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Due to its constant pumping and contraction, the heart requires a substantial amount of energy, with
fatty acids (FAs) providing a major part of its adenosine triphosphate (ATP). However, the heart is
incapable of making this substrate and attains its FAs from multiple sources, including the action of
lipoprotein lipase (LPL). LPL is produced in cardiomyocytes and subsequently secreted to its heparan
sulfate proteoglycan (HSPG) binding sites on the plasma membrane. To then move LPL to the endothelial
cell (EC) lumen, glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1
(GPIHBP1) attaches to interstitial LPL and transfers it to the vascular lumen, where the LPL is ready to
perform its function of breaking down circulating triglycerides (TG) into FAs. The endo-b-
glucuronidase heparanase (Hpa) is unique in that it is the only known mammalian enzyme to cleave hep-
aran sulfate (HS), thereby promoting the abovementioned release of LPL from the cardiomyocyte HSPG. In
diabetes, it has been suggested that changes in how the heart generates energy are responsible for the
development of diabetic cardiomyopathy (DCM). Following moderate diabetes, with the reduction in glu-
cose utilization, the heart increases its LPL activity at the vascular lumen due to an increase in Hpa action.
Although this adaptation might be beneficial to compensate for the underutilization of glucose by the
heart, it is toxic over the long term, as harmful lipid metabolite accumulation, along with augmented
FA oxidation and thus oxidative stress, leads to cell death. This coincides with the loss of a cardioprotec-
tive growth factor—namely, vascular endothelial growth factor B (VEGFB). This review discusses inter-
connections between Hpa, LPL, and VEGFB and their potential implications in DCM. Given that
mechanism-based therapeutic care for DCM is unavailable, understanding the pathology of this car-
diomyopathy, along with the contribution of LPL, will help us advance its clinical management.

� 2022 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Background

In individualswho livewith diabetes (both Type 1 diabetes (T1D)
and Type 2 diabetes (T2D)), heart disease is a major reason for mor-
tality [1,2]. A significant cause of this cardiovascular disease is sug-
gested to be atherosclerosis; however, heart failure can also result
from a defect in the cardiac muscle, termed diabetic cardiomyopa-
thy (DCM) [3–7]. DCM is defined as the occurrence of myocardial
dysfunction (abnormal cardiac structure, left ventricle diastolic dys-
function, and reduced left ventricle ejection fraction) in the absence
of coronary artery abnormalities, valvular defects, hypertension,
and hyperlipidemia [7]. The mechanism behind the development
of DCM is complex, but one major instigator is early changes in car-
diacmetabolism [4,8]. In diabetes, the heart reduces its utilizationof
glucosebut increases its consumptionof fatty acids (FAs) togenerate
adenosine triphosphate (ATP) [8,9]. AlthoughFAsareprovided to the
heart from numerous sources, the majority of this substrate origi-
nates from plasma lipoprotein–triglyceride (TG) hydrolysis [10].
This is facilitated by lipoprotein lipase (LPL), an enzyme localized
in the coronary lumen. In rats with mild diabetes characterized by
low plasma insulin and high glucose, when the plasma concentra-
tions of circulating FAs or TGs are within a normal range, coronary
lumen LPL activity is augmented [11–13]. Although this early adap-
tation might be beneficial to compensate for the underutilization of
glucose by the heart [14], it is toxic over the long term, as FA oxida-
tion causes oxidative stress—a leading stimulus for initiating cell
death [15,16]. An additional issue is that FA utilization requires pro-
portionally more oxygen (O2) than glucose utilization does to pro-
duce an equivalent amount of ATP [17]. This may be problematic,
as the heart exhibits small-vessel disease (microangiopathy) follow-
ing diabetes onset. Under these conditions, the increased provision
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of FAs cannot bematchedwith the O2 supply, leading to incomplete
FA oxidation, lipid metabolite accumulation, TG accumulation, cer-
amide synthesis, and cell death [18–22]. Intriguingly, in mouse
models where LPL is exclusively overexpressed in the heart, the ani-
mals under study also exhibit cardiomyopathy, similar to that seen
with DCM [23,24]. Following the onset of severe diabetes, with the
extreme loss of insulin, when plasma FAs are augmented in addition
to glucose, coronary LPL activity is reduced as ameans of preventing
lipid overload [11,25]. This process could be equally detrimental,
because—with cardiac-specific LPL deletion at least—there is
reduced ejection fraction [26,27]. As chronic treatment of T1D is
associated with numerous incidences of inadequate management
of hyperglycemia, this review will discuss potential mechanisms
that lead to changes in cardiac LPL. Given that mechanism-based
therapeutic care for DCM is unavailable [28], understanding the
pathology of this cardiomyopathy and the contribution of LPL will
help us advance the clinical management of DCM.

2. Diabetic cardiomyopathy

Evidence of heart dysfunction (i.e., DCM) has been reported in
individuals with T1D and T2D, even though these patients do not
exhibit atherosclerosis [7,29–31]. Similarly, DCM has been
reported in animals with induced diabetes [6,32]. A number of etio-
logic mechanisms have been proposed for DCM, including the
buildup of dense connective tissue, altered responses to different
hormones (e.g., catecholamine), deficiencies in mitochondrial func-
tion (i.e., defects in mitochondrial structure and respiratory capac-
ity), endoplasmic reticulum stress, activation of the renin–
angiotensin–aldosterone system (RAAS), microangiopathy, and
alterations in proteins that regulate intracellular calcium
[7,31,33–36]. Our lab and others have also implicated alterations
in cardiac metabolism as a key contributor toward the etiology of
DCM [3,37–40].

3. Cardiac metabolism

Due to its constant pumping and contraction, the heart requires
a substantial amount of energy. In this regard, the cardiac muscle
can attain ATP from multiple substrates, including glucose, FAs,
ketones, pyruvate, and amino acids [41]. Of these, FAs appear to
be the major substrate that the heart prefers for energy generation
[42]. Even though the heart prefers FAs, this organ is incapable of
making this substrate by lipogenesis and depends on acquiring it
from multiple processes: ① the adipose tissue lipolysis of stored
TG, with the eventual transport of released FAs to the heart;
② stored lipid TG lipolysis; and ③ circulating lipoprotein–TG
hydrolysis by vascular lumen LPL [3,9]. Of these, LPL-derived FAs
are suggested to be the key source of FAs for cardiac energy
generation [42].

4. Lipoprotein lipase

4.1. Overview

Of the various tissues that express LPL, including adipose tissue,
lung tissue, and skeletal muscle, the heart is the organ with the
highest expression of this enzyme. In addition, the majority of
FAs in the plasma are present within circulating lipoproteins. These
observations suggest that the action of LPL in breaking down
lipoproteins allows for a significant provision of FAs for ATP genera-
tion in the heart [3]. It should be noted that, in adipose tissue, LPL
controls FA entry for storage as TGs; excellent reviews are available
on this topic for interested readers [43,44]. Lipoprotein–TG lipoly-
sis occurs at the coronary luminal surface of endothelial cells (ECs).
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Notwithstanding this location, ECs are unable to synthesize LPL.
Rather, it is produced in cardiomyocytes and subsequently
secreted to its cell-surface heparan sulphate proteoglycan (HSPG)
binding sites [45,46]. For LPL to move to the EC lumen, detachment
of LPL from the cardiomyocyte surface HSPG is a prerequisite and is
facilitated by heparanase (Hpa). From here, LPL attaches to
glycosylphosphatidylinositol-anchored high-density lipoprotein-
binding protein 1 (GPIHBP1) at the EC basolateral side [47] and is
transferred to the apical lumen, ready for its function to generate
FAs (Fig. 1) [47,48].

4.2. GPIHBP1

Multiple hypotheses have been suggested to elucidate how LPL
moves from the cardiomyocytes, across the EC, to the vascular
lumen. These include the transfer of the enzyme by endothelial-
HSPG [49,50] and by the very-low-density lipoprotein (VLDL)
receptor [51]. In a more recently proposed pathway, GPIHBP1med-
iates the shuttling of LPL across ECs to the apical side [47,52].
GPIHBP1 is expressed exclusively in ECs. It chaperones LPL by
means of its acidic domain electrostatically interacting with the
enzyme, as GPIHBP1 mutations in the acidic domain fail to bind
LPL [53]. Recent studies have reported that LPL is active as a mono-
mer and associates with GPIHBP1 as such in a 1:1 ratio [54–56]. In
addition to its role in LPL shuttling, GPIHBPI at the apical side
strongly binds lipoproteins (chylomicrons or VLDL)—an action that
is mediated by LPL [53]. In this way, it serves as a stage for lipopro-
tein breakdown at the coronary lumen [57]. A third function of
GPIHBP1 is that, by binding LPL, it is capable of stabilizing the
enzyme, thereby preventing its inhibition by angiopoietin-like
3/4 (ANGPTL3/4) [58]. Given these important functions, mice defi-
cient in GPIHBP1 exhibit profound increases in plasma TGs. More-
over, humans with GPIHBP1 deficiencies have developed
hypertriglyceridemia (Fig. 1) [59,60]. At present, we are unaware
of specific changes in cardiac ANGPTL3/4 and GPIHBP1 in diabetic
human subjects. However, in animal studies, following a single
injection of a moderate dose (55 mg�kg�1; D55) of streptozotocin
(STZ), there is an induction of hypoinsulinemia and hyperglycemia.
Increasing the dose to 100 mg�kg�1 also creates an environment of
hyperlipidemia [61]. In the former situation, coronary LPL activity
is augmented; in the latter setting and with the presence of higher
levels of circulating FAs, LPL activity is turned off [11] (Fig. 1). With
D55 hearts, in the absence of any change in protein synthesis, the
increase in LPL activity—which principally occurs at the vascular
lumen—could be largely explained by alterations in LPL secretory
and signaling pathways that increased the transfer of myocyte
enzyme to ECs [62]. To determine whether the increased vascular
content of LPL following D55 diabetes is associated with GPIHBP1,
the protein and messenger RNA (mRNA) expression of GPIHBP1
were examined and were determined to be augmented [63]. In
relation to ANGPTL4, we have reported that, in moderate and
severe diabetes, cardiac gene expression increased ten- and twenty-
fold, respectively [14]. Interestingly, although ANGPTL4 increased
ten-fold in moderate diabetic animals, this was not associated with
a decrease in LPL activity; in fact, LPL activity increased three-fold
[14]. We suggested that, even though ANGPTL4 increased ten-fold,
STZ-induced diabetes increased GPIHBP1 gene and protein expres-
sion [63]. Hence, when LPL transfers onto ECs and complexes with
GPIHBP1, this structure appears to protect LPL from inactivation by
ANGPTL4. With severe diabetes, the unprecedented twenty-fold
increase in ANGPTL4 is likely sufficient to inhibit LPL activity.

4.3. Regulation

Different physiological states can sensitize LPL activity, and this
can vary among tissues. For example, under caloric deprivation,



Fig. 1. LPL trafficking in the heart. (a) LPL is synthesized in cardiomyocytes and uses the actin cytoskeleton to move to cell-surface HSPGs. HSPGs house multiple proteins,
including growth factors such as vascular endothelial growth factor B (VEGFB). For the onward transfer of LPL, HSPG side chains require cleavage, a function facilitated by the
Hpa released from ECs. GPIHBP1 at the basolateral side of an EC captures LPL and transfers it to the apical side of the coronary lumen. At this location, LPL promotes
lipoprotein–TG lipolysis to release FAs. These FAs are in turn taken up by the cardiomyocyte for ATP generation within the mitochondria. (b) In response to moderate diabetes,
hyperglycemia causes secretion of endothelial Hpa, which cleaves HSPG-bound LPL from cardiomyocytes and promotes the replenishment of this HSPG-released LPL for
onward translocation to the vascular lumen. At this location, LPL promotes lipoprotein–TG breakdown and the release of FAs for entry to the cardiomyocytes for ATP
generation. In addition to releasing LPL, Hpa causes the release of VEGFB, whose action promotes protection against cell death and angiogenesis for oxygen supply. This
VEGFB-mediated protection is lost following diabetes onset. HG: high glucose. (c) With severe diabetes and the presence of hyperglycemia and hyperlipidemia, Hpa is
directed into the endothelial nucleus, preventing its secretion toward the basolateral side where the cardiomyocytes are located. Consequently, LPL fails to move toward the
vascular lumen; in this case, the majority of cardiac energy is then provided by adipose tissue FAs.
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adipose tissue LPL activity is reduced. This prevents the needless
storage of substrates, making them available for energy generation
in other tissues such as the heart [64]. Consequently, FAs generated
from lipoprotein–TG are used for fulfilling the ATP requirements of
the heart. In this way, LPL acts as a ‘‘door” to modulate tissue-
specific demands for FAs.
4.4. Function in cardiomyopathy

When present in excess, FAs are diverted from adipocytes to
alternative organs, including the heart. One unfortunate conse-
quence of this effect is that FAs can trigger a decrease in cardiac
efficiency, low glucose oxidation rates, structural impairments,
and cellular demise [9,18–20,65]. In this regard, when LPL is speci-
fically overexpressed in the heart, more FAs are provided, which
has been reported to cause severe muscle defects including cardio-
myocyte apoptosis, as well as reduced function in the absence of
vascular changes—a situation comparable to DCM [23,24]. Conver-
sely, the experimental removal of LPL only from the heart is also
known to cause cardiomyopathy [26,27]. Even though these hearts
were still able to use albumin-bound free FAs (FFA) and increased
their glucose utilization, these actions could not substitute for the
function of LPL; thus, heart function was also reduced [27]. Taken
together, these results suggest that cardiac failure can be induced
simply by altering cardiac LPL.
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4.5. Cardiac LPL in patients with diabetes

In humans, the highly negatively charged glycosaminoglycan,
heparin, is employed to displace HSPG-bound LPL into the plasma.
This enables the subsequent quantification of its plasma activity
[45,66]. This method is not ideal as, in addition to releasing LPL
from the heart, it releases LPL from several other tissues such as
the skeletal muscle and adipose tissue. Therefore, this procedure
cannot be used to determine the heart-specific impact of diabetes
on cardiac LPL. When evaluating how diabetes impacts LPL in dif-
ferent tissues, such as adipose tissue and skeletal muscle, it was
observed that these organs demonstrated considerably lower LPL
[67]. Unfortunately, there is limited amount of data on the distri-
bution of LPL in the heart. Even if it were possible, measuring total
cardiac tissue LPL would be flawed, as such measurement would be
unable to identify the relevant pool of LPL at the coronary lumen.
Due to these limitations in human analyses, the vast amount of
data related to cardiac LPL in diabetes has been obtained from ani-
mal studies.
4.6. Cardiac LPL in animal models of diabetes

In models of drug-induced insulin resistance [68,69] or STZ-
induced diabetes with moderate hypoinsulinemia and hyperglyce-
mia in rats [11,13,61,70], LPL activity was increased at the coronary
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lumen—an effect that was reversible with exogenous insulin treat-
ment [13]. In this STZ model, the increase in LPL activity did not
occur due to an increase in HSPG binding sites. In fact, we deter-
mined that, in a normal heart, EC binding sites at the vascular
lumen are only fractionally occupied by LPL. In diabetes, the vacant
sites are immediately occupied by LPL [13,62,71], which does not
involve gene and protein expression changes [13,72]. Rather, secre-
tory and signaling pathways are altered, which encourages the vec-
torial movement of cardiomyocyte LPL to the EC apical side [39,61].
This includes the activation of adenosine monophosphate-
activated protein kinase (AMPK) [73,74], p38 mitogen-activated
protein kinase (p38MAPK), and protein kinase D (PKD)
[12,25,75], which results in the secretion of LPL onto
cardiomyocyte-surface HSPG, involving the formation of vesicles
containing LPL and reorganization of the actin cytoskeleton
[75,76]. For LPL to move forward from this location, it requires
detachment from the cardiomyocyte cell surface—an effect that is
mediated by the cleavage of HSPG through the action of Hpa
[77,78] (Fig. 1). In this regard, we reported that, in response to high
glucose, ECs release Hpa [77,79], which mostly occurs from the
basolateral side [80]. This in turn promotes a release of LPL from
cardiomyocytes [81]. Intriguingly, we also demonstrated that, in
addition to releasing LPL, Hpa can liberate cardiomyocyte cell sur-
face growth factors including vascular endothelial growth factor A
(VEGFA) [82,83] and VEGFB [84]. By modulating oxygen delivery
and preventing cell death, both of these growth factors can defend
against the excessive use of FAs. It should be noted that, in models
with severe diabetes [11,61], there is an increase in plasma FAs due
to unregulated adipose tissue lipolysis. In this regard, diabetic ani-
mals exhibit close to a two- to three-fold increase in various types
of saturated (palmitic (16:0), stearic (18:0)), monounsaturated
(oleic (18:1)), and polyunsaturated (linoleic (18:2), arachidonic
(20:4)). FAs that make up about 80% of the total plasma pool
[14]. We suggested that LPL-mediated FA delivery would be redun-
dant in these circumstances and is reduced.
5. Heparanase

5.1. Overview

In tissues, HSPGs are located at multiple sites, especially the
extracellular matrix and nucleus [85]. They consist of a central pro-
tein to which a number of heparan sulfate (HS) side chains are
bound. These molecules thus offer structural integrity to the cell
membrane, in addition to anchoring several molecules due to the
highly negatively charged groups in HS [86]. The negatively
charged HS side chains are used to attach several positively
charged proteins, including C–X–C motif chemokine ligand 2
(CXCL2), thrombin, LPL, VEGFA, and VEGFB. Due to this ionic
attachment, these proteins can be immediately released when
required. The endo-b-glucuronidase Hpa is unique in that it is
the only knownmammalian enzyme to cleave HS, thereby promot-
ing the abovementioned release of proteins (Fig. 1) [87].
5.2. Secretion and response to high glucose

Hpa is an enzyme that is able to cut HS side chains, resulting in
the liberation of bound proteins [88]. It is manufactured in the EC
endoplasmic reticulum (ER) as a 68 kDa protein that is then pro-
cessed into a 65 kDa inactive latent Hpa (HpaL). HpaL is then
secreted and rapidly endocytosed back into the EC [89,90] via
HSPG and receptors such as the mannose-6-phosphate receptor
and LDL-receptor related protein 1 [91]. HpaL is processed in early
endosomes and lysosomes into active Hpa (HpaA) by cathepsin L
under acidic conditions. Cathepsin L removes a 6 kDa linker,
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resulting in 8 and 50 kDa subunits that noncovalently
heterodimerize, resulting in HpaA [92]. HpaA, which has been
shown to be 100 times more active than HpaL, is stored in lyso-
somes until it is stimulated for release [93,94]. Our lab has shown
that high glucose is a robust stimulus for EC HpaA release into the
medium. This secretion is through high glucose-stimulated ATP
release, resulting in purinergic receptor (P2Y) stimulation, actin
reorganization, and HpaA vesicle release [77]. Conversely, unlike
high glucose conditions, high FA conditions prevent Hpa secretion
by redirecting Hpa into the nucleus [95].

5.3. Functions

Physiologically, HpaA is involved in embryonic implantation,
wound repair, and hair follicle maturation [96]. In relation to car-
diac metabolism, we first reported the distinct function of high glu-
cose in releasing EC Hpa, with the subsequent liberation of
myocyte LPL. This allows for the forward movement of LPL to the
vascular lumen, where it facilitates lipoprotein–TG breakdown,
providing the diabetic heart with FAs as an energy source [78]. In
addition to HpaA, high glucose stimulates the secretion of HpaL

[82]. We determined that HpaL is able to produce intracellular sig-
nals in cardiomyocytes, permitting LPL reloading. This allows for
the refilling of the HSPG binding sites previously occupied by
LPL. It should be noted that, although both forms of Hpa promote
several cell signaling pathways as well, including protein kinase
B (Akt), extracellular signal-regulated kinase (Erk), proto-
oncogene tyrosine-protein kinase (Src), signal transducer and acti-
vator of transcription proteins (STAT), hepatocyte growth factor
(HGF), insulin-like growth factor (IGF), and epidermal growth fac-
tor (EGF) [97], HpaL is more effective as a VEGF-releasing stimulus
(Fig. 1) [82,84].
6. Vascular endothelial growth factors

6.1. Overview

Six growth factors are included in the VEGF group of proteins:
VEGFA, VEGFB, VEGFC, VEGFD, VEGFE, and PGF [98]. The most
extensively examined of these is VEGFA, which is considered to
be especially important for controlling angiogenesis [99]. Interest-
ingly, VEGFB does not directly initiate angiogenesis [100–102].
This paradigm has been revisited, and more current research has
suggested that VEGFB plays a role in angiogenesis by indirectly
sensitizing tissues to VEGFA [103,104]. Other important roles of
VEGFB include its ability to prevent cell death [102], which could
be especially relevant in diseases such as diabetes [103], and will
thus be discussed in detail.

6.2. VEGFB

In tissues that demonstrate higher oxidative capacity, including
the heart and skeletal muscle, VEGFB shows its highest expression
[105]. The function of VEGFB occurs through its binding to VEGF
receptor-1 (VEGFR1). As the homology of VEGFB to VEGFA is 47%
identical [105], much effort has been spent on examining its con-
tribution to angiogenesis—experiments that proved inconclusive.
A more recent suggestion is that VEGFB does in fact lead to new
vessel formation by supporting VEGFA in its angiogenic function.
VEGFA is known to bind both VEGFR1 and VEGFR2; however, the
former receptor has a ten-times greater binding capacity for VEGFA
[106], albeit with few downstream effects. This suggests that the
binding of VEGFA to VEGFR1 restricts its angiogenic action [107].
Accordingly, VEGFR1 knockout [108] or VEGFA overexpression
[109] are embryonically lethal as, under these conditions, only
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VEGFR2 is occupied by VEGFA, leading to profound and unregu-
lated angiogenesis. In another example, mice transduced with
adeno-associated virus (AAV)–VEGFB demonstrated both vessel
enlargement and an increase in blood vessel number in adipose tis-
sue [104]. The researchers suggested that this effect of VEGFB was
a result of its occupation of VEGFR1, which reduced VEGFA’s ability
to interact with VEGFR1 and caused VEGFA to exclusively bind to
VEGFR2, with obvious effects on the vasculature. Under these par-
ticular conditions, the vasculature of AAV–VEGFB mice was normal
and divergent from what was seen with AAV–VEGFA mice, which
showed abnormal vasculature—suggesting a normal effect of
VEGFB on blood vessels without any harmful outcomes.
6.3. Impact on whole body and cardiac metabolism

Mice fed a high-fat diet and injected with AAV–VEGFB exhibited
improvement in insulin action [104]. This could be explained in
two ways: either through the direct effect of VEGFB on organs such
as the skeletal muscle, adipose tissue, and liver, or indirectly, by
VEGFB augmenting vascular development, resulting in a greater
distribution of insulin to the aforementioned organs. In relation
to cardiac metabolism, rat hearts that specifically overproduced
VEGFB exhibited increased intracellular transport of glucose and
higher glycolytic capacity, indicating greater carbohydrate utiliza-
tion for energy production [103]. Conversely, these rats exhibited
decreased expression of genes related to FA transport and oxida-
tion [103], indicating that VEGFB transforms the heart from predo-
minately using FAs to a reliance on glucose.
6.4. Influence on cell survival

Both human and experimental animal studies have demon-
strated the beneficial impact of VEGFB on prolonging cellular long-
evity. Hence, in patients with heart failure undergoing transplant
surgery, unhealthy hearts display decreased VEGFB gene expres-
sion [103]. In cell culture experiments in which ECs or smooth
muscle cells were obtained from animals lacking VEGFB, inducing
oxidative stress by means of H2O2 was found to accelerate regu-
lated cell death (apoptosis)—an effect that was minimized under
treatment with exogenous VEGFB [110,111]. Finally, when VEGFB
is provided through either purified protein or viral transduction
to increase endogenous production, the heart is protected against
the damage induced by oxidative stress [84], aortic banding
[112], arrythmias [113], doxorubicin [114], and ischemia [115].
6.5. VEGFB in diabetes

The function of VEGFB has been well established, especially as it
relates to cardiac substrate utilization, blood vessel formation, and
cell death prevention. Similar to its release of LPL, Hpa has been
reported to release VEGFB, especially following acute diabetes
[82]. This effect, when taken together with the function of VEGFB
to protect against cell death and to increase the coronary vascula-
ture, offers a mechanism to defend against lipotoxicity. With the
loss of VEGFB following severe or chronic diabetes [84], the VEGFB
protective effects are lost and the provision of LPL-derived FAs is
unchecked. Indeed, although diabetes exhibits altered metabolic
inflexibility [116], microvascular rarefaction [36,117,118], and car-
diomyocyte demise [30,119,120], all of these could be secondary to
VEGFB loss. This data provides compelling primary evidence that a
reduced level of VEGFB may promote the development of diabetic
heart failure [84].
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7. Concluding remarks

In this study, we reported that, in response to high glucose, the
EC release of Hpa and its subsequent action on LPL liberation from
cardiomyocytes enables substrate switching to the utilization of
FAs. Counter-balancing this effect, Hpa can also release cardiomyo-
cyte VEGFB, which can r affect angiogenesis, s promote glucose
utilization, and t protect against cell death.

In a situation with augmented LPL activity and the loss of
VEGFB, lipotoxicity and cell death are consequences that lead to
DCM. Thus, understanding the network that connects vascular
endothelial Hpa with cardiomyocyte LPL and VEGFB is important
for determining how to maintain heart function, especially under
disease conditions such as diabetes.
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