
Engineering 20 (2023) 77–95
Contents lists available at ScienceDirect

Engineering

journal homepage: www.elsevier .com/ locate/eng
Research
Intelligent Medicine—Review
Progress of Brain Network Studies on Anesthesia and Consciousness:
Framework and Clinical Applications
https://doi.org/10.1016/j.eng.2021.11.013
2095-8099/� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding authors.
E-mail addresses: liujun@zju.edu.cn (J. Liu), pqi@tongji.edu.cn (P. Qi),

yusun@zju.edu.cn (Y. Sun).
Jun Liu a,⇑, Kangli Dong a, Yi Sun b, Ioannis Kakkos c, Fan Huang a, Guozheng Wang a, Peng Qi d,⇑, Xing Chen a,
Delin Zhang e, Anastasios Bezerianos f, Yu Sun a,b,⇑
aKey Laboratory for Biomedical Engineering of Ministry of Education of China, Zhejiang University, Hangzhou 310007, China
bDepartment of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310020, China
c School of Electrical and Computer Engineering, National Technical University of Athens, Athens 15780, Greece
dDepartment of Control Science and Engineering, College of Electronics and Information Engineering, Tongji University, Shanghai 200092, China
eDepartment of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
f The N1 Institute for Health, Center for Life Sciences, National University of Singapore, Singapore 117456, Singapore

a r t i c l e i n f o
Article history:
Received 20 July 2021
Revised 21 October 2021
Accepted 9 November 2021
Available online 13 December 2021

Keywords:
Anesthesia
Brain network
Connectivity
Graph theoretical analysis
Clinical monitoring system
a b s t r a c t

Although the relationship between anesthesia and consciousness has been investigated for decades, our
understanding of the underlying neural mechanisms of anesthesia and consciousness remains rudimen-
tary, which limits the development of systems for anesthesia monitoring and consciousness evaluation.
Moreover, the current practices for anesthesia monitoring are mainly based on methods that do not pro-
vide adequate information and may present obstacles to the precise application of anesthesia. Most
recently, there has been a growing trend to utilize brain network analysis to reveal the mechanisms of
anesthesia, with the aim of providing novel insights to promote practical application. This review sum-
marizes recent research on brain network studies of anesthesia, and compares the underlying neural
mechanisms of consciousness and anesthesia along with the neural signs and measures of the distinct
aspects of neural activity. Using the theory of cortical fragmentation as a starting point, we introduce
important methods and research involving connectivity and network analysis. We demonstrate that
whole-brain multimodal network data can provide important supplementary clinical information.
More importantly, this review posits that brain network methods, if simplified, will likely play an impor-
tant role in improving the current clinical anesthesia monitoring systems.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction anesthesia are still lacking in their development, and the neuro-
1.1. General background

General anesthesia has been defined as the presence of uncon-
sciousness, amnesia, and immobility [1]. This concept includes the
suspension of not only the conscious activities performed by the
brain, but also of the neurological and psychological factors medi-
ated by the spinal cord. Every year, tens of millions of patients are
placed under general anesthesia, which suppresses the treasured
psychological attribute of consciousness. The ability of anesthesiol-
ogists to induce safe and reversible loss of consciousness (LOC) has
proven invaluable. However, clinical monitoring systems for
logical mechanism of anesthetic-induced LOC remains unclear.
Research on unconsciousness under anesthesia has been con-

ducted at both the micro- and macro-levels. At the micro-level,
many studies have explored the mechanisms of action of general
anesthetics on ion channels, receptors, and other molecules. Differ-
ent anesthetics act on different molecular targets, which may play
an important role in explaining various mechanisms of LOC caused
by general anesthesia. The c-aminobutyric acid type A (GABAA)
receptor is the main inhibitory receptor in the brain and plays a
pivotal role in LOC caused by general anesthetics. Researchers have
found that mutations in the GABAA receptors alter the sensitivity
of the brain towards anesthetics [2]. N-methyl-D-aspartic acid
(NMDA) receptors, which are present in presynaptic and postsy-
naptic structures, are also targets of general anesthetics. Most
inhaled anesthetics inhibit the NMDA receptors, but the level of
inhibition differs for various anesthetics [3]. General anesthetics
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can cause the opening of tandem two-pore potassium (K2Ps) chan-
nels. Studies have shown that K2P knockout mice have reduced
sensitivity to inhaled anesthetics, suggesting that K2P channels
are also the target of general anesthetics [4]. In addition to the
three targets mentioned above, the effects of anesthetics on the
brain are also mediated by other targets, which have not been fully
studied [5].

At the macro-level, the development of neuroimaging technolo-
gies has enabled the investigation of the effects of anesthesia on
multiple scales. However, the results from early anesthesia
research and clinical testing are not as accurate as those reported
more recently. Initially, anesthesia was studied primarily in the
context of its clinical application and mainly depended on the mea-
surement of the blood pressure, heart rate, respiration, and other
physiological indicators. However, these indicators generally
reflect indirect reactions caused by reduced levels of conscious-
ness. In 1965, the minimum alveolar concentration (MAC) value
was proposed as an indicator of the level of consciousness [6].
The MAC value is a measure that reflects the efficacy of inhalation
anesthesia, which refers to the alveolar concentration of anesthetic
gas necessary to prevent a bodily reaction to skin incisions in 50%
of patients who inhaled anesthetic gas combined with pure oxygen
at 1 atm (1 atm = 101 325 Pa) of pressure. However, the MAC value
assesses anesthesia only at the somatic level and is merely an
index of spinal nerve reflexes under noxious stimulation, which
is not equivalent to unconsciousness [1,7,8] and is also affected
by analgesic administration [9]. To overcome these limitations,
researchers have recently attempted to investigate how anesthet-
ics act on physiological targets [10] and to identify the mechanisms
through which anesthetic drugs induce LOC.

Indirect reactions aside, the change in the brain’s ability to inte-
grate information is the direct physical correlation of a transition
between consciousness states; such changes in integration should
be the focus of our research. Based on recent neuroimaging studies,
several different theories have been proposed to explain the
mechanisms of anesthesia, including aberrations of cortical and
thalamic connections [11–13], disrupted sleep–wake cycles
[5,14,15], and cortical fragmentation [16,17]. Anesthetics can pro-
duce unconsciousness by blocking the interactions between speci-
fic brain regions and/or by reducing the transmission of
information [18–20], and it has also been suggested that the cortex
may represent the main target of anesthetics, given that the effect
of both propofol and sevoflurane appears later in the subcortex
compared with the cortex [21]. Notably, anesthetized and sleeping
brains have long been revealed to show significant similarities; for
example, the spindle waves observed during dexmedetomidine-
induced sedation are similar to those that occur during normal
sleep [22]. Natural sleep and wakefulness are controlled by multi-
ple arousal pathways [23]. Anesthetics can affect the thalamus and
cortex, suppress the wakefulness phase, and enhance the sleep
phase. The sleep–wake cycle in the brain is a bistable system with-
out an intermediate process, which coincides with the typically
rapid return of wakefulness once anesthesia is discontinued [5].
Although general anesthetics can affect various targets in the
sleep–wake cycle, the direct targets of these anesthetics remain
to be elucidated [14]. Moreover, the neural mechanisms of general
anesthetics, from molecular targets to the whole-brain level,
remain unclear. General anesthetics can regulate the interactions
between different brain regions by activating and/or inhibiting
specific receptors within the central nervous system, eventually
affecting the whole-brain networks and triggering reversible LOC.

In the study of anesthesia, various neuroimaging methods have
been combined with network analyses. However, the clinical
monitoring of anesthesia still lacks in its development and relies
primarily on bodily reactions. Importantly, a lack of bodily reac-
tions does not necessarily indicate unconsciousness. For anesthesia
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monitoring, unconsciousness should be judged from the perspec-
tive of connectivity (interaction between brain regions) [24]. The
ideal monitoring equipment for assessing the depth of anesthesia
(DOA) must meet the following requirements:

(1) Accurate monitoring of the patient’s state of sedation and
good correlation with clinical sedative performance;

(2) Accurate and reliable data;
(3) Compact equipment that is convenient to set-up and use;
(4) The ability to provide useful information to clinicians for

decision-making;
(5) A lack of susceptibility to electromagnetic interference and

interference from other equipment.
Unfortunately, the existing clinical anesthesia monitoring sys-

tem does not meet these requirements. In practice, anesthesiolo-
gists often judge the DOA through observing the reactions of
patients that is highly relying upon the empirical experience. There
are various scoring criteria for the evaluation of the state of seda-
tion, including the Ramsay Sedation Scale (RSS) [25], the Motor
Activity Assessment Scale (MAAS) [26], and the Sedation–Agitation
Scale (SAS) [27]. Scores on these scales are based on the patient’s
unresponsiveness to external disturbances, such as sound stimula-
tion and noxious stimulation. Currently, the existing clinical anes-
thesia monitoring methods are far from meeting the prerequisites
for precisely controlled anesthesia, and the risk of intraoperative
wakefulness is relatively high. Unlike studies focused specifically
on consciousness, the clinical application of anesthesia monitoring
also needs to eliminate responses to noxious stimuli and prevent
the patient from remembering any intraoperative events. Existing
clinical anesthesia monitoring methods are not sufficiently accu-
rate for the monitoring of consciousness, analgesia, and postopera-
tive trauma. Additionally, individual differences have become a
major obstacle to the precise application of anesthesia. Existing
clinical anesthesia monitoring simplifies the complexity of brain
monitoring for convenience, but also ignores much of the abundant
information available for measurement within the brains of
sedated patients. Hence, to meet the needs of anesthesia in the
future, it is necessary to develop a method that takes advantage
of this wealth of information, but it is also convenient to use in a
clinical setting. Connectivity and network analysis based on elec-
troencephalography (EEG) have provided us with a new idea for
a system that directly reflects the change in consciousness at the
whole-brain level, which offers great potential for developing com-
prehensive and holistic anesthesia monitoring and eliminating
individual differences.

1.2. Aim and overview

This study reviews the development of brain connectivity
research in the field of anesthesia, with a particular focus on the
context of clinical anesthesia monitoring. Most of these studies
investigated the mechanisms of anesthesia, from which we can
obtain a clearer and more reliable understanding of anesthesia. A
few studies have explored the combination of anesthesia mecha-
nism research and clinical anesthesia monitoring. We performed
an in-depth investigation and concluded that the study of brain
functional connectivity (FC) and network during anesthesia is
likely to give rise to clinical applications. To summarize the pro-
gress of anesthesia mechanism research in recent years and to
identify the potential nexus of clinical monitoring and brain net-
work research, this review focuses on the trends in the develop-
ment of complex EEG-based network analyses in anesthesia and
consciousness research over the last five years. In summary, this
paper intends to highlight how brain FC and network analysis
can be used to identify states of consciousness under anesthesia
and propose future research directions that deserve attention to
promote the development of anesthesia monitoring.
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The main structure of this review is divided into the following
four parts:

(1) We summarize the mechanism of anesthesia from both
micro- and macro-scale perspectives. At the micro-level, we intro-
duce the mechanism of general anesthetics at the level of molecu-
lar channels, receptors, and other molecules. At the macro-level,
we discuss cortical and thalamic connections, the sleep–wake
cycle, and cortical fragmentation.

(2) We introduce different neuroimaging methods of anesthe-
sia, including functional magnetic resonance imaging (fMRI), posi-
tron emission tomography (PET), functional near-infrared
spectroscopy (fNIRS), and EEG. Furthermore, we summarize the
advantages and disadvantages of these techniques.

(3)We analyze the shortcomings of the current electrophysiolog-
ical anesthesia-monitoring methods in clinical use and compare
them with the methods used in basic research. We also introduce
the theory of brain connectivity and graph theoretical analysis, with
a focus on the role and importance of this conceptual framework in
anesthesia research. There has been a focus on discovering the brain
connectivity andnetworks in anesthesia over thepastfiveyears; fur-
thermore, based on the literature from this period, we discuss the
potential combination of these techniques in clinical and research
applications and the potential improvement of monitoring systems.

(4)We propose that low- andmedium-density EEG can optimize
current clinical anesthesiamonitoringmethods.Moreover, the com-
bination of small-scale network structure analysis and FC analysis
provides a potential opportunity for clinical applications. It is hoped
that medium-density EEG will expand the clinical monitoring of
responses to different anesthetics and resolve the issue of individual
differences in anesthesia monitoring. Furthermore, if medium-
density EEG is used in the study of noxious stimuli under anesthesia,
it may be possible to monitor the analgesic effects of narcotic drugs
during noxious stimulation. Finally, we suggest future directions for
dynamic FC and machine learning to help open new avenues for
identifying underlying consciousness states under anesthesia.
2. Neuroimaging studies of anesthesia

In July 2021, we conducted a literature survey of neuroimaging
studies of anesthesia in the Web of Science database using
different keyword combinations (Fig. 1). In this section, we briefly
Fig. 1. Neuroimaging studies of anesthesia in the Web of Science database searched in Ju
studies of anesthesia that are categorized according to different imaging methods (i.e.
network studies (added with the keyword ‘‘connectivity”) and other studies of anesthes
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introduce the neuroimaging studies of anesthesia. Given that most
anesthesia studies were conducted using EEG techniques, the
current review focuses mainly on EEG studies of anesthesia and
consciousness in Section 3. Moreover, recent findings of anesthesia
studies using EEG- and fMRI-based brain network methods are
presented in Section 4, considering that most brain network stud-
ies were performed using these two modalities.
2.1. Functional magnetic resonance imaging

fMRI detects hemodynamic changes caused by neuronal activ-
ity, with moderate temporal resolution (i.e., at the second scale)
and high spatial resolution (i.e., at the millimeter scale). Because
of its high spatial resolution, fMRI has been widely used in the
study of spatial activity patterns in the brain, especially in the
default mode network (DMN), which exhibits high activity and
metabolism [28]. fMRI has also been widely used in anesthesia
studies. Many studies have explored the effects of anesthetics on
brain activation during stimulation (e.g., tactile, auditory, and
visual stimuli). Kerssens et al. [29] studied six male volunteers
breathing sevoflurane via a laryngeal mask for a set end-tidal con-
centration. They tested the volunteers’ memories after recovery
and imaged the fMRI responses to auditory stimulation. The results
showed that sevoflurane induced the dose-dependent suppression
of auditory blood oxygen level-dependent signals, which likely
limited the word processing during anesthesia and compromised
memory. Dueck et al. [30] used fMRI to monitor responses to audi-
tory stimulation under propofol anesthesia and found that the abil-
ity to process auditory information decreased in a dose-dependent
manner; however, primary cortical responses to sound were
intact; a response was still observable following auditory stimula-
tion under general anesthesia. Plourde et al. [31] observed the
same result and found that the cortical areas involved in language
and vocabulary were inhibited under anesthesia. Lower-level cor-
tical responses of the auditory cortex were preserved under anes-
thesia, whereas higher-level cortical responses were absent. There
have also been accumulating studies on visual stimulation under
anesthesia. Ramani et al. [32] studied visual stimulation under
sevoflurane at 0.25 MAC and found that this anesthetic affected
the primary visual cortex and certain higher-order association
cortices. In studies of brain activation under different stimulation
ly 2021. The pie chart in the center are the number and percentage of neuroimaging
, EEG, fMRI, PET, and fNIRS). The circular diagram stands for the number of brain
ia.
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conditions, it has been shown that stimulus- and task-related
activity in this state affects not only regional activities but also
FC (including interhemispheric connectivity) [33]. Specific brain
network configurations are necessary for awareness [34]. Anes-
thetic drugs preferentially act on higher-order rather than lower-
order connections [35–37]. Peltier et al. [38] found that sevoflurane
affected the temporal synchrony of the motor cortex in a dose-
dependent manner, and a transition from bilateral to unilateral
FC was also observed in the network.

2.2. Positron emission tomography

PET is widely used in brain imaging and brain metabolism
research. PET exploits the annihilation of negative electrons and
emitted positrons from isotope decay, detecting gamma rays gen-
erated by annihilation events after compounds labeled with
positron-emitting isotopes are injected into the human body. As
a result, the distribution of radionuclides in the human body can
be traced, enabling three-dimensional tomography. PET is often
used to measure changes in regional cerebral metabolic rate
(rCMR) and regional cerebral blood flow (rCBF) to reflect changes
in brain function. In 1995, Alkire et al. [39] used PET to study
human brain metabolism during anesthesia for the first time. Six
volunteers underwent two PET scans each, with one scan assessing
conscious baseline metabolism, and the other scan assessed meta-
bolism when the volunteers were unresponsive. The whole-brain
metabolic rate was found to decrease during anesthesia compared
to wakefulness. The decrease in the metabolic rate varied in differ-
ent brain regions. In the following studies, Alkire et al. [40,41] used
PET to study the effects of different drugs on brain metabolism
while further studying thalamic metabolism [8] and proposed a
thalamocortical connection model. Since then, several studies have
been published, for example, Fiset et al. [35] used PET to scan glo-
bal cerebral blood flow (CBF) and rCBF during propofol anesthesia
and found that thalamic metabolism and blood flow during anes-
thesia decreased with increasing anesthetic concentrations. Syner-
gistic changes between thalamic and midbrain blood flow
confirmed the connectivity between these two regions. This result
supports the hypothesis that narcotics induce concentration-
dependent effects on specific neuronal networks rather than a non-
specific, generalized effect on the brain. Bonhomme et al. [42] also
studied the supply of blood to the thalamus and cortex under
vibratory stimulation during anesthesia. In the awake state, vibra-
tory stimulation caused an increase in CBF in the left thalamus and
parts of the cortex, whereas under propofol anesthesia, changes in
the thalamus, parietal lobe, and prefrontal cortex were reduced in a
concentration-dependent manner. The effect of propofol on vibra-
tory stimulation first appeared in the somatosensory cortex and
then in the thalamic region.

2.3. Functional near-infrared spectroscopy

fNIRS uses near-infrared light to irradiate one or more tissues
and collects the reflected light for further analysis. It can measure
cerebral hemodynamic response. Compared to fMRI, the advan-
tages of low cost, portability, relatively high temporal resolution,
and capability of long-term recording make fNIRS an increasingly
popular neuroimaging technique for brain function research in
recent years, especially in resting-state brain studies. In contrast
to other methods for anesthesia monitoring, near-infrared spec-
troscopy (NIRS) can monitor changes in circulatory oxygenation
in the cerebral cortex, which can reflect tissue oxygen consump-
tion. Owen-Reece et al. [43] compared the hemodynamics between
awake and anesthetized patients using NIRS and concluded that
NIRS has the potential to distinguish between an awake state
and an anesthetized state. Lovell et al. [44] organized 36 healthy
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patients who were randomly allocated to undergo anesthesia
induction with etomidate, propofol, or thiopental. Dose-
dependent changes in CBF were observed for each anesthetic.
Curtin et al. [45] found that changes in oxygenated hemoglobin
(HbO2) in the dorsolateral prefrontal cortex were correlated with
changes in propofol. Although fNIRS showed a concentration-
dependent change in some anesthetics, studies have reported that
midazolam, aminophylline, and isoflurane may affect the DOA
despite having no effect on oxygen saturation [46]. One of the
widespread uses of fNIRS is to detect resting-state FC and describe
the topological network of the brain. However, few studies to date
have used fNIRS to study FC associated with anesthesia. There is no
doubt that these studies offer evidence for the capacity of fNIRS to
aid in the assessment of anesthetic depth.

2.4. Electroencephalography

EEG has always been essential in neuroimaging studies of the
brain in various cognitive/mental states. During anesthesia, the
changes in various frequency bands in the EEG are correlated with
the concentration of the anesthetic agent. In previous studies of the
neural mechanism underlying anesthesia, high-density EEG was
commonly used to monitor regional changes in the cerebral cortex
under different anesthesia conditions, while single- or dual-
channel EEG is mainly used in clinical applications for anesthesia
monitoring. In fact, single- or dual-channel EEG and the corre-
sponding calculated indicators have been widely used in clinics.
However, it has been found that single-channel EEG has a signifi-
cant limitation in monitoring anesthesia [47–49]. Given that most
of the anesthesia studies were performed using EEG techniques, a
detailed review of EEG studies of anesthesia and consciousness is
provided in Section 3.

2.5. Brief summary

In summary, the widely used neuroimaging techniques for
anesthesia studies include fMRI, PET, fNIRS, and EEG. The charac-
teristics of these techniques are summarized in Table 1. Heuristi-
cally, fMRI and fNIRS detect hemodynamic responses related to
neuronal behavior, while fNIRS can detect changes in both oxyhe-
moglobin and deoxyhemoglobin related to neuronal behavior. PET
can measure changes in the rCMR and regional CBF, which can also
uniquely reflect molecular metabolism. EEG is a general reflection
of electrophysiological brain activity. Due to the apparent limita-
tions imposed by the large size of the equipment, PET and fMRI
are unsuitable for long-term clinical monitoring, especially during
surgery. EEG and fNIRS, however, are more portable and can be
combined with other clinical monitoring equipment, giving them
great promise for clinical studies.

3. EEG studies of anesthesia and consciousness

3.1. Low-density EEG in traditional clinical studies

The bispectral index (BIS) (Fig. 2) has been used to analyze the
frequency and power of EEG signals [50]. The BIS mostly monitors
changes in EEG signals in the prefrontal region and results in a nor-
malized index of 0–100. Researchers have compared the MAC and
BIS in anesthesia monitoring with a large number of patients and
concluded that both are prone to intraoperative awareness in the
process of anesthesia monitoring and that there was no substantial
difference in this effect across measures [51]. Notably, the BIS in
the same state of consciousness tended to decrease with increasing
age [52–55]. The BIS also varies greatly with different drugs, which
suggests a lack of practicability for accurate monitoring of anesthe-
sia when multiple drugs are used in combination [47–49].



Table 1
Characteristics of neuroimaging techniques in anesthesia studies.

Feature PET fMRI fNIRS EEG

Temporal resolution Low Low Moderate High
Spatial resolution High High Moderate Low
Measuring Molecular metabolism Blood oxygen level-

dependent response
Blood oxygen level-dependent
response and hemoglobin (Hb)

Neural electrical activity

Cost Expensive Expensive Accessible to many researchers Accessible to many researchers
Portability Not portable Not portable Portable Portable
Harmfulness Radiotracer may harm participants Harmless Harmless Harmless

Fig. 2. A sketch of BIS measurement. The BIS sensor includes two channels for measurement and two channels for reference. The BIS is normalized as an index ranging from 0
to 100 for interpretation by anesthesiologists. Reproduced from Ref. [50] with permission of Dove Medical Press, �2018.
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Moreover, there was a significant difference in BIS scores across
individuals [56].

Entropy is an index used to describe signal uncertainty. The
main application of entropy in clinical anesthesia monitoring is
the assessment of the M-entropy. The shortcoming of M-entropy
is similar to that of BIS in that it reflects only part of the regional
EEG and differs markedly depending on the drug used. This index
loses effectiveness under certain conditions, such as during burst
suppression [57,58].

Time-frequency analysis of EEG data can show changes in the
EEG frequency spectrum over time. Purdon et al. [59] found that
different EEG signal patterns appear under different anesthetics.
Particularly, a single anesthesia index may not be suitable when
a combination of drugs is used during anesthesia, but the charac-
teristics of different drugs can be distinguished according to the
EEG time–frequency map. This result was consistent with the view
of Akeju et al. [60,61], who showed that time–frequency analysis of
the EEG power spectrum may be a better indicator for anesthesia
monitoring [62].

Intraoperative evoked potential (EP) monitoring was first
reported in the late 1970s [63]. Auditory evoked potential (AEP)
is the electrophysiological activity triggered by a sound stimulus
in auditory pathways that reaches the primary auditory cortex
via ascending auditory pathways originating from the brain stem.
Among AEPs, the middle-latency AEP (MLAEP) shows a dose-
dependent decrease under most anesthetics; therefore, the MLAEP
is particularly suitable as an anesthetic index [64]. Compared with
the BIS value, an AEP is a superior reflection of the bistable charac-
teristics of the brain sleep–wake cycle, changing rapidly during the
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transition from anesthesia to wakefulness [65,66]. However, simi-
lar to BIS, AEP shows significant individual differences [67], and
recognition of this waveform is complex and vulnerable to external
interference [68].

3.2. High-density EEG in studies of anesthesia mechanisms

Given that the anesthesia process involves changes in multiple
brain regions, there is a growing research interest in utilizing high-
density EEG to investigate the neural mechanisms of anesthesia,
with the ultimate aim of revealing salient and practicable biomark-
ers for anesthesia monitoring. Moreover, to fully understand the
electrical activity during anesthesia, especially in the cortical and
subcortical structures, researchers have recruited patients with
Parkinson’s disease using electrodes implanted in the brain to
observe cortical and subcortical EEG activity under the sole action
of either propofol or sevoflurane. They found that consciousness
was reflected mainly in the activity of the cortex; however, subcor-
tical structures could better predict the response to a noxious
stimulus [21], and intracranial EEG revealed the first signs of
recovery from deep anesthesia [69].

Alkire et al. [18] used transcranial magnetic stimulation to
stimulate the anterior motor cortex and observed mutual trans-
mission of information between brain regions. They concluded that
LOC was related to the ability of the cortex to integrate informa-
tion. When consciousness disappears, the transfer entropy (TE)
between the cortical regions decreases. This phenomenon may be
a common mechanism of anesthesia-induced unconsciousness
and conforms to the cortical fragmentation theory. Furthermore,



Fig. 3. The construction of an EEG-based brain network. An adjacency matrix
(which can describe brain connectivity) was constructed through the relationship
(computed by connectivity estimation methods) between the time series at sensor
space or the time series at source space after source localization. Source localization
is a method to estimate the location, direction, and intensity of the source neural
activity in the brain according to the electrical signals measured at the scalp [77].
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researchers have found that LOC is accompanied by a decrease in
cortico-cortical connections from the frontal lobe to the parietal
lobe [70–72]. The above studies have shown that LOC under anes-
thesia may be caused by a decrease in the ability to integrate
across cortical regions.

Purdon et al. [73] recorded the sound of a mouse click every 4 s
as a stimulus. They used high-density EEG (h-EEG) to observe
changes in the brain and found that when the propofol concentra-
tion was increased, the low-frequency EEG power (<1 Hz)
increased. Meanwhile, the spatial coherence of the occipital alpha
oscillation (8–12 Hz) was reduced. However, spatially coherent
frontal alpha oscillations increased. Furthermore, the power of
the 0.1–1.0 Hz band increased throughout the scalp and forehead,
the power of the 8–12 Hz band increased in the forehead, and the
power of the 25–35 Hz band mainly increased in the parietal lobe.
Huang et al. [74] implanted electrodes into the bilateral anterior
cingulate cortex, hypothalamus, periaqueductal gray, and sensory
thalamus in patients with chronic pain. The subcortical alpha oscil-
lations increased, whereas subcortical gamma oscillations
decreased when the propofol concentration increased. Moreover,
subcortical structures also exhibited oscillations similar to those
of cortical structures, further indicating that the FC of the alpha
oscillation may serve as a marker of consciousness. h-EEG has been
widely used to assess brain network changes under anesthesia. It is
usually observed that partial rather than overall connectivity is
reduced under anesthesia. Propofol has been shown to preferen-
tially reduce FC within the thalamic nuclei in a nonspecific manner.
Certain anesthetics can also reduce high-order thalamocortical
connectivity [75]. The mechanisms of these brain changes under
anesthesia remain to be studied, and high-density EEG may repre-
sent a powerful method for such elucidation.
4. Brain network studies of anesthesia

4.1. Brain network and graph theoretical analysis

The human brain is highly complex in terms of structure and
function. Therefore, investigating the functional and structural
mechanisms of the brain may benefit from a systematic perspec-
tive. A variety of advanced brain imaging and processing tech-
niques have provided some of the first insights into
understanding the structure of the brain. Brain network analysis
based on brain imaging technology has made it possible to assess
whole-brain function. The human brain can be considered a con-
nectome composed of large-scale networks. Many studies have
shown that brain networks play an important role in neural com-
munication, information processing, and integration. The rise of
network neuroscience has brought new approaches to the multi-
level analysis of the brain, exploring the structure, function, and
efficiency of the brain from an integrated perspective, and seeking
ways to map, record, analyze, and model the elements and interac-
tions of this neurobiological system [76]. Network neuroscience
uses various imaging techniques to obtain important information
regarding the brain.
4.1.1. Connectivity analysis
Connectivity is the foundation for building brain networks. It

evaluates the relationship between different brain nodes and con-
structs connections between brain regions as the basic edges of the
brain network. A diagram of the EEG brain network construction is
shown in Fig. 3 [77]. Heuristically, brain connectivity can be
divided into three types: ① structural connectivity, the physical
connections between brain regions (typically corresponds to white
matter fiber tracts between pairs of brain regions); ② FC, the tem-
poral dependency between the activities of spatially distant brain
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regions (that is usually estimated from fMRI and EEG data); and
③ effective connectivity, the direct or indirect causal influences
of one brain region on another (that has been widely employed
in EEG signal analyses) [78,79]. By combining graph theory with
connectivity analysis, we can understand changes (both static
and dynamic) in the rich topology of the brain, which is critical
in the evolution of anesthesia studies. Connectivity methods can
be applied not only to original EEG signals but also to broad or nar-
row bands within the original signals, such as delta (1–4 Hz), theta
(4–7 Hz), alpha (8–12 Hz), beta (13–30 Hz), and gamma (30–
100 Hz). In Table 2 [80–98], we provide a brief introduction of sev-
eral widely used methods for connectivity estimation. A more
detailed description of connectivity estimation and their interpre-
tation can be found in reviews of this topic [99–101].
4.1.2. Graph theoretical analysis
In 1736, the Swiss mathematician Leonhard Euler introduced

the famous ‘‘Seven Bridges of Konigsberg” problem. This problem
introduced graph theory to mathematics as a new branch that
has been prosperous ever since. Heuristically, graph theory is a
mathematical analysis framework for the quantitative assessment
of the topological architecture of a network. A paper published in
Nature in 1998 [102] found that the neural network of the nema-
tode Caenorhabditis elegans exhibited characteristics of a small-
world network. This influential paper led to the renaissance of net-
work sine for investigating the topology of a wide variety of com-
plex systems in various areas, including neuroscience, social
science, communication, physics, biology, and computer science.
In fact, many complex systems show remarkably similar macro-
scopic behavior, despite profound differences in the microscopic
details of the elements of each system or their mechanisms of
interaction.

Most recently, graph theory has become an important analytic
method for studying complex networks in the field of neuro-
science, and it is considered to be an important tool for describing
the characteristics of brain networks. Convergent evidence has
demonstrated that the brain is a small-world network characteri-
zed by a larger cluster coefficient and smaller characteristic path
length than a random network. The small-world characteristics



Table 2
Methods for connectivity estimation.

Type Properties Formulas Measurement and meaning References

Undirected
connectivity

Coherence (COH) COHXY ðxÞ ¼ SXY ðxÞj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SXX ðxÞSYY ðxÞ

p COHXY ðxÞ measures the correlation between signal X and Y at frequency x; SXY ðxÞ is the cross-spectral
density; and SXXðxÞ and SYY ðxÞ are the auto spectral densities of signal x and y, respectively.

[80]

Phase lag index (PLI) PLI ¼ 1
N

PN
t¼1signðD/tÞ

���
��� The PLI is the measurement used for measuring phase synchrony; sign() denotes the sign function; D/t is

the phase difference at time t; and N is the number of samples.
[81]

Weighted PLI (wPLI) wPLI ¼ jEfjIðZÞjsign½IðZÞ�gj
EfjIðZÞjg

The wPLI is the degree of phase synchronization; Z is the cross-spectrum; IðÞ denotes the imaginary
component; and E{} is the expected value operator. wPLI is a derivative of PLI.

[82]

Phase locking value (PLV) PLV ¼ 1
N

PN
t¼1e

jD/t

���
��� The PLV estimates the phasic interrelation between two signals; e is the Euler constant; and j is the

imaginary unit. The imaginary part of PLV (iPLV) and the corrected imaginary part of PLV (ciPLV) are
derivatives of PLV.

[83,84]

Phase lag entropy (PLE) PLE ¼ � 1
lgð2mÞ

P
jpjlgpj PLE incorporates the temporal dynamics of the instantaneous phase time series into the phase

synchronization analysis; m represents pattern size (word length); and pj is the probability of the jth
pattern.

[85]

Pairwise phase
consistency (PPC)

PPC ¼ 2
NðN�1Þ

PN�1
j¼1

PN
k¼ðjþ1Þf hj; hk

� � PPC is a measure that quantifies the distribution of phase differences across observations, where
f hj ; hk
� � ¼ ðcosðhjÞcosðhkÞ þ sinðhjÞsinðhkÞÞ. hj and hk are the relative phases from two observations.

[86]

Phase-slope index (PSI) PSI ¼ I
P

f2FC
�
ijðf ÞCijðf þ df Þ

� �
The PSI is a generic quantity to infer dominant undirected interactions, where Cijðf Þ ¼ Sijðf Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Siiðf ÞSjjðf Þ

q.

is the complex coherency; S is the cross-spectral matrix; df is the frequency resolution; and F is the set of
frequencies over which the slope is summed. � denotes the transpose and complex conjugate operation.

[87]

Orthogonalized amplitude
envelope correlation
(orthAEC)

orthAECðt; f Þ ¼ I yðt; f Þ x0 ðt;f Þ
jxðt;f Þj

� �
The variable orthAEC measures synchronization between signal envelopes. The complex signals x and y
are functions of time t and frequency f; x0 is the complex conjugate of x.

[88]

Mutual information (MI) MIðX;YÞ ¼ P
x;ypðx; yÞln pðx;yÞ

pðxÞpðyÞ MI is the measurement of information shared by both the X and Y signals; pðx; yÞ is the joint distribution of
X and Y; and pðxÞ and pðyÞ are the marginal distributions of X and Y, respectively.

[89]

Partial MI (PMI) PMIðX;YjZÞ ¼ SDEðX; ZÞ þ SDEðZ; YÞ�
SDEðZÞ � SDEðX; Z; YÞ

PMI measures the amount of information shared by X and Ywhile discounting the possibility that Z drives
both X and Y; and SDE denotes the Shannon differential entropy.

[90]

Directed connectivity Phase TE (PTE) PTEX!Y ¼ SE½hyðtÞ; hyðt0Þ� þ SE½hyðt0Þ; hxðt0Þ��
SE½hyðt0Þ� � SE½hyðtÞ; hyðt0Þ; hxðt0Þ�

PTE is a measure of directed connectivity between phase time series; hxðtÞ and hyðtÞ are the past phases of
X and Y at time t, respectively; and SE is Shannon entropy.

[91]

Partial directed coherence
(PDC)

PDCijðf Þ ¼ Aijðf Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�
j
ðf Þajðf Þ

p PDC describes the relationships between the present time series of xiðnÞ and the past of xjðnÞ; ajðf Þand
Aijðf Þ come from the prediction error covariance matrix associated with multichannel autoregressive (AR)
models. The generalized PDC and renormalized PDC are derivatives of PDC.

[92–94]

Directed transfer function
(DTF)

DTFijðf Þ ¼ Hijðf Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�j ðf Þhjðf Þ

p The DTF is defined similarly to PDC. The DTF uses the elements of the transfer function matrix Hijðf Þ,
whereas PDC uses those of Aijðf Þ. hjðf Þ is the column of the inverse of the transfer function matrix. The
direct dDTF is a derivative of the DTF.

[95,96]

Directed phase–amplitude
coupling (DPAC) DPAC ¼ 1ffiffiffi

N
p

PN

t¼1
aðtÞej/t

�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

t¼1
aðtÞ2

q DPAC is the measurement used to measure coupling of phase and amplitude, where a is the amplitude
and /t is the phase.

[97]

Granger causality (GC) GCy!x ¼ ln Vx j�x
Vx j�x ;�y

� �
GCy!x is the GC from y to x (predicting x from y), where V is the variance of the residuals, which is
estimated using AR models.

[98]

N, t, e, j, �, sign(), IðÞ, and D/t share the same meaning across the formulas in this table.
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of human brain networks indicate that brain networks are orga-
nized in a particular pattern to maintain a balance between local
segregation and global integration. That is, lower-level information
can be processed locally and modularly, whereas higher-level
information requires the integration of different functions dis-
tributed over the brain.

Here, we provide a brief introduction to several widely used
graph theoretical analysis (Table 3). In Fig. 4, we provide a sche-
matic diagram of several representative topological properties in
the graph theoretical analysis. A more detailed description of the
graph theoretical parameters and their mathematical formulations
can be found in the reviews of the topic [103–105]. Open software
toolboxes for graph theoretical analysis are available for those who
are interested in practice [106–113]. It should be mentioned that
the estimation of these network measurements should consider
network characteristics (i.e., weighted/binary, directed/undirected)
into account. According to the characteristics of the network, dif-
ferent mathematical formulas should be adopted.

4.1.3. Dynamic functional connectivity analysis
The brain dynamically integrates, coordinates, and responds to

internal and external stimuli across multiple time scales, while
the static characteristics described above cannot characterize
the dynamic characteristics of brain networks. Given the known
dynamics and conditional dependence of brain activity [114], it
is natural to expect that FC indicators calculated from fMRI or
EEG data will change over time, which implies that measures
assuming stationarity over a full resting-state scan may be too
Table 3
Description of topological measures in graph theoretical analysis.

Property type Properties Measurement

Global properties Clustering coefficient (C) The C is the ra
a node. A high

Characteristic path length (L) L represents th
high efficiency

Small-worldness (r) r is an integra
a larger C. A v

Global efficiency (Eglob) Eglob measures
proportional t

Local efficiency (Eloc) Eloc means the
as the average

Modularity (Q) Q refers to the
connections w

Assortativity Assortativity m
nearest neighb

Hierarchy (b) b quantifies th
Rich clubs Rich clubs are

high efficiency
Transitivity Transitivity is
Synchronization Synchronizatio

Nodal properties Node degree (Ndegree) Ndegree is the n
Node strength (Nstr) Nstr is the sum
Betweenness centrality (BC) BC is defined a

node.
Nodal efficiency (Enodal) Enodal is define

node and all o
Closeness centrality (CC) CC quantifies h

more central a
Eigenvector centrality (EC) EC of node i is

eigenvalue of
Participation coefficient The participati

separate modu
PageRank centrality PageRank cent

achieved by in
proportional t

k-coreness centrality The k-core is t
of a node is k

Network cost Network cost i
in the network

84
simplistic to capture the full extent of resting-state activity
[115]. In fact, dynamic FC (dFC) analysis is considered to be a
more efficient way to uncover specific functional integration
properties under various states [116]. Recently, several groups
have presented thorough reviews pertaining to the methodologi-
cal aspects and perspectives of dFC analysis [117–119]. Here, we
would briefly introduce the basic concept of dFC analysis; for
researchers who are interested in using dFC analysis, they could
refer to the reviews.

Unlike static FC analysis, where brain networks were con-
structed in a fixed window, that is, an FC network was typically
estimated during the whole scan period of several minutes in most
resting-state fMRI network studies [120], dFC constructed a net-
work in a temporal manner. The most widely used analytical strat-
egy for investigating dFC consists of segmenting the time courses
from spatial locations (brain voxels or regions) into a set of tempo-
ral windows, inside which their pairwise connectivity is probed,
which is called the sliding-window approach. This process divides
the entire scan time series into a windowed segment series. Given
a sufficient number of data points for robust calculations, any met-
ric that can be applied to the entire scan can, in principle, be used
for sliding window analysis. The results of hard clustering (or fuzzy
clustering, K-means clustering, principal component analysis, etc.)
on dFC estimates can be used to calculate group-wise state mea-
sures and conduct statistical analysis. Finally, the temporal proper-
ties of dFC states and the topologies of dFC states (modularity,
efficiency, etc.) were evaluated [117,119,121]. In Fig. 5, we provide
a schematic diagram of the analysis framework for the dFC.
and meaning

tio of the actual number of edges among all neighbor nodes directly connected to
er C indicates a more segregated network topology.
e average value of the shortest path among all node pairs. A lower L indicates
of parallel information transfer of a network.

ted indicator, greater values of which represent a shorter feature path length and
alue greater than 1 typically indicates a small-world network.
network efficiency for parallel information transmission and is inversely

o L.
efficiency of local connections between arbitrary nodes; this property is defined
of the Eglob of adjacent subgraphs of node i.
optimal division of a brain network into smaller communities, where the
ithin the modules are dense and the connections between modules are sparse.
easures the correlation between the degree of a node and the mean degree of its
ors.
e power-law relationship between the C and degree N of the nodes.
elite ‘‘cliques” of high-degree network hubs that are connected topologically with
.
the fraction of all possible triangles present in a network.
n measures the propensity of all nodes to fluctuate in the same wave pattern.

umber of connections joining a node to the rest of the network.
of edge weights that link a node to the other nodes in a weighted network.
s the number of shortest paths between other node pairs passing through the

d as the reciprocal of the harmonic mean of the shortest path length between a
ther nodes.
ow quickly a given node in a connected graph can access all other nodes; the
node is, the closer it is to all other nodes.
equivalent to the ith element in the eigenvector corresponding to the largest
the adjacency matrix.
on coefficient of a node quantifies the distribution of its connections among
les.
rality is a variant of EC. PageRank is defined as the stationary distribution
stantiating a Markov chain on a graph. The PageRank centrality of a node is
o the number of steps spent at the node as a result of such a process.
he largest subgraph comprising nodes whose degree is at least k. The k-coreness
if the node belongs to the k-core but not to the (k + 1)-core.
s the ratio of the existing number of edges to the total number of possible edges
.



Fig. 4. Schematic diagram of several representative topological properties in graph theoretical analysis. The detailed descriptions and the formulas for graph theoretical
analysis estimation were presented in Table 3.

Fig. 5. Schematic diagram of analysis framework for dFC construction and quantitative assessments. Step 1: construct the time-varying functional networks using the sliding
window approach; step 2: identify the dFC states using K-means clustering, conduct the statistical analysis; step 3: perform the dFC analysis at global, meso, and local level as
needed.
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4.2. Actual anesthesia studies using brain networks

With the development of brain network analytic technologies in
the field of neuroscience, an increasing number of scientists have
used graph theoretical analysis to investigate state changes of con-
sciousness under anesthesia, coinciding with the current conceptu-
alization of anesthesia: the common cause of anesthesia-induced
unconsciousness is persistent inhibition of the lateral frontal lobe
or functional disconnection of the cortex [122]. Hence, we focused
on brain network studies on anesthesia. Given that most of these
studies were performed using EEG and fMRI, we separated the
main findings accordingly.

4.2.1. Anesthesia studies using EEG-based brain networks
Among the 152 EEG-based articles (Fig. 1), 98 were published in

the last five years. The search results were mixed with articles that
were not directly related, such as including other neuroimaging
methods, analysis of EEG power spectrum, and brain injury studies.
Hence, articles that were not directly related to brain connectivity
and network analysis, consciousness, or anesthesia were further
excluded through manual verification, leading to the final 33 arti-
cles that met the inclusion criteria. Most of the included articles
were methodological studies, and a few described indications for
clinical applications. After screening these articles, we focused on
anesthesia and consciousness research using the EEG brain net-
work approach and selected 27 representative articles (Table 4
[85,123–148]). Based on the different principles of FC analysis,
we divided these studies into three categories: spectral-based FC,
entropy/complexity-based FC, and dFC.

Spectral-based FC: EEG has the advantage of providing spectral
information; hence, most of the FC indices were estimated in the
spectral domain. Using weighted phase lag index (wPLI) and net-
work analysis, Chennu et al. [123] found that participants with
weaker alpha-band networks were more likely to become unre-
85
sponsive under the same sedation protocol; Kim et al. [124] dis-
cussed the functional and topological conditions for explosive
synchronization developed in human brain networks, and Lee
et al. [125] found that the local connectivity in the delta frequency
range increased in the parietal lobe. The wPLI is widely used in
functional network studies of anesthesia [130,131,148]. Further-
more, using the basic version of wPLI, Blain-Moraes et al. [129]
found that the phase lag index (PLI) did not distinguish between
states of consciousness or stages of recovery; Numan et al. [139]
reported that the PLI reflected the differences in sedation between
midazolam and propofol. Many studies have analyzed coherence
and its derivatives [136,137,146]. Furthermore, dynamic casual
modeling-based methods, including Granger causality (GC), have
been used in anesthesia studies [127,133,144]. As an extension of
spectral-based FC at fixed frequency bands, cross-frequency cou-
pling reflects complex interactions between different frequency
bands [148–151]. In different tasks, one band of EEG has been
shown to modulate other EEG bands [152], and this modulation
includes amplitude–amplitude coupling [148], phase–amplitude
coupling (PAC) [149–151], and phase–phase coupling [149,150].
This coupling can occur at different frequencies in the same cortex
and across different cortical areas [153].

Entropy/complexity-based FC: Entropy and complexity mea-
sures of EEG can be used to evaluate information transfer in the
cortex. Lee et al. [85] introduced a new metric, phase lag entropy
(PLE), to calculate the diversity of time modes of phase relations
using the concept of entropy. Unlike traditional phase synchroniza-
tion methods, which focus on the strength of connectivity, the pro-
posed method reflects whether a given interaction between two
signals contains different or fixed connectivity modes. Thus, PLE
better reflects the time-varying dynamics of phase relations
embedded in neural communication. The results showed that PLE
provided better performance in the classification of states of con-
sciousness than did the PLI, a classical time-averaged connectivity



Table 4
Summary of EEG network studies on anesthesia in the last five years.

Time Drugs Regions Index Channels Findings Reference

2016 Propofol Channels on the neck,
cheeks, and forehead were
excluded

DPAC, wPLI 91 Participants with weaker alpha-band networks were more likely to become unresponsive under the
same sedation protocol.

[123]

2016 Sevoflurane — wPLI, Eglob, Ndegree 64 This study demonstrates for the first time that the network conditions for explosive
synchronization, formerly shown in generic networks only, are present in empirically derived
functional brain networks.

[124]

2017 Propofol Frontal and parietal wPLI, Eloc 27 Delta power increased from responsiveness to unresponsiveness, and the delta waves shifted from
frontal to parietal regions.
The local connectivity in the delta frequency range increased in the parietal lobe.

[125]

2017 Propofol 10–20 system PLI, PLE 12 PLE outperforms the PLI in classifying states of consciousness. [85]
2017 Sevoflurane, isoflurane,

midazolam
10–20 system PLI, PTE 17 Participants recovering from anesthesia had a more integrated network in the delta band than did

participants without anesthesia.
Patients with hypoactive delirium showed reduced network integration in the alpha band.

[126]

2017 Nitrous oxide Parietal and frontal GC 8 Nitrous oxide led to a decrease in connectivity from parietal to frontal regions but no change in the
opposite direction.
The changes in parieto-frontal connectivity were prominent in the theta, alpha, and beta frequency
bands.

[127]

2017 Propofol Frontoparietal MI, TE 7 TE was more effective than MI in representing the amount of information shared between channels.
The maximum (TEmax), minimum (TEmin), and mean (TEmean) of TE were sensitive to drug
concentration.

[128]

2017 Propofol DMN PLI, wPLI, Q, Eglob,
Eloc

128 During recovery, network efficiency and posterior alpha patterns increased.
The network clustering coefficient was increased during unconsciousness.
The PLI did not distinguish between states of consciousness or stages of recovery.

[129]

2017 Ketamine — wPLI 128 Significant changes in the theta band, including power and functional connection enhancements,
appeared during ketamine anesthesia.

[130]

2018 Ketamine, propofol,
isoflurane

— wPLI, Q 128 The average integrated information (U) and the network modularity (Q) of the alpha band reflected
states of consciousness. Only U showed significant and consistent changes in all frequency bands.

[131]

2018 Isoflurane, ketamine — PLE, PLI, Ndegree 32, 64, 128 Partial phase locking at criticality shapes the FC and asymmetric anterior-posterior PLE topography
of the network, with low (high) PLE for high-degree (low-degree) nodes.

[132]

2018 Propofol Occipital, parietal, and
frontal

DCM 6 Cortical time–frequency spectral responses to transcranial magnetic stimulation (TMS) are
perturbed by propofol sedation. In addition, changes in both feedforward and feedback connectivity
throughout the cortical hierarchy might be involved in the effect of anesthesia on consciousness.

[133]

2019 Propofol Synamps 2/RT system wPLI 60 Five common brain functional network patterns were found across all conscious levels. Functional
network patterns were found to be supported by anatomical connections during unconsciousness.

[134]

2019 Propofol, isoflurane Electrodes on the lowest
parts of the face and head
were removed

wPLI 21 Cortical connectivity was dynamic during the anesthesia maintenance period and had a higher
probability of remaining in the same state than switching to a different state.

[135]

2019 Propofol 10–20 system PDC 12 This study showed that the use of directed coherence to assess EEG directional connectivity
outperformed the BIS and the auditory middle latency response.

[136]

2019 Sevoflurane 10–20 system Cross-spectral
coherence

33 It was verified that slow-wave connectivity and brain network integration were decreased during
general anesthesia with sevoflurane in infants.

[137]

2019 Propofol 10–20 system MI 4 Standardized permutation MI has a faster response to drug concentration, less variability in the
awake state and stronger robustness to noise than the BIS.

[138]

2019 Midazolam, propofol 10–20 system PLI 32 Although the degree of sedation differed between midazolam and propofol, the changes in power
were similar. FC and network topology reflected the differences in sedation between midazolam
and propofol.

[139]

2019 Propofol — PLE 4 The PLE was used for clinical anesthesia monitoring and compared with the BIS value. It was noted
that PLE could be used as an indicator of hypnotic depth for patients sedated with propofol.

[140]

2020 Propofol 10–20 system wPLI 14 This study compared the brain FC of the same subjects during sleep and anesthesia and found
similar connectivity changes.

[141]

2020 Propofol Frontal, parietal, and
temporal

MI, C, Enodal, L 64 The genuine permutation cross MI reflected propofol-induced coupling changes measured at a
cortical scale. LOC was associated with the distribution of the pattern of information integration.

[142]

2020 Propofol 10–20 system dwPLI 16 Dynamic connectivity under anesthesia, especially in the alpha and theta bands, may be an
informative indicator for assessing neurophysiological changes with age.

[143]

(continued on next page)
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method. PLE has been studied further [132,140]. Schreiber [154]
proposed an information theoretic measure called TE, which quan-
tifies the statistical coherence between systems evolving over time,
which has been widely used in EEG studies to quantify the transfer
information between channels. Cha et al. [128] found a high corre-
lation between the TE and the plasma concentration of propofol,
which was confirmed from the experimental results of clinical data
in 39 subjects. Using normalized symbolic TE (NSTE), a derivative
of TE, Zhao et al. [147] found a significant decrease in frontopari-
etal connectivity during anesthesia, which indicates that disrup-
tion of frontoparietal connectivity is a signature of propofol-
induced anesthesia. Lobier et al. [91] proposed phase TE (PTE), a
new measure of directed connectivity among neuronal oscillations
using the concept of entropy, which quantifies the TE between
phase time-series extracted from neuronal signals by filtering, for
instance. PTE is beginning to be used in anesthesia studies [126].
Moreover, mutual information (MI)-based indices are increasingly
being used in anesthesia studies [138,142].

dFC: Several recent studies using EEG data to conduct dFC anal-
ysis have explored dynamic brain network characteristics under
anesthesia. Zhang et al. [134] found five common brain functional
network patterns across all conscious levels using 60-channel EEG
data. Li et al. [135] and Vlisides et al. [155] characterized the dFC
patterns via K-means clustering and Markov chain analysis, respec-
tively, and the dFC patterns indicated that a single measure of FC
will likely not be a reliable correlate of surgical and experimental
anesthesia. The mechanisms of dFC patterns under anesthesia
remain to be studied, and compared to fMRI, dFC analysis using
EEG with a higher temporal resolution is more suitable for clinical
application of anesthesia.

4.2.2. Anesthesia studies using fMRI-based brain networks
Among the 112 fMRI-based articles (Fig. 1), 59 were published

in the last five years. After screening these articles, we focused
on anesthesia and consciousness research using the fMRI brain net-
work approach and selected 16 representative articles [156–171]
introduced below.

Due to the high spatial resolution of fMRI, an increasing number
of studies in recent years have used fMRI to investigate anesthesia-
induced brain FC. Furthermore, FC analysis of brain activity has
become a hallmark of lucidity. In low-consciousness states, FC of
the brain reflects its anatomical substrates [156,172]. From a holis-
tic point of view, the overall connectivity of brain networks is sig-
nificantly reduced during the transition from awakening to
anesthesia, especially in the parietal and frontal lobes [173]. Addi-
tionally, fMRI can reflect the functional relationship between corti-
cal and subcortical structures and can reveal interactions between
different cortical regions. Recent studies have shown that ketamine
and other anesthetics can directly disrupt the transmission of
information [157], while propofol reduces FC in the frontal cortex
[158] and sevoflurane mainly acts on the FC between the cortex
and the thalamus [159]. Various anesthetics act on different targets
and affect regional connectivity [14]. These differential patterns
are related to the electrical activity of the anesthetized cerebral
cortex, described by Mukamel et al. [151] as fragmented in time
and space, which exhibits an interruption in long-distance cortical
communication and a reservation in short-distance cortical com-
munication. In contrast, Wu et al. [160] found that although the
local coherence in most brain regions was relatively high, it was
reduced by the action of drugs (e.g., medetomidine and metopro-
lol), and isoflurane resulted in a decrease in local coherence in
the cingulate cortex. A research [161] showed that cortical net-
works are significantly affected by LOC during temporal states of
high integration, exhibiting reduced functional diversity and com-
promised informational capacity, whereas thalamocortical func-
tional disconnections emerge during states of higher segregation.



Table 5
Characteristics of EEG with different densities in anesthesia studies.

Feature Low Medium High

Number of electrodes <25 25–64 >64
Spatial resolution Poor Moderate Relatively good
Cost Low Acceptable Expensive
Convenience High Low Low

The characteristics of different densities are described in relative terms within the
technique of EEG, that are independent of other neuroimaging techniques. The
numbers of electrodes are summarized according to references [174–176].
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Theposterior regionsof thebrain’sDMNexhibit spatial reductions in
both functional diversity and integration with the rest of the brain
during LOC. These studies illustrate drug-specific differences based
on the differential targets and effects of each drug on FC. Different
anesthetic methods can produce distinctive FC patterns or a typical
resting-state fMRI pattern [162], which also indicates that fMRI net-
work connectivity analyses provide characteristic drug information.
Moreover, Huang et al. [163] found that the induction and recovery
phases of anesthesia may follow asymmetric neural dynamics.

Some studies have analyzed fMRI data from the perspective of
whole-brain network features. Standage et al. [164] found that a
higher isoflurane dose was associated with an increase in both
the number and isolation of whole-brain modules, as well as an
increase in the uncoordinated movement of brain regions between
these modules. Luppi et al. [165] showed that dynamic states char-
acterized by high brain integration are especially vulnerable to
general anesthesia induced by sevoflurane, exhibiting attenuated
complexity and diminished small-world characteristics. Further-
more, higher doses of sevoflurane (3% (in volume) and burst-
suppression) also compromise the temporal balance of integration
and segregation in the human brain. By studying resting-state FC
under varying depths of isoflurane-induced anesthesia in nonhu-
man primates, Areshenkoff et al. [166] found that the apparent
brain network fragmentation under anesthesia, rather than reflect-
ing an actual change in network structure, can be simply explained
as the result of a global reduction in FC. Vatansever et al. [167]
found a persistent modular architecture, yet significant reorganiza-
tion of brain hubs that formed parts of a wider rich-club collective
using resting-state fMRI collected from a group of healthy partici-
pants under propofol-induced unconsciousness. The results of the
study by Wang et al. [168] demonstrated that the rich-club reorga-
nization in functional brain networks is characterized by the
switching of rich-club nodes between the high-order cognitive
and sensory and motor networks during propofol-induced altera-
tion of consciousness and natural sleep.

Anesthesia studies using dFC analysis based on EEG are still in
its infancy, and some researchers have opened up new horizons
for anesthesia research using the dFC analysis based on fMRI.
Tsurugizawa and Yoshimaru [169] developed a resting-state fMRI
protocol to perform awake and anesthetized functional MRI in
mice, which demonstrated a shift from frequent broad connections
across the cortex, hypothalamus, and auditory-visual cortex to fre-
quent local connections within the cortex only under light anes-
thesia compared with the awake state. Yin et al. [170] found a
negative correlation between nodal entropy for the distribution
of dFC patterns and static FC strength in anesthetized monkeys,
but not in awake humans. Ma et al. [156] identified several
quasi-stable patterns that dynamically recurred from the awake
state into anesthetized states using the sliding window method
and K-means clustering. Golkowski et al. [171] conducted a pooled
spatial independent component analysis and K-means clustering of
resting-state fMRI data obtained from 16 volunteers during propo-
fol and 14 volunteers during sevoflurane general anesthesia, and
the results indicated that higher-order brain regions play a crucial
role in the generation of specific network patterns.

5. Discussion

In recent years, differences in FC between the states of anesthe-
sia and consciousness have mostly been studied using h-EEG and
fMRI. Because of the low time resolution, high cost, and
radiation-related risk of PET (although it does have a unique
nuclide-tracking ability), it is seldom used in network research
examining anesthesia and consciousness. Most research has
focused on the overall network configurations under anesthesia
and the interactions among specific cortical regions, which opens
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new research avenues for practical anesthesia monitoring in clini-
cal settings. Based on the methodological concepts of graph theo-
retical analysis and recent findings in network studies of
anesthesia, we summarize several potential ideas worth exploring
below: ① the influence of EEG channels on anesthesia monitoring,
② accurate monitoring of different anesthetics, ③ individualized
anesthesia monitoring, ④ monitoring the analgesic effects of nar-
cotic drugs under noxious stimulation, and ⑤ combination with
fNIRS for multimodal monitoring. We have also suggested method-
ological considerations and directions for future research.

5.1. Influence of EEG channels on anesthesia monitoring

A key question that might hinder the wide application of brain
network analysis in clinical practice is the potential optimal scheme
for EEG electrodes. More specifically, the potential optimal scheme
of EEG electrodes contains the determination of the optimal number
and position of the electrodes. Considering the apparent limitations
and constraints in clinical settings, it is difficult to maintain a bal-
ance between the available data and the convenience of the system
for anesthesia monitoring in clinical applications. Interestingly, not
all channels are required for reliable anesthesia monitoring. More-
over, in terms of convenience and practicability, an excessive num-
ber of electrodes can affect patient wearing in a clinical setting.
Generally, information betweenmultiple channels in the same area
is redundant. For instance, in most EEG-based network studies of
anesthesia (Table 4 [85,123–148]), although high-definition EEG
(i.e., 64 and 128 channels) was used for data acquisition, the main
observations were obtained based on information from a few speci-
fic areas. In fact, the optimal location of electrodes that would cap-
ture salient anesthesia-related brain activity deserves further
investigation. Nevertheless, the different choices of connectivity
analysis methods and network sizes make it difficult to compare
the results across different network studies of anesthesia. Through
a survey of recent studies [174–176], we summarized the character-
istics of EEGwith different densities (Table 5). Particularly, the opti-
mal setting of the channel number should take objective into
consideration; one should not consider Table 5 as a recommenda-
tion. Furthermore, we found that the frontal and parietal lobes con-
tributed the most features [42,70–72,173]. These findings
conformed with those of another study [177], wherein thought
was considered to be constrained automatically by the DMN and
deliberately by the frontoparietal network, and modulation was
conducted via the salience network. With the recent advances in
machine learning methods, several attempts have been made to
select channels with the most prominent features [178,179], which
may provide an alternative data-driven approach for optimal chan-
nel selection and location determination.

5.2. Monitoring of different anesthetics

One of the main drawbacks of the existing clinical monitoring
equipment for anesthesia is its limited feasibility, that is, it is suit-
able only for some anesthetics. Among the various anesthesia
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monitoring indicators (including the BIS, AEP, entropy, power spec-
trum analysis, and cerebral state index), only the BIS has under-
gone comprehensive, large-sample, and multicenter clinical
validation [56]. However, even the BIS, which is widely used in
the clinic, is useful only under the action of propofol, sevoflurane,
and a few other anesthetics. Moreover, the same BIS value cannot
represent the same DOA under different anesthetics, and the
effects of drugs also induce considerable differences. Even in the
presence of anesthetics, such as nitrous oxide and ketamine, the
BIS value increases during the unconscious state. In addition, BIS
is affected by many factors, such as opioids and muscle relaxants,
which limit the effectiveness of BIS in monitoring the combined
use of narcotic drugs. Moreover, it has been shown that intra-
venous fentanyl (2 lg�kg�1) can significantly reduce the dose of
general anesthetics needed to achieve LOC, which indicates that
fentanyl can synergistically enhance the inhibition of conscious-
ness by general anesthetics [180]. This finding makes the accurate
monitoring of anesthesia impractical via dosage assessment of
anesthetics. Moreover, the use of opioids brings great uncertainty
to the current clinical anesthesia monitoring. In fact, the modern
anesthesia process generally comprises a combination of multiple
anesthetics. Currently, there are no clinical indicators that can
comprehensively and accurately reflect brain states under different
anesthetics. We believe that the development of new methods for
accurate anesthesia would be significantly beneficial for a better
understanding of the underlying neural mechanisms. For instance,
Kim et al. [131] and Kim and Lee [181] proposed a method that
estimates the degree of integration of brain information under
anesthesia to distinguish different states under anesthesia. They
compared changes in brain information integration during anes-
thesia with different anesthetics, such as ketamine, propofol, and
isoflurane, and found that this method could help identify the state
of consciousness, thereby providing clinical evidence to show the
superiority of network methods in anesthesia monitoring with dif-
ferent anesthetics. In fact, the forehead or a single brain area signal
acquisition approach employed in most traditional anesthesia
monitoring methods limits the ability to effectively monitor the
effects of ketamine. Studies have shown that ketamine and other
anesthetics can directly disrupt information transmission between
distinct cortical areas [85]. EEG changes in different brain regions
may occur under the actions of a variety of drugs, accompanied
by alterations in information transfer and changes in brain syn-
ergy. The use of EEG network analysis is therefore expected, which
may provide novel indicators to improve practical anesthesia mon-
itoring under conditions with complex anesthetics.

5.3. Individualized anesthesia monitoring

Another major drawback of the existing anesthesia monitoring
system is the lack of sensitivity to account for individual differ-
ences in anesthesia monitoring. Heuristically, individual differ-
ences may result from considerable differences in drug
sensitivities (or responses) among people of the same age, weight,
sex, and other basic conditions. Although the anesthesia and opera-
tion times are almost the same under conditions of the same age
and physical condition, there are obvious differences in the DOA
or the recovery time of patients post operation [123]. Particularly,
using the same amount of anesthetics, some patients may regain
consciousness during the operation, while others may regain con-
sciousness immediately after the operation, with some patients
awake even hours after the operation. To aid clinicians in under-
standing the state of anesthesia, most indicators (including BIS,
M-entropy, and AEP) quantify the DOA to 0–100 intuitive values.
This numerical value makes it convenient for clinicians to judge
the anesthesia status. Nevertheless, there is evidence to show that
the incidence of intraoperative awareness increases with the use of
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BIS for DOA monitoring [182]. This finding reiterates the need to
account for individual differences in interpreting BIS values. Other-
wise, some patients would experience intraoperative awareness
because of inadequacies. While simplifying clinical monitoring,
existing anesthesia monitoring ignores the rich information from
the whole brain during anesthesia. Therefore, it is difficult to
describe the complex process of anesthesia using simple parame-
ters. Recently, Chennu et al. [123] found that monitoring of the
brain and consciousness in the clinic was influenced by different
individual sensitivities to anesthetics. To solve this problem, they
combined the evaluation of h-EEG spectrum connection networks
before, during, and after propofol anesthesia with the measure-
ment of blood drug concentrations. They found that participants
were more sensitive to drugs when they had a weak alpha-band
network without an anesthesia baseline, despite similar levels of
blood drug concentrations. According to this study, it is possible
for brain networks to predict individual susceptibility to propofol
in clinical settings. If this can be applied to the clinic, it may resolve
issues regarding individual differences that have confounded anes-
thesia monitoring over the years.

5.4. Monitoring the analgesic effects of narcotic drugs under noxious
stimulation

Unlike consciousness studies, general anesthesia in the clinic
consists of three factors: sedation, analgesia, and muscle relaxa-
tion. When all three factors are in line during general anesthesia,
they are indicative of optimal anesthesia. Current clinical anesthe-
sia monitoring is adequate for evaluating the depth of sedation for
muscle relaxation, but the evaluation of the DOA on analgesia
requires further improvement. Analgesic monitoring under anes-
thesia is not the same as in traditional pain research. Pain is based
on consciousness, and human pain involves subjective feelings.
When patients lose consciousness during general anesthesia, pain
mainly manifests as a stress response to a noxious stimulus and
a series of simultaneous physiological reactions. This type of stress
response to a noxious stimulus is usually monitored by hemody-
namic parameters, such as blood pressure and heart rate, as well
as by eye pupil movement, breathing, sweating, and other indica-
tors. The most obvious method is to observe the physical responses
after noxious stimuli are delivered. However, these indices have
great individual differences, and their specificities are not strong.
Because EEG signals have good temporal specificity and can extract
signals with different spectral characteristics, EEG may have great
potential in assessing the effects of anesthesia on analgesia. Nox-
ious stimulation has been shown to alter subcortical activity, while
the BIS index reflects the electrical activity of the cerebral cortex;
hence, the BIS cannot monitor the levels of analgesia and stress
[183]. However, other studies have shown that noxious stimuli
have an activating effect on the cerebral cortex [184,185]. Cumula-
tively, the evidence suggests that the physiological basis of the cor-
tical EEG response to noxious stimuli during general anesthesia is
complex. Most current anesthesia/analgesia monitoring methods
are multimodal to characterize complex brain responses to noxious
stimuli. For example, the qNOX index [186] takes different EEG fre-
quency band data and electromyography (EMG) data as inputs into
a fuzzy inference neural network, which is trained to return a com-
posite index ranging from 0 to 99 to describe a noxious stimulus by
referring to the body movement stimulated by laryngeal mask
intubation. Because of the introduction of the EMG signal, qNOX
will be affected when neuromuscular blocking agents are used.
For monitoring responses to noxious stimuli, rich information
within high-density EEG data has great potential. For instance,
Hartley et al. [187] proposed and validated an EEG-based monitor-
ing method for infant noxious stimulation. Using principal compo-
nent analysis to analyze the time window of interest and defined
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the EEG template induced by noxious stimulation, they statistically
compared the multichannel EEG patterns with the control group.
Specifically, a t-test was used to calculate each electrode at each
time point, indicating significant differences in brain activity
induced by noxious and non-noxious stimuli. When the t statistic
was higher than the 97.5% threshold, only eight electrodes were
recorded, where the Cz electrode had the most significant activity.
Notably, Hartley et al. [187] aimed to solve the problem in which
babies cannot express their pain to doctors, which is similar to
the conditions of anesthetized patients being unable to verbally
report pain.
5.5. Combination with fNIRS for multimodal monitoring

As we have briefly introduced in Section 2, fNIRS can measure
the changes in the parameters related to tissue oxygenation and
hemoglobin (Hb) and indirectly measure the effect of blood–nerve
activity on hemodynamics and oxygen consumption. These charac-
teristics may compliment the single-modal electrophysiological
monitoring. It is noteworthy that both EEG and fNIRS signals were
recorded to estimate the most widely used BIS. The feasibility of
using single-modal fNIRS as an alternative method for anesthesia
classification in clinical practice has already been assessed. For
instance, Hernandez et al. [188,189] placed a single-channel fNIRS
probe on the right side of the forehead and found that there were
significant differences in HbO2 and Hb between the patients in the
maintenance and recovery period. From the maintenance period to
the recovery period, HbO2 and total Hb levels decreased signifi-
cantly. Then, they used fNIRS-related indicators as features to train
a support vector machine (SVM) classifier. Compared to BIS and
MAC, the SVM classifier achieved higher sensitivity and specificity.
More importantly, they found that the proposed fNIRS–SVM
approach could identify patients’ awakening earlier before move-
ment. Moreover, the application of multichannel fNIRS may further
improve the monitoring of cerebral hemodynamic changes during
anesthesia. Liang et al. [190] designed a multichannel fNIRS system
specifically for anesthesia and proved its effectiveness for monitor-
ing the DOA. More recently, multimodal EEG–fNIRS has begun to
show its feasibility for anesthesia and/or consciousness monitor-
ing. In a recent study, Yeom et al. [191] used EEG–fNIRS to investi-
gate the electrical and hemodynamic responses during sedation
using midazolam and propofol. A gradual increase in EEG power
at low frequencies (< 15 Hz) at the frontal and parieto-occipital
areas and decreasing EEG power at high frequencies (> 15 Hz) were
revealed when consciousness was lost, while the spatio–temporal
changes were reserved during the recovery of consciousness
(ROC) from unconsciousness. These spatio–temporal EEG patterns
were independent of the sedatives used. Moreover, sudden phase
shifts in fronto-parietal connectivity at the LOC and ROC, together
with mild hemodynamic fluctuations, were also observed. It is
noteworthy that although both EEG and fNIRS were identified to
be relevant to clinical applications, few studies to date have used
fNIRS to study the FC and brain network associated with anesthesia
(Fig. 1). In contrast, EEG-based FC and network studies have
matured; simultaneously, EEG-based anesthesia monitoring has
been widely used in clinical practice. Considering that the brain
network plays a pivotal role in the studies of anesthesia, we posit
that the fNIRS-based brain network may be a future trend for stud-
ies of anesthesia, which may serve as a complementary method to
provide comprehensive information for anesthesia monitoring.
Given that multimodal EEG–fNIRS inherits the advantages of both
techniques, including insusceptibility to electromagnetic interfer-
ence and convenience for wearing of fNIRS, as well as high tempo-
ral resolution and flexible configuration of EEG, we believe that
EEG–fNIRS combined with advanced brain network analysis would
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be a promising method for the development of next-generation
anesthesia monitoring systems.

5.6. Methodological consideration and future directions

In the past decade, research on brain network studies on anes-
thesia and consciousness has been gaining momentum, which has
not only significantly improved our understanding of the complex
neural mechanisms underlying anesthesia and consciousness, but
also demonstrated great promise in the application of brain net-
works in various clinical applications. Here, we propose two main
future research directions that deserve attention to promote the
development of a practical method for accurate and convenient
anesthesia monitoring.

EEGs are known to be susceptible to external disturbances.
Existing EEG analysis techniques to solve the nonstationary char-
acteristics of EEG and various physiological artifacts (e.g., eye blink,
muscle activity, heartbeat, etc.) in a nonclinical environment have
gradually become mature [192,193]. However, the complex envi-
ronment of clinical surgery and requirements for real-time anes-
thesia monitoring present a great challenge to EEG artifact
removal. High electromyographic activity and electric device inter-
ference can cause a spuriously increased BIS value [194]. Further-
more, there are few automated methods for removing
electromyographic artifacts in real-time monitoring systems. For
instance, García-Cossio et al. [195] discomposed EEG into compo-
nents using canonical correlation analysis to remove electromyo-
graphic components. Nevertheless, advances in EEG artifact
removal would still be an important research direction in the
future. Moreover, the network analysis approach for most EEG net-
work studies of anesthesia was a static network, which did not
show the advantage of EEG in terms of high temporal resolution.
Specifically, current techniques for measuring the connectivity
between neurophysiological signals do not adequately explain
the temporal dynamics of synchronous patterns. For instance,
phase synchronization methods, including phase lag [81], and
phase locking [84], assume stationarity during the measurement
process, and the phase synchronization value is estimated by aver-
aging the phase differences over a period of several seconds,
thereby ignoring the temporal dynamics within the window.
Moreover, the model-based methods (i.e., GC, partial directed
coherence (PDC), directed transfer function (DTF), etc.) require a
certain length of time series for model construction [144]. There
is also no widely accepted method to estimate the PAC [97], in
which current methods have relatively poor sensitivity and require
long segments of experimental data. Recently, methods based on
information theory have attracted considerable attention. Lee
et al. [85] introduced PLE, which calculates the diversity of the
temporal patterns of the phase relationship. In contrast to the typ-
ical methods of phase synchronization, in which the strength of
connectivity is of interest, the proposed measure reflects whether
a given interaction between two signals consists of diverse or
stereotypic connectivity patterns. Thus, PLE better reflects the
time-varying dynamics of phase relationships. Samiee and Baillet
[196] proposed the time-resolved PAC to estimate the dynamic
PAC that can resolve up to one, optimally two cycles of the under-
lying low-frequency component. As discussed above, high time
resolution FC estimation methods have been adopted in anesthesia
studies. What needs to be explained is the application of the dFC
framework to EEG studies of anesthesia. First, the sliding window
technique used in several recent studies [135,155] has some appar-
ent limitations. Conversely, the choice of window length has
always been controversial, given that too short a window length
increases the risk of introducing spurious fluctuations in the
observed dFC, while a window length that is too long would
impede the detection of the temporal variations of interest [119].



J. Liu, K. Dong, Y. Sun et al. Engineering 20 (2023) 77–95
However, current studies have limitations originating from the use
of a typical rectangular window that might increase the sensitivity
to outliers in the detection of dFC, as the inclusion/exclusion of
instantaneous noisy observations would appear as a sudden
change in the dFC time-course [197]. Window optimization
approaches adopted in many studies [198–200] should be consid-
ered to eliminate the risk of a rectangular window. Second,
dynamic graph analysis is a popular avenue for extracting brain
network information from the dFC. Conversely, existing anesthesia
research has focused on the transition process of brain states and
has lost insight into the continuous functional reorganization of
the brain with respect to different network features. Furthermore,
the application of dFC state extraction (i.e., through K-means clus-
tering) for anesthesia monitoring is debatable, given that the state
extraction process requires long-time signal sampling. Although
dFC analysis has been widely applied in the diagnosis of
schizophrenia [201], autism [202], and mild cognitive impairment
[203], the high time resolution requirement of real-time monitor-
ing of anesthesia will be a great challenge for the application of
dFC. Given that accumulating evidence has suggested that brain
networks are dynamically connected, dynamic EEG connectivity
analysis that characterizes spontaneous changes in network-level
communication on a fine time scale and the corresponding tempo-
ral network measures are increasingly needed to unpack the com-
plex neural mechanisms of anesthesia.

Recently, machine learning methods have been widely devel-
oped and utilized in the field of brain disease diagnosis. In this
work, we limited our primary focus to the studies of consciousness
evaluation and did not elaborate on the applications of machine
learning in disease diagnosis. For researchers who are interested
in using machine learning to diagnose brain diseases, they could
refer to the reviews [204–206] and original articles [207–210]. In
the field of consciousness evaluation under anesthesia, machine
learning methods have been used to discriminate between awake
and anesthetized patients in the early 1990s [211,212]. As anesthe-
sia depth indices such as BIS have become increasingly popular,
neural networks and other machine learning methods have been
used to analyze EEG data to approximate BIS using other EEG char-
acteristics [213]. Recent studies have used artificial intelligence
techniques and spectrum analysis to directly analyze EEG signals
to estimate the DOA and compared the accuracy of the quadratic
discriminant analysis to analyze the EEG power in different fre-
quency bands [214]. For instance, Shalbaf et al. [215] put a combi-
nation of features (including beta-index, sample entropy, Shannon
permutation entropy, etc.) to a new neurofuzzy classification algo-
rithm, an adaptive neurofuzzy inference system with linguistic
hedges, and obtained 92% accuracy. Hashimoto et al. [216] identi-
fied and summarized several themes of artificial intelligence appli-
cations in anesthesiology and reviewed the application of machine
learning to the DOA monitoring, in which over 40 papers related to
EEG and machine learning research on anesthesia monitoring were
found. Recently, machine learning analysis of EEG connectivity fea-
tures has been used for anesthesia monitoring. For instance, Lioi
et al. [136] used directed coherence as a feature to identify the
DOA and compared its performance with that of the conventional
BIS index and the auditory middle latency response. They found
a superior performance in discriminating wakefulness from anes-
thesia (i.e., accuracy = 95%) of machine learning analysis of FC fea-
tures. Using 128-channel EEG recording, Duclos et al. [148]
compared an envelope-based measure (i.e., amplitude envelope
correlation (AEC)) and a phase-based measure (i.e., wPLI) of FC to
classify states of consciousness, in which a machine learning pipe-
line implemented using scikit-learn in Python was used for classi-
fication. The results showed that AEC showed higher overall
classification accuracy, particularly for distinguishing anesthetic-
induced unconsciousness from baseline (83.7%). It is noteworthy
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that the combination of machine learning and brain networks for
consciousness and anesthesia monitoring is still in its infancy,
and novel methods/techniques could be adopted from studies in
relevant fields, including disease classification and cognitive state
monitoring. In a recent study, Gao et al. [217] reviewed the appli-
cation of complex networks and deep learning for EEG signal anal-
ysis, covering a wide range of applications, including brain–
computer interfaces, neurological disorders, and cognitive analysis.

Heuristically, it is necessary to label anesthetic EEG data accord-
ing to the state of consciousness prior to applying supervised
machine learning techniques to anesthesia monitoring. Evaluating
the state of consciousness under anesthesia currently relies on
subjective scores (i.e., RSS, MAAS, and SAS), which are based on
the patient’s unresponsiveness to external disturbances [25–27].
Nevertheless, consciousness is a subjective experience that is not
necessarily coupled with connectedness or spontaneous respon-
siveness during anesthesia [24]. We are usually conscious, con-
nected to our environment, and react to it when we are awake.
When we fall asleep, our ability to react and connect to our envi-
ronment decreases, but it is only during early non-rapid eye move-
ment (NREM) sleep (rich in slow-wave activity) that we become
unconscious. Consciousness emerges during NREM sleep at night
and comes alive during dreams in rapid eye movement sleep,
although we remain disconnected from and largely unresponsive
to our environment [24]. Unresponsiveness is not equivalent to
unconsciousness under anesthesia, which provides the ideal objec-
tive of anesthesia sedation: inferring the underlying consciousness
level. Alternatively, although the temporal and spectral features
generated by current anesthesia monitoring equipment correlate
well with the delivered anesthetic concentration, they provide lim-
ited insight into the cerebral mechanisms underlying anesthetic
unconsciousness [218]. As discussed in Section 1.1, the potential
of brain connectivity and network analysis quantifies the global
organized behavior of neural circuits and provides insight into
the neural mechanisms underlying LOC under anesthesia, which
might become the gold standard for evaluating the underlying con-
sciousness level under anesthesia. This leads us to conclude that
the brain network plays an irreplaceable role in consciousness
level recognition under anesthesia compared with spectral analy-
sis. Combining machine learning with complex networks may be
a valuable research direction. The fusion of interpretable features
from brain networks and advanced data-driven methods would
help open up new avenues for identifying underlying conscious-
ness states under anesthesia.
6. Conclusions

Research on anesthesia and consciousness has long been an
essential topic in neuroscience. Despite various hypotheses, there
is no valid theory to date that is widely accepted. Researchers are
committed to using a variety of methods to study the state transfer
of brain consciousness under anesthesia. Obviously, the anesthesia
process is not solely caused by the suppression of a single brain
region. Whole-brain monitoring methods provide rich information,
and the analysis of network architecture provides some of the first
quantitative insights into the complex neural mechanisms of anes-
thesia. To date, most clinical indicators and monitoring systems are
based on single- or dual-channel EEG to assess the level of con-
sciousness. Nonetheless, accumulating studies have reported that
such a configuration would lead to an inaccurate prediction of
the DOA. The development of new technologies that are conve-
nient to use in the operating room can provide accurate and objec-
tive monitoring of anesthesia. Beginning with a brief introduction
of the nascent technique of the brain connectome, this review sum-
marizes recent network studies on anesthesia and consciousness.
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Moreover, we have identified potential research directions to extend
the current studies with regard to embracing new technologies
(including machine learning and multimodal neuroimaging). We
believe that incorporating network analysis with a portable EEG sys-
tem will lead to a promising solution for accurate anesthesia moni-
toring in clinical applications.
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