diseases comprise a wide range of abnormal conditions
and illnesses that impair patients’ physical and/or mental function-
ing, and last for a long time. Largely a contemporary plague,
chronic diseases are responsible for the observed morbidity and
mortality in developed countries as well as in some developing
countries [1,2]. These disabling and deadly diseases range from
cardiovascular and cerebrovascular diseases and metabolic disor-
ders such as obesity, diabetes, and metabolic syndrome, to degen-
erative neurological disorders such as Parkinson’s disease and
Alzheimer’s disease. They are characterized by multifactorial
pathogenesis with associated specific symptoms, whose progres-
sion may be somehow delayed or alleviated through medical
treatment and/or lifestyle changes. The biochemical abnormalities
associated with these diseases, such as high blood glucose in
diabetes mellitus, high blood cholesterol in cardiovascular dis-
eases, and high liver fat content in fatty liver diseases, represent
the biological phenotype connected with clinical manifestation
(symptoms or signs). Although genetic background, unhealthy life-
style, food, and environmental factors have been reported to play a
role in the pathogenesis of chronic diseases, the underlying root
causes of most of these chronic diseases remain elusive.

Lately, an increasing number of studies have shown that the gut
microbiota and its metabolites play important roles in the onset
and development of chronic diseases. In fact, more than 2000 years
ago, Hippocrates, known as the father of western medicine, stated
that ‘‘all diseases begin in the gut.” Chong Wang, a Chinese scholar
in the Eastern Han Dynasty (almost 2000 years ago), also proposed
a close relationship between the gut and human longevity (i.e., a
clean gut is helpful to live happy and long). Traditional Chinese
medicine has a simple concept in which the entrance of toxic
substances from the feces into circulation causes various diseases.
On the other hand, fecal microbiota transplantation has been
introduced as an effective therapy for some intractable diseases.

The particular roles of gut microbes and their molecular
mechanisms in the physiological and pathological processes of
chronic diseases have not been thoroughly characterized. In recent
decades, however, the rapid development and application of high-
throughput sequencing technology have revealed that myriad
microorganisms are present in different ecosystems within the
human body (i.e., the human microbiota). The human intestine
harbors trillions of microbial cells, on the same order as the num-
ber of human cells [3], with at least two orders of magnitude more
genes in the collective genomes of the gut microbiota (i.e., the gut
microbiome, also known as the ‘‘second human genome”) than in
the human genome [4]. The gut microbiota encompasses bacteria,
archaea, eukaryotes, and viruses/phages; of these, bacteria are in
the vast majority. The composition of the gut microbiota is dictated
by the host’s genetics and by the physiological environment of the
gut, which is largely influenced by food [5]. The term ‘‘superorgan-
ism” was coined by the laureate of the Nobel Prize in Physiology or
Medicine, Joshua Lederberg, to emphasize the coevolution of
microbiota with its host [6].

Alterations in gut microbial composition (i.e., gut dysbiosis)
have been associated with a wide array of chronic diseases in
humans. More specifically, a harmful profile of the gut microbiota
composition can be considered to be part of the root cause of
chronic diseases that include obesity and diabetes [7], cardiovascu-
lar diseases [8], Parkinson’s disease [9], and Alzheimer’s disease
[10]. The gut microbiota can produce various small-molecule
metabolites, such as short-chain fatty acids (SCFAs),
trimethylamine (TMA), and secondary bile acids, which may enter
the blood circulation to exert systemic beneficial or deleterious
effects on health [11]. SCFAs—mainly acetate, propionate, and
butyrate—are the major products of the microbial fermentation
of nondigestible carbohydrates. Various investigations have
demonstrated the effects of SCFAs on metabolic diseases, indicat-
ing that SCFAs might be causally linked to diabetes, atherosclerosis,
and hypertension, among others [12–16]. SCFAs can bind to differ-
ent cellular receptors and may function as signaling molecules that
modulate host metabolism; for example, by controlling the appe-
tite via the gut–brain axis [17–21]. Microbial metabolite TMA,
derived from nutrients such as choline and carnitine, can be oxi-
dized by hepatic enzymes to generate TMA N-oxide (TMAO) [22].
Although there are some arguments about its contribution (or bio-
marker significance) in atherosclerosis progression [23–25],
plasma TMAO level is acknowledged to be a new independent risk
factor for atherosclerosis, aside from plasma cholesterol level and
chronic inflammation. The potential mechanisms of TMAO include
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the inhibition of reverse cholesterol transport [26], enhancement
of macrophage foam cell formation [27], promotion of hyper-
glycemia [28], induction of vascular inflammation [29], and
increase of platelet hyperreactivity [30]. Bile acid metabolism,
which is associated with cholesterol metabolism, is modulated
by the gut microbiota. Primary bile acids synthesized in the liver
are released into the small intestine to facilitate the digestion
and absorption of lipids and fat-soluble vitamins. A small portion
of primary bile acids that escape reabsorption are transformed into
a diverse set of secondary bile acids by the gut microbiota in the
distal small intestine and colon [31]. Some bile acids are recog-
nized to function as endocrine-like signaling molecules that regu-
late host physiological processes by binding to various host
receptors, such as farnesoid X receptor (FXR) and Takeda G-protein
coupled receptor 5 (TGR5) [32,33]. These receptors are involved in
signaling pathways that regulate lipid and glucose metabolism and
energy expenditure [33–36]. Therefore, delineation of the mecha-
nisms underlying the effects of gut microbiota-derived metabolites
makes the gut microbiome ‘‘druggable”—that is, it provides novel
therapeutic potential to treat chronic diseases by manipulating
the gut microbiota [37]. Thus, medicinal agents with desirable
effects on bacterial metabolites may be able to treat chronic dis-
eases by regulating the gut microbiota.

Berberine, the major active pharmacological component in her-
bal Coptis chinensis and Berberis vulgaris, has exhibited clinical
effectiveness in the treatment of hyperlipidemia and metabolic
syndrome [38–42] by targeting host cholesterol and glucose meta-
bolic pathways in major energy metabolism organs such as the
liver and muscle. However, orally administered berberine is poorly
absorbed and mainly accumulates in the gut content [43]. Modula-
tion of the gut microbiota has been revealed to be an important
mechanism underlying the beneficial effects of berberine. Berber-
ine is known for its ability to modify the composition of the gut
microbiota, not only selectively inhibiting harmful bacteria, but
also enhancing the abundance of beneficial bacteria such as the
genera Bifidobacterium, Lactobacillus, and Akkermansia [44].
Berberine treatment has been shown to result in increased SCFAs
levels by remodeling the gut microbiota and enriching some
SCFA-producing bacteria in high-fat diet (HFD)-fed rats; the
berberine-promoted SCFA butyrate has also been shown to play a
role in lowering plasma cholesterol and glucose levels [45,46]. Oral
administration of berberine attenuated choline-induced
atherosclerosis by inhibiting TMA and TMAO production via
manipulating the gut microbiota composition and microbiome
functionality, which was confirmed by the transplantation of
TMA-producing bacteria in mice [47]. Berberine also increased
the levels of conjugated bile acids in serum and feces, and inhibited
bile salt hydrolase activity in the gut microbiota; furthermore, the
intestinal FXR signaling pathway was shown to be involved in
berberine’s lipid-lowering effect [48]. These findings provide new
and critical molecular mechanistic insights into the causal relation-
ship between the gut microbiome and the anti-atherosclerosis and
anti-metabolic-syndrome efficacy of berberine.

Intriguingly, the gut microbiota influences the therapeutic
effects of berberine from another perspective. The gut microbiota
may convert berberine into its intestine-absorbable derivative
dihydroberberine by means of bacterial nitroreductase; the deriva-
tive is then oxidized back into berberine in intestinal cells and
enters the circulation to increase the plasma drug concentration
of berberine [49]. Moreover, the lipid-lowering effect of berberine
may be bidirectionally regulated through this transformation. In
comparison with healthy individuals, patients with hyperlipidemia
have elevated fecal nitroreductase activity, and therefore have a
higher blood level of berberine to exert its therapeutic efficacy
[50]. Furthermore, the gut microbial reduction of berberine into
dihydroberberine was found to promote the production of tetrahy-
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drobiopterin, a coenzyme of tyrosine hydroxylase, which is the
rate-limiting enzyme responsible for the hydroxylation of tyrosine
to generate levodopa (L-dopa) [51]. Thus, oral administration of
berberine accelerates the production of L-dopa by gut microbes
and improves the brain’s dopa/dopamine levels to ameliorate
Parkinson’s disease. The brain-function-improving effect of berber-
ine as an agonist of tyrosine hydroxylase was verified by transplan-
tation of the bacteria containing the enzyme [51]. Another
antidepressant compound of Chinese herbal medicine, albiflorin,
is similarly difficult to absorb and cannot be detected in the brain
after oral administration. However, it has been demonstrated that
the gut microbiota can transform albiflorin into benzoic acid, a key
metabolite that may cross the blood–brain barrier and exert
antidepressant efficacy in inhibiting D-amino acid oxidase in the
brain [52]. These findings are good examples of the molecular
and chemical mechanisms of the gut–brain axis, and shed light
on improving brain function by modulating the gut microbiota in
the treatment of central nervous system diseases.

In fact, a number of natural products isolated from Chinese
herbs have been demonstrated by independent clinical groups to
have clinical efficacy; nevertheless, their modes of action remain
unclear, which presents a major challenge to traditional Chinese
medicine. One of the main difficulties in learning their mechanisms
is the low oral bioavailability of many botanical products or com-
pounds (e.g., polysaccharides, alkaloids, flavones, and saponins).
Thus, the question remains: How can a drug at very low blood con-
centrations execute its therapeutic effect in treating diseases? The
gut microbiota might provide a scientific explanation for such phe-
nomena, by establishing a convergence between the substances in
medicinal herbs and their bioactivities in the human body. Poorly
absorbed substances accumulate in the intestine and interact with
the gut flora, in which biotransformation and desirable fermenta-
tion take place. Thus far, the gut microbiota has been linked with
a number of chronic diseases. Furthermore, an increasing number
of discoveries are being reported of the causative—not just associa-
tive—roles of the gut microbiota and its metabolites in chronic dis-
eases. These discoveries are providing novel therapeutic potential
for treating chronic diseases by manipulating the gut microbiota.
Medicinal agents that are active in manipulating the composition
of the gut microbiota and its derived metabolites—especially those
derived from herbal medicines—hold great promise for the treat-
ment of chronic diseases.

In addition, some drugs can either enter the circulation to act
with their host targets or remain in the intestine to interact with
the gut microbiome. For example, berberine treats metabolic disor-
ders through a mode of action termed a ‘‘drug cloud” [53], which
addresses both clinical manifestation (e.g., increased blood choles-
terol and glucose level) and the root causes (e.g., gut microbiota
dysbiosis and chronic inflammation). More specifically, berberine
acts on the low-density lipoprotein (LDL) receptor, insulin recep-
tor, and adenosine monophosphate (AMP)-activated protein kinase
(AMPK) pathways in the host organs to address the symptoms and
signs of disorders, while simultaneously acting on the gut micro-
biota to address the root causes of disorders. In this way, berberine
treats both the symptoms and the root causes of diseases. Some
widely used drugs for metabolic or cardiovascular diseases, such
as metformin (which acts on the host AMPK pathway) and statins
(which act on the host LDL receptor pathway), have also been
found to alter the composition of the intestinal microbiota and
its metabolites to provide beneficial effects [36,54–57]. The
mechanisms of these drugs’ regulatory effects on the gut
microbiota represent only a tip of the iceberg, and will provide
further insights in treating chronic diseases by addressing not
just the symptoms, but also the root causes, with an emphasis on
the importance of integrating prevention with treatment by
modulating the gut microbiome.
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