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Subpixel localization techniques for estimating the positions of point-like images captured by pixelated
image sensors have been widely used in diverse optical measurement fields. With unavoidable imaging
noise, there is a precision limit (PL) when estimating the target positions on image sensors, which depends
on the detected photon count, noise, point spread function (PSF) radius, and PSF’s intra-pixel position.
Previous studies have clearly reported the effects of the first three parameters on the PL but have neglected
the intra-pixel position information. Here, we develop a localization PL analysis framework for revealing the
effect of the intra-pixel position of small PSFs. To accurately estimate the PL in practical applications, we pro-
vide effective PSF (ePSF) modeling approaches and apply the Cramér–Rao lower bound. Based on the char-
acteristics of small PSFs, we first derive simplified equations for finding the best PL and the best intra-pixel
region for an arbitrary small PSF; we then verify these equations on real PSFs. Next, we use the typical
Gaussian PSF to perform a further analysis and find that the final optimum of the PL is achieved at the pixel
boundaries when the Gaussian radius is as small as possible, indicating that the optimum is ultimately
limited by light diffraction. Finally, we apply the maximum likelihood method. Its combination with ePSF
modeling allows us to successfully reach the PL in experiments, making the above theoretical analysis effec-
tive. This work provides a new perspective on combining image sensor position control with PSF engineering
to make full use of information theory, thereby paving the way for thoroughly understanding and achieving
the final optimum of the PL in optical localization.

� 2023 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In optical measurement, a point-like source is a basic and typi-
cal optical target. In Fig. 1(a), photons from a point source pass
through an optical system and appear on a pixelated image sensor
as a spot known as the point spread function (PSF), and then form a
digital image after pixelization. From the pixel intensities, the posi-
tion (x*, y*) of the PSF (or the target) on the image sensor can be
computed with subpixel precision. This process, which is known
as subpixel localization, has a wide range of applications in diverse
fields [1–9]. In astronomy, celestial bodies are imaged and
localized by means of telescopes [10] or star trackers [11] for uni-
verse exploration applications such as black hole detection [12,13]
and spacecraft navigation [14–16]. In biological microscopy, com-
bined with intermittently active fluorescent probes, the subpixel
localization of single molecules produces nanoscale reconstructed
images that transcend the diffraction limit (DL), enabling biologists
to observe cellular structures with unprecedented resolution [17–
20]. One of the most basic questions in these optical measurement
applications concerns the precision and the precision limit (PL) of
subpixel localization.

Due to unavoidable imaging noise such as photon shot noise
and pixel dark noise, subpixel localization has a theoretical PL,
which is mainly related to the detected photon count N, the pixel
dark noise rd

2, the PSF radius r, and the PSF’s intra-pixel position
(x, y) representing the relative PSF position with respect to the
pixel boundary. The Cramér–Rao lower bound (CRLB) in statistics,
which describes the minimum variance of an unbiased estimator
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Fig. 1. Effect of small PSFs’ intra-pixel position on precision limit (PL). (a) Optical imaging and subpixel localization process for a point source. The position (x*, y*) of the PSF
on the pixelated image sensor is estimated from the pixel intensities. (b) PL (for estimating x*) as a function of the PSF radius when neglecting the intra-pixel position of PSFs.
Three points with different PSF radii are marked on the curve, and the three PSFs along with their images are shown on the right. The PL computation details are as follows:
The PSFs are assumed to be 2D Gaussian functions; the detected photon count is 1500; the noise added is typical for real cases (see Section 3.1). In this case, the PSF with a
radius of 0.27 pixels achieves the best PL of 0.012 pixels. (c) PL (for estimating x*) as a function of the PSF’s intra-pixel position for the three PSFs with radii of 0.50 pixels (top),
0.27 pixels (center), and 0.16 pixels (bottom). The three PL curves on the cross section of y = 0.50 pixels are compared on the right. The smallest PSF achieves the best PL of
0.005 pixels at the pixel boundaries. r: radius of PSF.
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when estimating a parameter, has been widely applied for reveal-
ing and optimizing the localization PL [21–23]. Existing studies
have clearly demonstrated the effects of the first three arguments
on the PL function [23–25], but they usually neglect the intra-pixel
position information by assuming that the PSF is randomly located
in a square pixel and then averaging (i.e., taking the root mean
square (RMS) of) the PL over all intra-pixel positions. Such studies
generally conclude that, with a certain detected photon count and
noise, the PL(N, rd

2, r) reaches its optimum when the PSF has a
moderate size (e.g., Fig. 1(b)). The results of these studies work
for the typical PSFs of telescopes and microscopes with sizes com-
parable to or larger than the pixel size [21,26], in which case the
PL is almost unchanged at different intra-pixel positions. However,
when it comes to very small PSFs (e.g., r < 0.3 pixels), the
intra-pixel position effect can no longer be ignored; that is, the
PL significantly varies with the PSF’s intra-pixel position, and
very high precision can be achieved near the pixel boundaries
(Fig. 1(c)). The optimization of the localization precision limit PL
(N, rd

2, r, x, y) that embodies the effect of the intra-pixel position
of small PSFs has not been well studied theoretically or experimen-
tally. In addition, a PL analysis usually assumes the PSFs to be ideal
analytical functions such as Gaussian functions [23–25,27], and
thus may fail to accurately predict the localization performance
in real applications due to the deviation of real PSFs caused by
nonideal imaging conditions such as optical aberration, pixelation,
and pixel nonuniform response.

A theoretical PL analysis is useful only when the estimated PL
can be achieved in real applications. The maximum likelihood
estimation (MLE) has been applied for realizing the PL in many
optical measurement systems [28–31]. However, to the best of
our knowledge, it has not been commonly used in studies of
small-PSF systems such as star sensors. Compared with a tele-
scope, a star sensor can have a much smaller F-number and usu-
ally works with a short exposure time, making it a typical small-
PSF optical system that applies subpixel localization techniques.
The conventional localization methods applied in star sensors
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are mainly divided into two categories: centroiding methods
and fitting methods. The center of gravity (CG) method—a typical
centroiding method—calculates the moment of the intensities at
the image sensor pixels [32]. It is a fast yet biased estimator, pre-
senting an S-shape periodic systematic error (usually 0.03–0.10
pixels) [33]. Compensating for this error and determining the
influence of the threshold have been researched in many studies
[33–37].

Fitting methods fit the known PSFs to the measured pixel data
by means of least-squares fit; among these methods, the Gaussian
fitting (GF) method is commonly used [32]. Some refinement
methods such as the Gaussian grid method and the Gaussian ana-
lytic method have been proposed to reduce the computation cost
[38–40]. These GF-based methods achieve high accuracy in ideal
cases, but two reasons hinder them from realizing the PL in real
applications. The main reason is that real PSFs—especially small
real PSFs—deviate from Gaussian functions due to nonideal imag-
ing conditions, and fitting an inaccurate model introduces system-
atic errors (Section S1 in Appendix A). The second reason is that,
unlike the MLE, the least-squares fit does not make full use of noise
information (i.e., the noise probability density function) [27]. To
sum up, in this field, techniques have not been well established
for realizing the localization PL provided by information theory.

Here, we develop a localization PL analysis framework for
revealing the effect of the intra-pixel position of small PSFs in real
localization applications. In the framework, we first provide effec-
tive PSF (ePSF) modeling approaches to accurately reconstruct real
PSFs. Then, we apply the CRLB on the model to obtain an accurate
estimation of the localization PL. Based on the characteristics of
small PSFs, we derive simplified equations for finding the best PL
achieved near the pixel boundaries for an arbitrary small PSF.
Taking the typical Gaussian PSF as an example, we derive the opti-
mum of the PL(N, rd

2, r, x, y) and show at which PSF radius and
intra-pixel position the optimum is achieved. We also reveal that
this localization precision optimum is ultimately limited by phys-
ical light diffraction. Finally, we apply the MLE method to realize
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the theoretical PL in real applications. This work provides deep
physical insights into optical subpixel localization, extends the
high-precision localization literature to small PSFs, and provides
a new perspective on combining image sensor position control
(on the subpixel scale) with PSF engineering to optimize the local-
ization performance. We hope that this work will contribute to the
development of subpixel localization toward achieving the final
optimum of the PL in a wide range of optical measurement fields.
2. Material and methods

2.1. ePSF modeling and noise analysis

In the framework, we first provide ePSF modeling approaches
and a noise analysis to accurately describe the probability density
function of a pixel value in real localization applications. This is a
key requirement for the subsequent PL estimation and realization.
To avoid the usual deviation between an analytical PSF and a real
one, we work through the experimental ePSF method to model
the accurate relationship between the measured pixel intensities
and the target position [41,42], which can be described as follows:

Pij ¼ uij Dx;Dyð Þ þ sij ð1Þ

where Pij is the value of the pixel (i, j), sij is the background value at
the pixel, and uij(Dx, Dy) is the ePSF model, in which Dx = x* �
(j + 0.5) and Dy = y* � (i + 0.5). Because i and j represent the row
and column label of the pixel, we use (j + 0.5, i + 0.5) to describe
the position of the pixel center; thus, (Dx, Dy) represents the tar-
get’s relative position with respect to the pixel center. It should
be noted that ePSFs corresponding to different pixels are slightly
different due to optical aberration and pixel response non-
uniformity, so uij(Dx, Dy) is labeled with the pixel index ij.

Here, we introduce two ways to establish ePSFs according to the
application requirements and conditions. The first way is to form
very accurate ePSFs for cases with sufficient calibration conditions,
where each ePSF uij(Dx, Dy) corresponds to one target and one
specific pixel. Precise subpixel-scale relative movement between
the target and the image sensor is required. To form the relative
movement, a turntable can be utilized to rotate the entire optical
system, or a nanoscale displacement stage can be used to move
only the image sensor. Fig. 2(a) shows the ePSF modeling process
for a 1D localization case. In this 1D localization case, a 2D PSF
moves on a 2D image sensor but only along 1D, and the position
in this dimension will need to be estimated. At the left of
Fig. 2(a), we assume that the target moves in the x direction with
a subpixel step Dh, and its y* is fixed. At each step, multiple images
are sampled and then averaged to reduce the noise. Then, the aver-
age pixel value of pixel (i, j) as a function of the target position can
be obtained, but the function is now discrete with an interval of Dh
(Fig. 2(a), center). We assume that the ePSF changes smoothly as
the target moves slowly, so we utilize cubic spline interpolation
with the not-a-knot end condition to reconstruct the continuous
function. Finally, through a simple transform according to Eq. (1),
the ePSF model uij(Dx) can be obtained (Fig. 2(a), right). It
should be noted that the ePSFs corresponding to adjacent pixels
in the x direction (e.g., u23(Dx), u24(Dx), and u25(Dx)) are slightly
different, although this is not obvious in the figure. The calibration
interval Dh is related to the PSF size and is set as 0.05–0.25 pixels
in our cases. Some simulations analyzing the influence of Dh are
shown in Section S2 in Appendix A. For 2D localization cases, the
target moves in two directions, and the modeling process for
uij(Dx, Dy) remains the same. The advantage of this approach is
that the ePSFs are very accurate experimental models embodying
the pixel non-uniformity information; however, this approach
requires a great deal of calibration work. In this paper, we apply
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this ePSF modeling approach in laboratory experiments in order
to accurately estimate and realize the localization PL and verify
our simplified equations describing the effect of small PSFs’
intra-pixel position.

The second way is to form an approximate ePSF u(Dx, Dy) cor-
responding to one target, while neglecting optical and pixel non-
uniformity. In many cases, the condition that a target moves on
the image sensor with a subpixel step is not satisfied. The displace-
ment of the target in different images may be several pixels and is
unknown (Fig. 2(b), top). After experimental tests, we adopted sim-
plified modeling procedures of the method developed for star
images captured by the Hubble space telescope [41]. For each
image, the pixel values of the target within the region of interest
(ROI) are extracted, along with an initial position estimated via
the conventional CG method. Neglecting pixel non-uniformity,
the pixel values then become the samples of one ePSF u(Dx, Dy)
through a simple transform using Eq. (1). For example, in Fig.
2(b), the position of the target in image 1 is estimated to be (1.4,
1.4) using the CG method. The value of the pixel (1, 1) can be
remapped to u(�0.1, �0.1) by P11 � s11 = u(1.4–1.5, 1.4–1.5). The
pixel value P12 can be remapped to u(�1.1, �0.1) by P12 � s12 =
u(1.4–2.5, 1.4–1.5). If the ROI of the target includes 3 � 3 pixels,
nine samples of u(Dx, Dy) can be obtained from each image.

After we have all the samples from multiple images, we evalu-
ate the ePSF at q � q grid points with an interval of Dh. In the cen-
ter part of Fig. 2(b), we set Dh as 0.25 pixels and draw blue dashed
lines with an interval of Dh. The intersection points of the blue
dashed lines represent the grid points where the ePSF is evaluated.
For each grid point, the samples within Dh in Dx and Dy are aver-
aged, and the samples that are 2.5r away from the mean are
rejected (where r is the standard deviation of these samples).
The final mean is used as the ePSF value at this grid point. Finally,
cubic spline interpolation is performed to obtain the final ePSF
(Fig. 2(b), bottom). In the paper, we apply this approach to real star
observations. For convenience, the ePSFs developed here include
the target flux, so that each ePSF corresponds to one target. It is
certainly possible to normalize an ePSF in order to make it adapt
to multiple targets with the same intensity distribution but a dif-
ferent flux.

Next, the noise is analyzed based on the pixel response model in
European Machine Vision Association (EMVA) 1288 standard [43].
As shown in Fig. 2(c), photons hit a pixel and produce light signal lij
electrons (with mean value llij

and variance value r2
lij
). The number

of light-induced electrons fluctuates (which is known as ‘‘shot
noise”) and follows a Poisson distribution so that llij

¼ r2
lij
. Aside

from the light-induced signal, the pixel value is induced by the
dark signal dij (with mean value ldij

and variance value r2
dij
). The

sum of the two signals is then amplified by the pixel system gain
K and is digitized and converted into the pixel value Pij. Some
assumptions and approximations are made in this work. The quan-
tum noise (with variance rq

2) is quite small compared with the light
noise and the dark noise, so it is neglected here. Since the noise of
the dark signal is mainly caused by thermally induced Poisson-
distributed electrons, we assume that the dark signal includes
two parts: the constant part d0,ij (with mean ld0;ij

and variance 0)

and the Poisson part d1,ij (with mean value ld1;ij
and variance value

r2
dij
, where ld1;ij

¼ r2
dij
). In the pixel value side, the background sij

induced by the dark signal also has two corresponding parts: the
constant-part-induced one s0,ij and the Poisson-part-induced one
s1,ij. In this model, the sum of the light signal lij and the dark
Poisson signald1,ij, which is givenby (lij+d1,ij) or (Pij� s0,ij)/K, is called
the fluctuating electronic signal (FES). The FES follows a Poisson
distribution. The relationship between its mean value (lFES) or
variance value (r2

FES) and the ePSF (uij(Dx, Dy)) is as follows:



Fig. 2. ePSF modeling and noise analysis. (a) Process for the first approach to obtain accurate ePSFs. Images when the target is at different positions with an interval of Dh are
shown in the left figure. Ten pixels (rows 2–3, columns 2–6) are marked in red, and their pixel values versus the target position are shown in the middle figure. Through a
simple transform via Eq. (1), the ePSFs for six pixels (rows 2–3, column 3–5) are computed and are shown in the right figure. (b) Process for the second approach to obtain an
approximate ePSF. Samples of the ePSF u(Dx, Dy) from three images are shown in the middle figure. For the grid point (0, 0) shown as a black dot, the samples within the red
window are averaged as u(0, 0). (c) Noise analysis based on the standard pixel response model. The assumptions and approximations in this work are marked in red.
DN: digital number; FES: fluctuating electronic signal; g: quantum efficiency; lij: light signal at the pixel (i, j); dij: dark signal; d0,ij, d1,ij: constant part and Poisson part of dark
signal, respectively; rq

2: quantum noise; K: pixel system gain.
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lFES ¼ r2
FES ¼ llij

þ ld1;ij
¼ uijðDx;DyÞ=K þ r2

dij
ð2Þ

Then, we have the following probability density function for a
pixel value:

p½Pijjðx�; y�Þ� ¼ p½FES ¼ ðPij � s0;ijÞ=Kjðx�; y�Þ�

¼
½uijðDx;DyÞ=K þ r2

dij
�ðPij�s0;ijÞ=K

½ðPij � s0;ijÞ=K�! e
�½uijðDx;DyÞ=Kþr2

dij
� ð3Þ
2.2. PL estimation

With clear knowledge of the probability density functions for
the measured pixel values, the PL in real localization applications
can be accurately estimated following the CRLB calculation process
[23]. The PL also reflects the accuracy limit for an unbiased estima-
tor [20]. Based on Eq. (3), the joint probability density function for
the pixel values in an arbitrary ROI is

p½Pjðx�; y�Þ� ¼
Y
ij2ROI

½uijðDx;DyÞ=K þ r2
dij
�ðPij�s0;ijÞ=K

½ðPij � s0;ijÞ=K�! e
�½uijðDx;DyÞ=Kþr2

dij
�

ð4Þ
where P is the vector including all the pixel values in the ROI. The
CRLB for estimating x* by an unbiased estimator is

CRLBx ¼ 1

P
ij2ROI

½@uijðDx;DyÞ=@x� �2
KuijðDx;DyÞþK2r2

dij

� P
ij2ROI

½@uijðDx;DyÞ=@x� �½@uijðDx;DyÞ=@y� �
KuijðDx;DyÞþK2r2

dij

( )2� P
ij2ROI

½@uijðDx;DyÞ=@y� �2
KuijðDx;DyÞþK2r2

dij

ð5Þ

The calculation details are shown in Section S3 in Appendix A.
The PL for estimating x* is PLx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CRLBx

p
. Estimating y* is analo-

gous (just exchange the positions of x* and y* in Eq. (5)). In real
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applications, the K and r2
dij

of the image sensor can be obtained

using the photon transfer method [43]. Notably, uij(Dx, Dy) and
its derivatives vary with the target position. Thus, the target’s
intra-pixel position has an effect on the localization PL.

2.3. Analysis of the effect of small PSFs’ intra-pixel position on the PL

Due to the complicated form of Eq. (5), it is difficult to analyti-
cally research the effect of intra-pixel position on the PL. Neverthe-
less, for very small PSFs, some approximations can be made to
simplify the equation.

Consider a case for estimating the x* of a very small PSF. The
influence of y* is small, so we first assume that the PSF flux is only
distributed in one row of the pixel array. When the PSF is located at
most positions within the pixel (i, j) except around the pixel
boundaries, the flux I (unit: digital number (DN)) of the PSF is
almost concentrated in this pixel. The following approximations
can be made:

ROI � 1 pixel
uij � I

@uij

@x�
� 0

8>>><
>>>:

ð6Þ

where we write uij(Dx, Dy) as uij for convenience. Then, the recip-
rocal of Eq. (5), which represents the amount of information
embodied in the measured pixel data, can be reduced to the
following:

1
CRLBx

� ½@uij=@x
��2

Kuij þ K2r2
dij

� ½@uij=@x
��2½@uij=@y

��2

ðKuij þ K2r2
dij
Þ2

� ½@uij=@y
��2

Kuij þ K2r2
dij

¼ 0

ð7Þ
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Thus, it is impossible to precisely localize a very small PSF con-
centrating in one pixel. This case is always avoided by defocusing
the optics in small-PSF systems.

However, when the PSF is located near the pixel boundaries, the
result is totally different. The flux is distributed in two adjacent
pixels. We assume that the larger pixel value is less than ten times
the smaller pixel value. Otherwise, it can be approximated as the
case above. Here, the following approximations are made:

ROI � 2 pixels
uij þui;jþ1 � I

@uij=@x
� � �@ui;jþ1=@x

�

½@ui;jþ1=@y
��=½@ui;j=@y

�� � ui;jþ1=uij ¼ a;a 2 ½1=10;10�

8>>><
>>>:

ð8Þ

where a is the ratio of the two pixel values.
We also assume that the dark noise is uniform for different pix-

els, the variance of which is then represented by rd
2. The reciprocal

of Eq. (5) becomes

1
CRLBx

� ½@uij=@x
��2 I=K þ 2r2

d

ðuij þ Kr2
dÞðui;jþ1 þ Kr2

dÞ
�

(

K½ð1� aÞr2
d�

2

½a2ðuij þ Kr2
dÞ þui;jþ1 þ Kr2

d�ðuij þ Kr2
dÞðui;jþ1 þ Kr2

dÞ

)

ð9Þ
If the light signal is much larger than the dark noise, Eq. (9) can

be simplified as follows:

1
CRLBx

� ½@uij=@x
��2 I=K

uijui;jþ1
ð10Þ

Then, the PL for estimating x* is

PLx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CRLBx

p
�

1

j@uij=@x� j


I=K þ 2r2
d

ðuij þ Kr2
dÞðui;jþ1 þ Kr2

dÞ
� K½ð1�aÞr2

d �
2

½a2ðuij þ Kr2
dÞ þ ui;jþ1 þ Kr2

d �ðuij þ Kr2
dÞðui;jþ1 þ Kr2

dÞ

s ;with r2
d

1
j@uij=@x� j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uijui;jþ1

N

r
;without r2

d

8>>>>>>><
>>>>>>>:

ð11Þ

where N = I/K, @uij

@x�

��� ��� is the absolute value of @uij

@x� . Notably,
@uij

@x�

��� ��� of small

PSFs can be very large near the pixel boundaries, so the PL perfor-
mance can be very high. Eq. (11) can be used to find the best PL
and the corresponding intra-pixel position for an arbitrary small
ePSF. Moreover, because the ePSF is an accurate experimental
model, Eq. (11) can provide an accurate estimation in practical
small PSF localization applications.

Next, we use the typical Gaussian function as the PSF to perform
a further analysis on the final optimum of the PL. Because we have
assumed that the PSF is distributed in one row of the pixel array, uij

can be represented by the integral of a 1D Gaussian function, that is

uij ¼
I

r
ffiffiffiffiffiffi
2p

p
Z jþ1

j
e�

ðx�x�Þ2
2r2 dx

½@uij=@x
��

x��jþ1
¼ I

r
ffiffiffiffiffiffi
2p

p ½e�ðj�x�Þ2
2r2 � e�

ðjþ1�x�Þ2
2r2 � � � I

r
ffiffiffiffiffiffi
2p

p e�
ðjþ1�x�Þ2

2r2

8>>><
>>>:

ð12Þ
where x* � j + 1 means that the PSF is located near the pixel bound-
ary j + 1. By combining Eqs. (11) and (12), we can compute the PL
near the pixel boundary for a Gaussian function. Then, we can find
that Eq. (9) reaches its maximum when r ? 0 and x* = j + 1. That is,
the PSF is located exactly at the pixel boundary with uij = ui,j+1 = I/2.
The maximum is

1
CRLB

� �
� 2ðI=KÞ2
pr2ðI=K þ 2r2Þ ¼

2N2

pr2ðN þ 2r2Þ ð13Þ

x max d d
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Thus, the optimum of the PL is

½PLx�optimum �
r
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðN þ 2r2

dÞ
2

s
; with r2

d

r
ffiffiffiffiffiffiffi
p
2N

r
; without r2

d

8>>>><
>>>>:

ð14Þ

So far, the optimization problem of PLx(N, rd
2, r, x) has been

solved for Gaussian functions. That is, with certain photons
detected, the PL reaches the optimum at the pixel boundaries when
the PSF radius is as small as possible, and Eq. (14) can be used to
estimate this optimum.

It should be noted that, physically, r cannot be infinitely small
due to light diffraction. The DL (unit: pixels) is

½DL� ¼ 1:22kF
a

ð15Þ

where k represents the wavelength, F is the F-number of the optical
system, and a is the pixel size. The widely known DL describes the
distance from the peak to the first zero of an Airy disk model. The
Airy disk is usually approximated as a Gaussian function, for which
the region within three times the Gaussian radius from the peak
covers almost all the energy. Thus, the relationship between the
DL of the Airy disk and the radius of the approximated Gaussian
function is

½DL� � 3r ð16Þ

By combining Eqs. (14) and (16), the optimum of the localiza-
tion PL is ultimately limited by light diffraction, which can be
described as follows:

½PLx�optimum �
½DL�
3N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðN þ 2r2

dÞ
2

s
; with r2

d

½DL�
3

ffiffiffiffiffiffiffi
p
2N

r
; without r2

d

8>>>><
>>>>:

ð17Þ
2.4. MLE-based localization for realizing the PL

Finally, the MLE is applied to the established model of the
observed pixel intensities to reach the localization PL at each
intra-pixel position. The position that maximizes the probability of
the measured pixel values is the position we estimate. The minus
logarithm of the probability is used as the cost function:

v ¼ � lnp½Pjðx�; y�Þ�
¼

X
ij2ROI

½uijðDx;DyÞ=K þ r2
dij
� þ

X
ij2ROI

ln½ððPij � s0;ijÞ=KÞ!��
X
ij2ROI

½ððPij � s0;ijÞ=KÞ lnðuijðDx;DyÞ=K þ r2
dij
Þ�

ð18Þ

The iterative Newton–Raphson method is utilized to minimize
the cost function and solve for the target position.

dx�½n�

dy�½n�

" #
¼ �ðH½n�Þ�1

J ½n�;
x�½nþ1�

y�½nþ1�

" #
¼ x�½n�

y�½n�

" #
þ dx�½n�

dy�½n�

" #
ð19Þ

where J and H are the Jacobian and Hessian matrices, respectively,
of the cost function v (the computation details are shown in Sec-
tion S3 in Appendix A). The initial iterative value ðx�½0�; y�½0�Þ can be
calculated using the CG method. The ePSF model uij(Dx, Dy) and
its derivatives can be determined and tabulated ahead of time.
Typically, the localization procedure is fast and reaches conver-
gence in very few iterations (usually 2–4 iterations in our experi-
ment, depending on the convergence condition).
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3. Results

3.1. Numerical simulations

We first use numerical data to characterize the performance of
the framework. We integrate Gaussian functions with different
radii over pixels and generate simulated spots at different intra-
pixel positions. Poisson-distributed light noise and dark noise are
introduced. The flux I is set as 300 DN. The pixel system gain K is
set as 0.2, so the photo–electron count N is 1500. The variance
r2

dij
representing the dark noise is set as 25 (corresponding to 1

DN standard deviation in a pixel value, according to the noise
model) for noise 1 and 250 for noise 2. The parameters (except
for noise 2) are close to those measured in our experiments.

The ePSFs are modeled using the first approach in Section 2.1.
The PL for estimating x* is computed at each intra-pixel position
using Eq. (5). For each PSF, the average PL over all intra-pixel posi-
tions is computed (by taking the RMS), and the best PL and best
intra-pixel position are found. Here, for small Gaussian PSFs, the
best PL is obtained at the pixel boundaries. As reported in previous
studies, the average PL as a function of the PSF radius is shown in
red curves in Fig. 3(a). We then plot the best PL over the PSF radius
as blue curves for comparison. The result shows that, although a
very small PSF has a bad average PL, it can achieve very high per-
formance at the pixel boundaries, and the performance continues
to improve as the PSF size decreases, until the PSF size is limited
by light diffraction. The best PL estimated by Eq. (14) is shown as
black curves in Fig. 3(a). The first approximation in Eq. (14) is used
for noise 2 (high-level noise), and the second is used for noise 1
(low-level noise). The black curves show excellent agreement with
the blue curves for PSFs with r < 0.3 pixels. The equation is verified
to be effective for small Gaussian PSFs.

The developed MLE localization method is then tested on the
simulated images. Here, we directly compare the localization accu-
racy with the PL, because the precision reflects the accuracy for an
unbiased estimator. In Figs. 3(b) and (c), the localization results in
the x direction for two spots (r = 0.2 pixels, r = 0.3 pixels) along a
trajectory (x = 0–1 pixels, y = 0.5 pixels) with typical noise level
(noise 1) are shown. At each position, multiple images (repeat
Fig. 3. Simulation results. (a) The average PL over all intra-pixel positions, best PL, and
levels are tested. (b) PL and localization result for the spot with r = 0.3 pixels along the tr
the right, where the estimations using Eqs. (11) and (14) are also shown. (c) PL and loc
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number n = 500) are localized, and the RMS error is calculated to
represent the accuracy. The PL (red curves) is computed using Eq.
(5). The result demonstrates that the combination of MLE and ePSF
modeling greatly improves the localization accuracy compared
with the CG method and achieves the PL at each intra-pixel posi-
tion. In the enlarged view of the localization result in Figs. 3(b)
and (c), the estimations using Eqs. (14) and (11) (the second
approximation) are shown. As is verified in Fig. 3(a), Eq. (14) accu-
rately predicts the best PL obtained at the pixel boundaries. Eq.
(11), which describes the PL near the pixel boundaries for an arbi-
trary small PSF, is verified to be effective within 0.25 pixels from
the pixel boundaries in this result. Localization results for more
spots are shown in Section S4 in Appendix A, in which the unbi-
asedness of the developed method is also verified at each intra-
pixel position.

3.2. Experimental results

Next, we performed localization experiments in the laboratory
to test the framework. The experimental setup is shown in Fig.
4(a). A small-PSF optical navigation instrument (a Tsinghua
University pico-type star sensor) is used for image acquisition,
and a high-accuracy three-axis turntable is used to generate rela-
tive movement between the optical instrument and a point source.
The photons from the point source go through a collimator and
arrive at the complementary metal–oxide–semiconductor (CMOS)
image sensor of the star sensor fixed on the turntable. The rotating
direction of the turntable in the experiments makes the spot move
in the x direction. The focal length of the optical system is 25 mm,
and the pixel size of the image sensor is 5.3 lm � 5.3 lm. The
rotating step is set as 0.0005�, so the step of the spot in the image
is about 25 mm � tan(0.0005�)/5.3 lm = 0.041 pixels. We rotated
the turntable many times to cause the spot to have a total displace-
ment of about 10 pixels, and we sampled 30 images at each posi-
tion. The images sampled at half of the positions were used for
ePSF modeling; those at the other half were used for localization
testing. The background sij was measured to be 37 DN, the system
gain K was 0.14, and the variance r2

dij
of the dark signal was 54.40.

The difference of these parameters for different pixels is neglected
best PL estimated using Eq. (14), versus the PSF radius, are shown. Two dark noise
ajectory of x = 0–1 pixels and y = 0.5 pixels. An enlarged view of the PL is shown on
alization result for the spot with r = 0.2 pixels.
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here. The calculating window of the spot was set as a 5 � 5 pixels
region centering on the brightest pixel. The real position reference
was set according to the rotating information of the high-accuracy
turntable (Section S5 in Appendix A).

We first tested the framework on a very focused spot (Fig.
4(a)) in the x direction. The ePSF was obtained using the first
approach in Section 2.1. The PL at each position was obtained
using Eq. (5). Conventional methods and the developed method
of using the MLE to fit ePSF were used to localize the spot.
The localization RMS error and the mean error of 30 repeat mea-
surements at each position were calculated. The results show
that, compared with the CG and GF method, the MLE method
improves the accuracy from approximately 0.100 to 0.011 pixels,
by about one order of magnitude, whereas the RMS value of the
PL curve is 0.010 pixels (Fig. 4(b)). The MLE localization result
shows good agreement with the PL, making the theoretical PL
analysis meaningful and effective in real applications. The result
from Eq. (11) (the second approximation) is also shown on the
right in Fig. 4(b). The simplified equation was verified to be
effective for estimating the best intra-pixel regions and the cor-
responding PL performance for the real PSF. A high accuracy of
better than 0.005 pixels near the pixel boundaries was success-
fully predicted and achieved.

In addition, in contrast to the conventional methods, the
localization error of the developed method can be effectively
decreased by utilizing the unbiasedness. This method achieves an
error of 0.004 pixels through 30 repeat measurements (Fig. 4(c)).
However, it is not obvious that the multiple measuring result is
better near the pixel boundaries, and the performance obtained
from n measurements is not improved by

ffiffiffi
n

p
. This is mainly

because the turntable inevitably introduces extra position errors
(Section S6 in Appendix A). The limited performance of the exper-
imental setup—instead of the developed method—hinders a further
increase in localization performance.

Another less-focused spot (Fig. 5(a)) was generated by adjusting
the optics of the collimator. The conventional methods show better
Fig. 4. Localization experimental setup and results. (a) Experimental setup and an imag
with that of the CG method, the GF method, and the estimated PL. The RMS values o
measurements for the three methods. The diagram on the right shows an enlarged view
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accuracy for this spot (about 0.050 pixels) than for the former spot.
The MLE method exhibits a stable, good performance, with a local-
ization error of 0.010 pixels by means of a single measurement
(Fig. 5(b)) and an error of 0.003 pixels by means of 30 repeat mea-
surements (Fig. 5(c)). The MLE result also shows good agreement
with the PL, and Eq. (11) is verified to be effective. Although the
average localization performance is still about 0.010 pixels, no
local accuracy can reach 0.005 pixels, like that in Fig. 4(b). As
expected, the intra-pixel position effect is not as obvious for this
less-focused spot.

3.3. Real night sky observation

Ground-based real night sky experiments are commonly con-
ducted to test the accuracy of star sensors [44]. Unlike on-orbit
cases, ground-based observation is influenced by atmospheric
‘‘seeing” conditions, and additional complex noise is introduced
into star images. Since our framework does not include an atmo-
spheric noise model, the noise introduces a noticeable deviation,
especially to the localization result from a single measurement.
Moreover, due to the rotation of the earth, it is not possible to fix
the positions of the stars and perform repeat measurements using
a fixed optical system. We cannot obtain the mathematical expec-
tation of the localization accuracy at one certain position and then
compare it with the PL estimated at this position. In this challeng-
ing case, we can verify two things: ① The combination of MLE and
ePSF modeling can improve the localization and navigation
performance of the star sensor, and the average localization accu-
racy over multiple positions can approach the average estimated
PL; and ② the intra-pixel positions of stars have an effect on the
localization performance, and the high-performance region can
be approximately estimated. In the experiment, a star sensor was
fixed on a platform with its camera pointing to the zenith, and real
star images were sampled. The images were sampled with a time
interval of 366 ms, and 1000 frames were analyzed. We utilized
the second way to determine the approximate ePSF for each star
e of the focused spot. (b) Localization accuracy of the developed method compared
f the curves are calculated and labeled. (c) Mean localization error via 30 repeat
of the result from the developed method.



Fig. 5. Localization experiment results for another spot. (a) Image of the less-focused spot. (b) Localization accuracy of the proposed method compared with that of the CG
method, the GF method, and the estimated PL. (c) Mean localization error via 30 repeat measurements for the three methods.
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from multiple images (Fig. 6(a)). The ROI of the ePSF was set as
7 � 7 pixels, and we evaluated the ePSF at 29 � 29 grid points
(where Dh is 0.25 pixels).

Then, the 2D positions of the stars in the images were deter-
mined using the developed method. We show the reconstructed
trajectories of two stars in Fig. 6(b), which clearly demonstrate
the effectiveness of the combination of the MLE and ePSF modeling
in reducing the random error and the systematic error, respec-
tively. We used quadratic polynomials to fit the localization results
in the x and y directions, and used the RMS of the residuals to rep-
resent the average localization accuracy. For the two stars, the
accuracy in the x direction from the conventional method (CG) is
0.065 and 0.084 pixels, and that from the developed method
(MLE) is 0.021 and 0.026 pixels, showing agreement with the esti-
mated average PLs of 0.024 and 0.026 pixels (Section S7 in Appen-
dix A for the results for other stars). The attitude determination
accuracy of the star sensor is then greatly improved (Section S7).

Furthermore, we equally divided the estimated PLs into three
levels; then, each pixel was divided into three regions: a region
with low errors (RLE), a region with medium errors (RME), and a
region with high errors (RHE). An example is shown in Fig. 6(c).
The PL for localizing a real star in the y direction is estimated
and given. Every pixel region is divided into the three subpixel
regions according to the PL result. We then evaluate the experi-
mental localization performance at these three predicted regions
and show the results for eight stars (Fig. 6(d)). Although the spot
size is affected by the atmosphere, the accuracy at RLE is better
than that at RHE (the RMS values of the RHE and RLE curves are
0.025 and 0.020 pixels at the left side of Fig. 6(d), and 0.026 and
0.020 pixels at the right side of Fig. 6(d)). The results for all stars
are shown in Section S7. This experiment demonstrates that the
combination of the MLE and ePSF modeling greatly improves the
localization and navigation performance of the star sensor, and
verifies the potential of locating spots at specific intra-pixel regions
for better performance, even in cases with complex noise.
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4. Discussion and conclusions

In subpixel localization, the optimization problem of the
PL(N, rd

2, r) has been well studied. The PL reaches the optimum
with a high detected photon number N, a low pixel dark noise
rd
2, and a moderate PSF radius r. The intra-pixel position (x, y)

of the target is usually neglected, because it has almost no effect
on the PL for a typical PSF used in telescopes or microscopes.
However, the PL significantly varies with the intra-pixel position
for very small PSFs, and very high precision can be achieved near
the pixel boundaries. This is because the pixel intensity gradient
there is very large, which permits easy identification of slight
position variations.

In this work, we developed a localization PL analysis framework
embodying the effect of the intra-pixel position (x, y) for real local-
ization applications. To accurately estimate the PL in practical
cases, we provided experimental ePSF modeling approaches and
applied the CRLB on the ePSF. Based on the characteristics of small
PSFs, a simplified equation (Eq. (11)) was derived for describing the
PL near the pixel boundaries for an arbitrary small ePSF. The equa-
tion was verified on real ePSFs in laboratory experiments. Then, we
used a typical Gaussian PSF to perform a further analysis of the
optimization problem of PL(N, rd

2, r, x, y). By deriving Eq. (14), we
found that the final optimum of PL is achieved at the pixel bound-
aries when the Gaussian radius is as small as possible, until it is
limited by light diffraction. Although it is well known that subpixel
localization methods have been used to transcend the DL, our work
reveals that physical diffraction does limit the final optimum of the
localization PL (Eq. (17)). Finally, the MLE method was applied. Its
combination with ePSF modeling successfully reached the PL in
experiments, making the theoretical PL analysis meaningful and
effective. This framework provides deep physical insights into sub-
pixel localization theory and provides accurate and detailed guid-
ance for practical localization experiments. It is applicable for
general cameras and is not restricted to point sources; rather, it



Fig. 6. Results for real stars. (a) Setup and real star images. One star is extracted from each frame and modeled as an approximate ePSF. (b) Reconstructed trajectories of two
stars via the conventional method (CG) and the MLE method. (c) Estimated PL for a real star when determining its position in the y direction. A pixel is divided into three
regions according to the PL. (d) Localization accuracy at the three subpixel regions for eight stars in the x direction (left) and the y direction (right). RLE: region with low error;
RME: region with medium error; RHE: region with high error.
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can be extended to general optical targets with sharp image
features.

The main limitation of this work is that we only theoretically
and experimentally revealed the effect of the intra-pixel position
of small PSFs; it is not always possible to retrieve the best localiza-
tion performance using a fixed optical system. Developing an opti-
cal system with an accurately movable image sensor, such as the
pixel-shifting-based high-resolution camera [45], is our future
research direction. We hope that this work will pave the way for
combining PSF engineering with image sensor position control in
order to make full use of information theory and achieve the final
optimum of the localization PL in optical measurement.
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