

Contents lists available at ScienceDirect

Engineering

journal homepage: www.elsevier.com/locate/eng

Research Green Chemical Engineering—Article

面向可再生资源制氢的Ni_xMg_{1-x}O载氧体基于晶格限域的氧活性调控研究

田昊ab, 裴春雷ab, 陈赛ab, 武杨ab, 赵志坚ab, 巩金龙ab.c*

^a Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China ^b Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China

^c Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China

ARTICLE INFO

Article history: Received 2 April 2020 Revised 5 August 2020 Accepted 10 August 2020 Available online 25 February 2022

关键词 化学链 乙醇蒸汽重整 镍 制氢 固溶体

摘要

生物乙醇化学链蒸汽重整(CLSR)是一种能效高且碳中性的氢气生产技术。本文研究了Ni₁Mg_{1,2}O固溶体作为载氧体在乙醇化学链蒸汽重整过程中的应用。在Ni₁Mg_{1,2}O固溶体中,在Mg²⁺的调节作用下,化 学链蒸汽重整过程表现为三个反应阶段;第一阶段,Ni₁Mg_{1,2}O固溶体中,在Mg²⁺的调节作用下,化 学链蒸汽重整过程表现为三个反应阶段;第一阶段,Ni₁Mg_{1,2}O固溶体中,在Mg²⁺限域下的体相氧与乙醇反应,经 Ni₂Mg_{1,2}O固溶体部分还原;第二阶段,随着表面氧的消耗,水分子和Mg²⁺限域下的体相氧与乙醇反应,经 CH₃COO*路径生成氢气;第三阶段,表面氧和体相氧消耗后,生成的金属Ni催化乙醇蒸汽重整反应,使其 持续产氢。在具有不同组成的Ni₂Mg_{1,2}O固溶体中,Ni_{0,4}Mg_{0,6}O在水碳比为1的条件下表现出每摩尔乙醇 产生4.72 mol氢气的高氢气选择性和超过30个循环的高稳定性。上述研究表明,固溶体型氧载体的设计 为开发和应用化学链过程提供了一种新的策略。

© 2022 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND licenses (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. 引言

氢气(H₂)作为能源载体具有碳排放为零的环境效益 [1-4]。然而,当前世界范围内超过95%以上的H₂仍然是 以化石燃料作为原料进行生产的,该方式带来的二氧化碳 (CO₂)排放甚至高于直接利用化石燃料提供能源的过程 [5]。因此,减少对于化石燃料的依赖和采用可再生清洁 资源作为原料对于制氢过程至关重要[6-7]。生物乙醇 (C₂H₅OH)是目前来源于可再生生物质的应用最广的液体 燃料。乙醇分子具有较高的H/C比,是一种极具潜力的制 氢原料[8]。经过3 d的过渡金属催化,乙醇可以直接与水 发生蒸汽重整反应,产生富氢气体[公式(1)][9]。这一

* Corresponding author.

过程利用生物乙醇生产过程中的粗产物,避免了能耗巨大的乙醇-水共沸混合物的蒸馏分离过程[9-11]。

C₂H₅OH + 3H₂O → 2CO₂ + 6H₂, $\Delta H_{298K}^{\ominus}$ = 173 kJ·mol⁻¹ (1)

然而,乙醇蒸汽重整反应是一个强吸热反应,需要依赖外界热量来驱动反应发生。化学链蒸汽重整(chemical looping steam reforming, CLSR)是一种过程强化技术,可以提升蒸汽重整过程的效率[12–13]。在乙醇化学链蒸汽重整过程中,载氧体(oxygen carrier, OC)首先在重整反应器中与乙醇发生氧化还原反应。例如,当将NiO作为载氧体时,C₂H₅OH与NiO的氧化还原反应如公式(2)所示。

E-mail address: jlgong@tju.edu.cn (J. Gong).

^{2095-8099/© 2022} THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 英文原文: Engineering 2022, 12(5): 62–69

引用本文: Hao Tian, Chunlei Pei, Sai Chen, Yang Wu, Zhijian Zhao, Jinlong Gong. Regulation of Oxygen Activity by Lattice Confinement over Ni_xMg_{1-x}O Catalysts for Renewable Hydrogen Production. *Engineering*, https://doi.org/10.1016/j.eng.2020.08.029

 $C_2H_5OH + 6NiO(s) \rightarrow 2CO_2 + 3H_2O +$

 $6\mathrm{Ni}\,(\mathrm{s}), \Delta H^{\ominus}_{298\mathrm{K}} = 150 \,\mathrm{kJ} \cdot \mathrm{mol}^{-1}$

随着氧(O)的消耗,NiO中的Ni²⁺被还原为金属Ni。 接下来,乙醇蒸汽重整反应在金属Ni的催化作用[公式 (1)]下开始进行。当反应条件的水碳比(steam-to-carbon ratio,S/C)较低时,Ni表面会同时发生乙醇的热分解反应 [公式(3)]:

C₂H₅OH → C (s) + CO + 3H₂, $\Delta H_{298K}^{\ominus}$ = 136 kJ·mol⁻¹ (3)

公式(1)~(3)均为吸热反应。Ni随后在再生反应 器中被空气重新氧化[公式(4)]。在乙醇蒸汽重整反应 中生成的积碳也同样发生气化[公式(5)]。

Ni (s) + 0.5O₂ \rightarrow NiO (s), $\Delta H^{\ominus}_{298K}$ = -187 kJ·mol⁻¹ (4)

C(s) + O₂ → CO₂, ΔH[⊕]_{298K} = -395 kJ·mol⁻¹ (5)
 蒸汽重整过程所需热量可以由再生反应器中载氧体
 [公式(4)]和积碳[公式(5)]的氧化反应提供。因此可以将需要额外提供给重整反应器的热量最小化。乙醇化学
 链蒸汽重整的总反应可以被看作乙醇蒸汽重整反应和乙醇
 完全氧化反应的加和[公式(6)]。

 $C_2H_5OH + xH_2O + (1.5 - 0.5x) O_2 \rightarrow 2CO_2 + (3 + x) H_2$ (6)

载氧体通常是可还原的金属氧化物,在乙醇化学链蒸 汽重整反应中发挥着至关重要的作用。采用金属氧化物替 代氧气(O₂)可以大大降低操作过程中的安全风险[8]。 载氧体提供的氧还可以显著降低化学链蒸汽重整过程中的 水碳比,并能在合适的C₂H₅OH/H₂O进料比下实现自热产 氢,从而使过程能耗显著降低。化学链过程中的载氧体必 须满足一系列实际应用的要求[14-15],其中最重要的是 载氧体材料需要具有长周期的氧化还原稳定性,并能提供 具有适宜活性的氧物种[16]。NiO是一种性能较好的载氧 体,被用于多种化学链过程进行研究[17]。Jiang等[18]将 NiO/蒙脱石应用于乙醇化学链蒸汽重整过程,并在20个 循环中实现了大于60%的H,选择性。然而,由于体相 NiO 的氧释放过程过于剧烈,由体相 NiO 还原得到的 Ni 分散度通常较差,无法提供足够的活性表面积以实现反应 物种的活化以及长周期的操作,大大限制了 Ni 基载氧体 的稳定性[19-21]。因此,调节氧释放过程的还原动力学是 实现Ni物种高度分散并进而提升Ni基载氧体性能的关键。

由于 Ni²⁺ (69 pm)与 Mg²⁺ (72 pm)具有相近的尺 寸,二者可以在合适的焙烧温度下形成全浓度范围内的取 代型 Ni_xMg_{1-x}O 固溶体 (0 $\leq x \leq 1$)[22–24]。在 Ni_xMg_{1-x}O 固溶体中,Ni-Ni 边界被 Mg²⁺隔离开,进而抑制了 Ni²⁺在 晶格中的快速扩散[25]。固溶体的还原速率与体相 Ni²⁺的 扩散速率有关,并可以通过 Ni²⁺在 Ni_xMg_{1-x}O 中的浓度进 行调节[26]。Huang 等[27]设计了具有固溶体结构的 Mg-Ni-Al-O载氧体,并在化学链燃烧过程中取得了优异 的性能。Ni_xMg_{1-x}O固溶体在化学链过程中展现了巨大的 潜力,然而将该固溶体作为载氧体应用于乙醇化学链蒸汽 重整过程中的性质尚不明确。

本研究合成了具有不同化学组成的Ni_xMg_{1-x}O固溶体,并将该固溶体作为载氧体应用于乙醇化学链蒸汽重整过程,研究了Mg²⁺对Ni_xMg_{1-x}O固溶体性质的调节作用。 Ni基载氧体的氧释放性质随着Mg²⁺的引入可以实现可控调节。然后,研究了Ni_xMg_{1-x}O固溶体的结构转变与表面反应机理之间的关系。通过乙醇-水脉冲和H₂程序升温还原(H₂-temperature-programmed reduction, H₂-TPR)研究了Ni_xMg_{1-x}O固溶体的氧释放行为,并采用原位漫反射傅里叶变换红外光谱(diffuse reflectance infrared Fourier-transform spectroscopy, DRIFTS)表征了乙醇化学链蒸汽重整反应过程中中间体的变化。

2. 材料和方法

2.1. 载氧体的制备

一系列Ni_xMg_{1-x}O (x = 0.2, 0.4, 0.6, 0.8)固溶体通过共 沉淀的方法进行制备。将总金属浓度为2 mol·L⁻¹的 Mg(NO₃)₂·6H₂O (98%; 百灵威科技有限公司,中国)和 Ni(NO₃)₂·6H₂O (99%; 阿拉丁生化科技股份有限公司, 中国)溶解于150 mL的去离子水 (18.25 MΩ·cm)中。 随后将100 mL浓度为6 mol·L⁻¹的NaOH (99%; 阿拉丁生 化科技,中国)溶液作为沉淀剂加入。待生成的沉淀老化 12 h,过滤分离沉淀并用热去离子水多次清洗以去除钠离 子。获得的样品在125 ℃的烘箱中干燥24 h,随后在空气 气氛中以10 ℃·min⁻¹的速率升温至700 ℃焙烧4 h。NiO和 MgO 同样通过上述的沉淀法制备以作为参比样品。

2.2. 载氧体的表征

样品的晶相结构通过粉末X射线衍射仪(X-ray diffraction, XRD;布鲁克公司,美国)进行表征,XRD配备了带 有Cu靶($\lambda = 1.54056$ Å,1Å = 10⁻¹⁰ m)的Bruker D8 Focus。 衍射角2 θ 的范围为20°~80°,扫描速度为8^(o)·min⁻¹。样品 的形貌在JEM-2100F透射电子显微镜(transmission electron microscopy, TEM;日本电子材料公司,日本)中进 行观察,工作电压为200 kV。用于TEM表征的样品在乙 醇中进行超声分散后负载在铜网支撑的碳膜上。透射电子 显微镜配备了Ultim Max 能量色散X射线谱仪(energydispersive X-ray spectroscopy, EDS;牛津仪器公司,英

国),可用于元素分析。

载氧体的比表面积和孔容在 Micromeritics Tristar II 3020 分析仪(麦克仪器公司,美国)上通过在-196 °C下的氮气(N_2)吸附-脱附实验进行测量,并分别依据 Brunauer-Emmett-Teller(BET)和 Barrett-Joyner-Halenda (BJH)方法进行计算。在测试前,样品在300 °C下脱气 3 h。载氧体的元素组成通过电感耦合等离子体发射光谱 (inductively coupled plasma optical emission spectroscopy, ICP-OES; VISTA-MPX,瓦里安公司,英国)进行测量。测量前样品在硝酸溶液中进行消解。

载氧体的还原性质通过 H₂-TPR 实验进行测量。实验 在 配 备 了 热 导 池 检 测 器 (thermal conductivity detector, TCD)的 Micromeritics Autochem II 2920 仪器(麦克仪器 公司,美国)上进行。在实验过程中,样品(100 mg)首 先在流动的氩气(Ar; 30 mL·min⁻¹)气氛下 300 ℃预处理 1 h。待样品冷却到 100 ℃,分析以 10 ℃·min⁻¹的速率从 100 ℃升温至 950 ℃的流动的 H₂(体积分数为 10 % 的 H₂) -Ar 混合气体(30 mL·min⁻¹)。

为测量乙醇化学链蒸汽重整过程中的氧传递过程,将 Micromeritics Autochem II 2920 与 Hiden QIC-20 在线质谱 仪(海德分析公司,美国)联用,分别进行了 C_2H_5OH 与 H_2O 或与 O_2 的混合物脉冲实验。在脉冲实验前,所有样 品首先在流动的Ar (30 mL·min⁻¹) 气氛下 300 °C原位预 处理1h。接下来,将Ar气流中的 C_2H_5OH 与 H_2O 脉冲以 及氦气(He)气流中的 C_2H_5OH 与 O_2 脉冲引入反应器。 定量环的体积为0.5031 mL,相邻脉冲之间的时间间隔为 3 min,以排除相互之间的干扰。反应器尾气通过在线质 谱进行实时分析,气相组成由质谱不同质荷比(mass-tocharge ratio, *m/z*)的信号来确定。质荷比*m/z*为44、31、 29、28、27、18、16和2,分别对应 CO_2 、 C_2H_5OH 、乙醛 (CH₃CHO)、一氧化碳(CO)、乙烯(C_2H_4)、水(H_2O)、 甲烷(CH₄)和H₂。

为观测化学链蒸汽重整过程中中间体的转变,原位的 DRIFTS 实验在装备了漫反射附件和碲镉汞检测器(mercury-cadmium-telluride, MCT)的Nicolet iS50 红外光谱仪 (赛默飞世尔科技公司,美国)上进行。所有样品首先在 Ar 气气流中600 ℃预处理0.5 h,随后用Ar 吹扫1 h 并降温 至400 ℃来采集背景光谱。背景光谱用于与在化学链蒸汽 重整条件下采集的谱图进行差谱。

载氧体上生成的积碳通过热重分析(thermogravimetric analysis, TGA; TGS-2A, 渊博智能科技公司, 中国) 和程序升温氧化(temperature-programmed oxidation, TPO)实验进行表征。在TGA实验中,将反应后约20 mg 的载氧体装入氧化铝坩埚,随后记录载氧体在空气气流中 (50 mL·min⁻¹)以10 ℃·min⁻¹从50 ℃升温至900 ℃过程中的 温度和质量变化。反应后载氧体的TPO实验在前述脉冲 实验的装置上进行。样品(50 mg)首先在流动的Ar (30 mL·min⁻¹)中300 ℃预处理0.5 h。随后载氧体降温至 50 ℃,并在体积分数为10%的O₂/He 混合气体中以 30 mL·min⁻¹的速度从50 ℃升高至900 ℃进行程序升温氧 化。尾气中生成的CO₂通过在线质谱仪进行记录。

2.3. 化学链蒸汽重整性能评估

化学链蒸汽重整测试在一个内径为20mm、长度为 400 mm的不锈钢管式固定床反应器中进行。将2g载氧体 (尺寸为20~40目)用于单次的化学链蒸汽重整测试。在 测试之前,首先在200 mL·min⁻¹的 N₂气流中将载氧体 600 ℃预处理1h。随后将催化剂床层温度调整至设定温 度。S/C为1的乙醇-水的液体混合物通过微量泵(P230; 大连依利特公司,中国)以0.03 mL·min⁻¹的速率引入预热 室(200 ℃), 混合物完全蒸发后随100 mL·min⁻¹的N,进入 反应器并进行化学链蒸汽重整反应1h。随后,将反应器加 热到适宜的氧化反应温度,并在空气气流(200 mL·min⁻¹) 中再生载氧体10 min。气相产物通过Agilent 490 微型气相 色谱进行在线分析。该气相色谱具有两个不同的通道用于 气相产物分析。通道1装备了长度为10m的5A分子筛色 谱柱,以Ar为载气用于对除CO,外的永久气体(H,、N,、 CO和CH₄)进行定量。通道2装备了长度为10m的Pora-Plot Q色谱柱,以He为载气用于分析CO₂和C₁~C₃的碳 氢化合物。所有的气相产物通过不同通道的微机械热导 池检测器 (micro-machined thermal conductivity detectors, µTCD)进行定量。在配备了火焰离子化检测器 (flame ionization detector, FID)的Agilent 7890A气相色谱仪上对 收集后的液相产物进行分析。可能的液相产物包括 C,H,OH、CH,CHO和丙酮(CH,COCH,),在N,载气中经 过Porapak-Q色谱柱分离后在FID上对这些产物进行定量。 含碳产物的选择性(S)通过下式进行计算:

$$S_{i} = \frac{[i]}{[\mathrm{CO}_{2}] + [\mathrm{CO}] + [\mathrm{CH}_{4}]} \times 100\%$$
(7)

式中,*i*表示产物中的不同物种; [*i*]表示*i*在所有产物中的 摩尔分数。

 H_2 选择性(S_{H_2})由下式计算:

$$S_{\rm H_2} = \frac{F_{\rm H_2}}{F_{\rm C_2,H_2OH-in}}$$
(8)

式中, F_{H_2} 表示产物中 H_2 的摩尔流速; $F_{C_2H_2OH-in}$ 表示反应物中乙醇的摩尔流速。

产物分布 (P_i) 由下式计算:

$$P_{i} = \frac{[i]}{[H_{2}] + [CO_{2}] + [CO] + [CH_{4}]} \times 100\% \quad (9)$$

3. 结果与讨论

3.1. Ni_xMg_{1-x}O的结构表征

制备的Ni_xMg_{1-x}O的物理化学性质见表1。Ni_xMg_{1-x}O 的BET比表面积为15~30 m²·g⁻¹,孔容为0.03~0.06 cm³·g⁻¹。 NiO、MgO和Ni_xMg_{1-x}O的XRD测试结果如图1 (a)所示。NiO、MgO和Ni_xMg_{1-x}O均呈现岩盐型晶体结构。根据 Scherrer 公式计算晶粒尺寸,结果显示不同组成的Ni_xMg_{1-x}O晶粒尺寸大致相当。为了观察固溶体中Ni含量对晶格参数的影响,40°~46°范围内的XRD 谱图如图1 (b)所示。随着样品中Ni含量的提升(从MgO到NiO), $Ni_{x}Mg_{1-x}O$ 的 (200) 衍 射 峰 逐 渐 从 42.8° 偏 移 至 43.2°。 $Ni_{x}Mg_{1-x}O$ 的晶格参数可以根据 XRD 峰的位置由 Bragg 方 程进行计算 (表 1)。将 $Ni_{x}Mg_{1-x}O$ 的晶格参数与固溶体中 的 Ni 含量进行关联,可以得到线性关系[图1 (c)],印证 了在对应的 Ni/Mg比例下 $Ni_{x}Mg_{1-x}O$ 固溶体的生成[22]。

将 Ni_{0.4}Mg_{0.6}O 作为例子来表征固溶体的形貌结构。 Ni_{0.4}Mg_{0.6}O 的 TEM 图像在图1(d)~(f)中给出。根据 图1(d)、(e),Ni_{0.4}Mg_{0.6}O颗粒的尺寸为10~20 nm,同时 并没有观察到聚集的 NiO 晶体。在图1(f)中可以观察 到,Ni_xMg_{1-x}O(200)晶面的晶格间距为4.215Å,这与 XRD 表征的结果一致。EDS 面扫可以提供元素分布的信 息。由图1(g)~(i)的结果可知,Ni、Mg和O元素在 Ni_xMg_{1-x}O颗粒中呈现均一分布,印证了取代型 Ni-Mg 固 溶体氧化物的生成。

图1. Ni_xMg_{1-x}O固溶体的晶相结构和形貌。(a)所制备的MgO、Ni_xMg_{1-x}O (x = 0.2, 0.4, 0.6, 0.8)和NiO样品的XRD图。(b)MgO、Ni_xMg_{1-x}O和NiO的(200)晶面的衍射峰(c)通过MgO、Ni_xMg_{1-x}O和NiO(200)晶面的衍射峰位置计算的晶格常数;虚线代表晶格常数与Ni_xMg_{1-x}O中Ni含量线性拟合的结果, $R^2 = 0.993$ 。(d)~(f)Ni₀₄Mg₀₆O的TEM图像。(g)~(i)Ni₀₄Mg₀₆O的EDS元素面扫结果。

Sample	$S_{\rm BET} \left({ m m}^2 {\cdot} { m g}^{-1} ight)^{ m a}$	$V_{\text{pore}} \left(\text{cm}^3 \cdot \text{g}^{-1} \right)^{\text{b}}$	$d_{\rm pore} ({\rm nm})^{\rm c}$	$D_{\rm crystallite} ({\rm nm})^{\rm d}$	$x_{\rm Ni}^{\rm f}$	C_{lattice} (Å) ^g	Degree of	Oxygen storage capacity	$d_{\rm Ni}$ (%) ⁱ
							reduction (%) $^{\rm h}$	$([O]: mmol \cdot g^{-1})^{h}$	
Ni _{0.2} Mg _{0.8} O	27.9	0.053	7.3	12.7	0.218	4.2090	42	1.8	9.3
$\mathrm{Ni}_{0.4}\mathrm{Mg}_{0.6}\mathrm{O}$	19.9	0.035	7.0	13.6/14.5 °	0.408	4.2034	67	5.0	6.9
$\mathrm{Ni}_{\mathrm{0.6}}\mathrm{Mg}_{\mathrm{0.4}}\mathrm{O}$	18.3	0.039	8.0	10.8	0.621	4.1950	72	7.1	4.2
Ni _{0.8} Mg _{0.2} O	15.5	0.031	8.2	11.0	0.828	4.1874	78	9.2	2.3

表1 不同组成的Ni_xMg_{1-x}O固溶体的物理化学性质

^a BET specific surface area.

^b Total pore volume estimated at $p/p_0 = 0.99$.

° BJH pore diameter estimated from the adsorption branch.

 $^{d}D_{crystalling}$: diameter of Ni_vMg_{1-v}O crystallite. Determined from the (200) peak of Ni_vMg_{1-v}O in the XRD patterns.

^e The former one is for $Ni_xMg_{1-x}O$ before the test and the latter one is for $Ni_xMg_{1-x}O$ after 30 cycles.

 f_{N_i} : stoichiometric number of Ni in Ni_xMg_{1-x}O. Measured by ICP-OES.

^g C_{lattice} : lattice constant of Ni_xMg_{1-x}O. Calculated by the positions of the (200) peaks of Ni_xMg_{1-x}O in the XRD patterns.

^h The degree of reduction value of Ni⁰/(Ni⁰ + Ni²⁺) is calculated by Ni_xMg_{1-x}O after the single reaction stage in CLSR, according to the positions of the (220) peaks of Ni_xMg_{1-x}O in the XRD patterns.

 $^{i} d_{Ni}$: dispersion of Ni. Measured by the O₂ pulse experiment.

3.2. 乙醇化学链蒸汽重整

为实现高效制氢,本研究选择400℃作为乙醇化学链 蒸汽重整的反应温度(热力学分析见附录A中的图S1)。 反应条件中的S/C固定为1。含碳产物及H₂的选择性如 图 2 (a) 所示。随着固溶体中 Ni 含量的增加, CH₄的选择性提升,同时导致 H₂的选择性显著下降。这一现象可以归因于还原后固溶体 Ni 分散度的下降(表 1)。 Ni_{0.2}Mg_{0.8}O在不同组成的固溶体中表现出最高的 CO选择

图2. Ni_xMg_{1-x}O固溶体的乙醇化学链蒸汽重整性能。(a)不同Ni_xMg_{1-x}O固溶体在400℃下单个循环第二阶段的H₂选择性和含碳产物分布; S/C=1, 乙醇转化率大于95%。(b) Ni_{0.4}Mg_{0.6}O在400℃下单个循环中乙醇化学链蒸汽重整性能随时间的变化。(c) Ni_{0.4}Mg_{0.6}O在30个循环的稳定性测试中的 表现。(d) Ni_{0.4}Mg_{0.6}O在30个循环的稳定性测试后的TEM 图像及EDS 元素面扫结果。

性,然而CO的生成降低了 H_2 的纯度。在本研究工作中, Ni_{0.4}Mg_{0.6}O表现出了最高的 H_2 选择性,为4.72 mol·mol⁻¹ (mol·mol⁻¹代表每摩尔乙醇产生H₂的物质的量)。

本文进一步研究了Ni_{0.4}Mg_{0.6}O的性质。400 ℃下单个 循环内Ni_{0.4}Mg_{0.6}O在化学链重整过程中的产物随时间的变 化情况如图2(b)所示。根据产物分布变化的特点,可 以将乙醇化学链蒸汽重整过程分为三个阶段。在第一个阶 段(从反应开始到6min),CO₂是最主要的产物。这一阶 段乙醇被Ni_{0.4}Mg_{0.6}O的表面氧物种完全氧化。在第二个阶 段(6~33min),随着更多的Ni²⁺被逐渐还原为金属Ni, 乙醇开始在Ni表面分解产生H₂和CH₄。各气相产物的选 择性逐渐保持稳定,此时H₂的选择性达到最高值,且CO 的浓度被抑制在1%以下。在第三个阶段(33min之后), 乙醇的转化率以及H₂和CO₂的选择性开始下降,同时更 多的CO和CH₄开始生成。Ni_{0.4}Mg_{0.6}O在这一阶段逐渐 失活。

对Ni_{0.4}Mg_{0.6}O进行循环稳定性测试。在化学链蒸汽重 整反应(400℃条件下)后,被还原的Ni_{0.4}Mg_{0.6}O和生成 的积碳在空气氛围和600℃的条件下进行10min的氧化再 生操作。这一过程即研究中的再生步骤(regeneration step)。本研究中,循环测试由60min的乙醇化学链蒸汽 重整和10 min的再生步骤组成。Ni_{0.4}Mg_{0.6}O在循环稳定性 测试中的表现如图2(c)所示。在30个循环中, Ni_{0.4}Mg_{0.6}O的H₂选择性仅仅下降了3%,说明Ni_{0.4}Mg_{0.6}O 的结构可以在再生步骤中较好地复原。30个循环后的 Ni_xMg_{1-x}O通过TEM和XRD进行表征[见表1、图2(d) 以及附录A中的图S2]。Ni_{0.4}Mg_{0.6}O的形貌和晶相结构在 长周期的循环后仍得以保持。固溶体的载氧体以颗粒的形 式存在,并没有发生明显的烧结。Ni_{0.4}Mg_{0.6}O的晶粒尺寸 在稳定性测试后为14.2 nm,与新鲜的Ni_{0.4}Mg_{0.6}O样品相 当。这一结果证实了Ni_{0.4}Mg_{0.6}O的结构可以通过再生步骤 复原,同时说明固溶体载氧体在乙醇化学链蒸汽重整中具 有优异的稳定性能。

3.3. Ni_xMg_{1-x}O的氧释放行为

为了研究 Ni_xMg_{1-x}O 的氧释放行为,在400 °C下对 Ni_{0.4}Mg_{0.6}O进行了乙醇-水混合物(S/C=1)的脉冲实验 [图3(a)]。在前5个脉冲中,H₂的质谱信号峰并不明 显,同时 CO₂是主要的产物。这一现象说明乙醇和 Ni_{0.4}Mg_{0.6}O之间的氧化还原反应是这一阶段的主要过程, 这与在产物随时间变化中观察到的第一个反应阶段相对应 [图2(b)]。随后,H₂的质谱信号峰逐渐变大并保持稳

图3.乙醇存在条件下 $Ni_{0,4}Mg_{0,6}O$ 的氧释放行为。(a) $Ni_{0,4}Mg_{0,6}O$ 的乙醇-水混合物脉冲实验。(b)脉冲实验中 $Ni_{0,4}Mg_{0,6}O$ (220)晶面衍射峰的 XRD 图。 (c)由(220)晶面衍射峰位置计算的 $Ni_{0,4}Mg_{0,6}O$ 的晶格常数在脉冲实验中的变化。(d) $Ni_{0,4}Mg_{0,6}O$ 在脉冲实验中的还原程度。

定。CO₂仍为主要的含碳产物,对应于第二个反应阶段的 特征。

利用 XRD 表征脉冲实验中 Ni_{0.4}Mg_{0.6}O 的组成变化。 由于金属 Ni 在 44°左右的位置存在衍射峰,可能会干扰 Ni_xMg_{1-x}O 信号最强的(200)晶面的衍射峰,因此选择强度 第二高的(220)面的衍射峰进行分析。Ni_{0.4}Mg_{0.6}O 在 60°~ 64°范围内的 XRD 衍射峰位置随乙醇-水混合物的脉冲次 数变化,具体如图3(b)所示。被逐步还原的 Ni_{0.4}Mg_{0.6}O 的晶格参数可以由峰位置进行计算。若 Ni²⁺和 Mg²⁺在 Ni_xMg_{1-x}O 中的分布是均一的,则固溶体中 Ni 的含量 x 可 以依据 Vegard 定律进行计算[28]。

$$a_{\rm Ni_{v}Mg_{1-v}O} = xa_{\rm NiO} + (1-x)a_{\rm MgO}$$
(10)

式中, $a_{Ni_{x}Mg_{1-x}O}$ 是Ni_xMg_{1-x}O的晶格参数;NiO(a_{NiO})和 MgO(a_{MgO})的晶格参数由纯物质[粉末衍射文件(powder diffraction file, PDF)No. 47-1049为NiO,PDFNo. 45-0946为MgO]的数据获得。基于计算得到的被还原的 Ni_{0.4}Mg_{0.6}O的晶格参数,得到了固溶体中的Ni含量以及 Ni_{0.4}Mg_{0.6}O的还原程度[图3(c)、(d)]。

Ni_{0.4}Mg_{0.6}O还原程度的变化与前述的脉冲实验结果互相印证。在第一个反应阶段,Ni_{0.4}Mg_{0.6}O的还原程度快速增加。这一阶段乙醇的完全氧化是主导反应,并伴随CO₂的生成。在第二个反应阶段,H₂在最后三个脉冲中持续稳定地生成。同时,Ni_{0.4}Mg_{0.6}O的氧释放行为仍在继续,从而使其还原程度进一步提高。但相比于第一个阶段,氧释放速率在第二个阶段下降,说明在这一阶段来自Ni_{0.4}Mg_{0.6}O的氧物种参与了乙醇和水的反应并协助H₂的生成。H₂选择性的提高得益于水气变换反应的发生。乙醇蒸汽重整反应和脉冲反应条件下的S/C。因此,额外的氧是实

现第二个反应阶段稳定产氢的必要条件。第二个反应阶段 的化学链蒸汽重整反应如下所示:

 $C_2H_5OH + 2H_2O + [O] \rightarrow 2CO_2 + 5H_2$ (11) 式中,[O]代表来自于Ni_xMg_{1-x}O的氧物种。

当来自Ni_{0.4}Mg_{0.6}O的活性氧物种消耗殆尽时,低S/C 的反应条件不足以提供蒸汽重整反应所需的氧化能力,从 而导致H₂和CO₂选择性下降(对应第三个阶段)。同时, 乙醇分解为积碳,覆盖载氧体的表面并导致其失活。采用 TGA和O₂-TPO实验来表征这一过程中积碳的生成(见附 录A中的图S3)。对历经化学链蒸汽重整三个阶段后的 Ni_{0.4}Mg_{0.6}O样品进行TGA分析,开始阶段的质量上升可 以归结于Ni的氧化[见附录A中的图S3(a)]。随后观察 到的质量下降与O₂-TPO中观察到的CO₂生成的质谱信号 峰对应的温度相一致,对应于表面积碳的气化过程[见附 录A中的图S3(b)]。积碳被认为是第三个阶段失活的原 因。这一结果同样表明,在乙醇化学链蒸汽重整反应中生 成的积碳可以在再生步骤中在600℃下实现消除。

为进一步研究Mg²⁺对Ni_xMg_{1-x}O固溶体性质的调节作 用,通过H₂-TPR实验测试不同组成固溶体中氧物种的反 应活性[图4(a)]。在室温到900℃的范围内,在纯MgO 上并没有观察到还原峰。纯NiO在200~400℃的范围内呈 现出一个很宽的还原峰。Ni_xMg_{1-x}O的H₂-TPR曲线主要包 含一个300℃左右的面积较小的还原峰和一个400~800℃ 面积较大的还原峰,说明固溶体中包含两种具有不同反应 活性的氧物种。根据NiO的还原性质以及Ni_xMg_{1-x}O的结 构,Ni_xMg_{1-x}O的低温还原峰应归属于表面氧的释放;而 高温下面积较大的还原峰则对应于Ni_xMg_{1-x}O中体相Ni²⁺ 的还原[29]。将Ni_xMg_{1-x}O不同还原峰的温度总结于图4 (b)。可以发现,表面氧的反应活性随Ni_xMg_{1-x}O中Ni含 量的增加而增加。金属氧化物的还原性与其价带和导带之

图4. 程序升温过程中Ni_xMg_{1-x}O的氧释放行为。(a)NiO、Ni_xMg_{1-x}O(x = 0.2, 0.4, 0.6, 0.8)和MgO的H₂-TPR图。(b)Ni_xMg_{1-x}O(x = 0.2, 0.4, 0.6, 0.8)的 表面氧和体相氧释放温度。

间的带隙相关[30]。更紧密的价带和导带会使得金属氧化 物更加易于被还原[30]。先前的研究表明,当固溶体中Ni 含量 x 大于 0.074, Ni_xMg_{1-x}O 的带隙会随着 x 线性降低 [31]。因此,Ni_xMg_{1-x}O 的氧释放行为会随着 Mg²⁺含量的 提高而受到抑制,这与由H₂-TPR 观察到的实验结果一致。 此外,空气气氛中Ni²⁺-Mg²⁺的相互扩散系数会随着Ni²⁺的 浓度呈指数级增长[32]。综上所述,Ni_xMg_{1-x}O中Ni²⁺的扩 散会因 Mg²⁺的晶格限域效应而受到抑制,因此,随着 Ni_xMg_{1-x}O中 Mg²⁺浓度的提高,固溶体体相氧的反应活性 降低,对应的还原温度升高。对于 Ni_{0.2}Mg_{0.8}O样品,其体 相氧还原温度略低于 Ni_{0.4}Mg_{0.6}O。这可能是由于还原生成 的 MgO 形成了 Ni_{0.2}Mg_{0.8}O 的表面层,抑制了体相 Ni_{0.2}Mg_{0.8}O 后续的深度还原,从而降低体相氧的表观还原 温度,并导致还原度降低(表1)。

3.4. Ni_xMg_{1-x}O反应路径

为研究 Ni_xMg_{1-x}O 的反应路径,本文进行了原位 DRIFTS 实验(见附录 A 中的图 S4)。将不同时间采集的 光谱图依据其特点分为三个不同的阶段。为观察 Ni_{0.4}Mg_{0.6}O表面含碳物种的变化趋势,将2400~800 cm⁻¹ 范围内的原位 DRIFTS 谱图绘制成图 5。

在反应的开始阶段,可以观察到气相CO₂在2350 cm⁻¹ 以及CO₃²⁻在1510 cm⁻¹和1240 cm⁻¹的红外峰[33]。CO₂和 CO₃²⁻的产生可以归因于乙醇被表面氧完全氧化,对应于 先前观察到第一个反应阶段。随着反应的进行,CO逐渐 生成,对应新出现的2170 cm⁻¹处的红外峰。同时可以观 察到1030 cm⁻¹对应CH₃CH₂O*中的C—O键红外峰[34]。 1740 cm⁻¹和1580 cm⁻¹的红外峰归属于CH₃COO*中的C=O 键,其中CH₃COO*是一种典型的Ni基乙醇蒸汽重整催化

图 5. 400 ℃、乙醇-水混合物(S/C = 1)条件下 Ni_{0.4}Mg_{0.6}O的原位 DRIFTS 谱图。K-M:库贝尔卡-蒙克方程。

剂表面的中间体[35];此时对应于第二个反应阶段。红外峰的结果显示,乙醇首先在金属Ni表面分解为 CH₃CH₂O*,随后CH₃CH₂O*被进一步氧化为CH₃COO*。 结合第二个反应阶段中固溶体还原速率变慢的现象,水分 子或许与Ni_xMg_{1-x}O的体相氧在第二个反应阶段中协同氧 化乙醇。在第三个反应阶段,CO₃²⁻的红外峰逐渐消失, 乙酸对应的红外吸收峰的强度逐渐提升。此外,与 880 cm⁻¹对应的气相CH₄振动峰在这一阶段开始出现。在 1600~1400 cm⁻¹范围内出现的多重峰则对应于积碳的C—H 振动[36]。中间体的变化表明在这一反应阶段乙醇开始分 解产生甲烷和积碳。这一现象是由于反应条件中较低的 S/C不足以支持将表面碳物种氧化为CO₂。上述提出的 Ni_xMg_{1-x}O表面的乙醇化学链重整反应机理与先前观察到 的固溶体结构的变化相互印证(图6)。

图6.乙醇化学链蒸汽重整反应中Ni_vMg_{1-v}O氧物种与表面反应路径关系示意图。

4. 结论

Ni,Mg,_,O固溶体可作为一种新型的载氧体用于乙醇 化学链重整制氢技术。Ni_xMg_{1-x}O的氧释放行为可以通过 Mg²⁺的晶格限域效应进行调节。实验结果显示,经过优化 的载氧体Ni₀₄Mg₀₆O在S/C为1的条件下表现出优良的制 氢性能(4.72 mol·mol⁻¹)和循环稳定性。本文根据实验结 果提出一个化学链蒸汽重整反应三阶段的反应机理。在第 一个反应阶段,乙醇被Ni,Mg1-,O的表面氧完全氧化。随 着表面氧的消耗和表面Ni位点的生成,乙醇在H₂O和 Ni,Mg₁₋O体相氧的协同作用下高效制氢,该过程对应第 二个反应阶段。在第三个反应阶段, Ni, Mg1-, O 的氧物种 不再参与反应,乙醇蒸汽重整过程为主导过程。采用 Ni, Mg1-, O作为载氧体的乙醇化学链蒸汽重整过程相比传 统的乙醇蒸汽重整催化过程大大降低了 S/C,实现了外界 供热最小化的可再生H,的生产。这一发现为设计具有良 好性能和结构稳定的化学链载氧体提供了切实可行的 策略。

致谢

本工作得到了国家自然科学基金(U20B6002、 51761145012和21525626)以及高等学校学科创新引智计 划(BP0618007)的资助。

Compliance with ethics guidelines

Hao Tian, Chunlei Pei, Sai Chen, Yang Wu, Zhjian Zhao, and Jinlong Gong declare that they have no conflict of interest or financial conflicts to disclose.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.eng.2020.08.029.

References

- Hosseini SE, Wahid MA. Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development. Renew Sustain Energy Rev 2016;57:850–66.
- [2] Liu T, Liu D, Qu F, Wang D, Zhang L, Ge R, et al. Enhanced electrocatalysis for energy-efficient hydrogen production over cop catalyst with nonelectroactive Zn as a promoter. Adv Energy Mater 2017;7(15):1700020.
- [3] Liu D, Liu T, Zhang L, Qu F, Du G, Asiri AM, et al. High-performance urea

electrolysis towards less energy-intensive electrochemical hydrogen production using a bifunctional catalyst electrode. J Mater Chem A 2017;5(7):3208–13.

- [4] Tang C, Qu F, Asiri AM, Luo Y, Sun X. CoP nanoarray: a robust non-noblemetal hydrogen-generating catalyst toward effective hydrolysis of ammonia borane. Inorg Chem Front 2017;4(4):659–62.
- [5] Nikolaidis P, Poullikkas A. A comparative overview of hydrogen production processes. Renew Sustain Energy Rev 2017;67:597–611.
- [6] Mendiara T, García-Labiano F, Abad A, Gayán P, de Diego LF, Izquierdo MT, et al. Negative CO₂ emissions through the use of biofuels in chemical looping technology: a review. Appl Energy 2018;232:657–84.
- [7] Xie Z, Liu Z, Wang Y, Jin Z. Applied catalysis for sustainable development of chemical industry in China. Natl Sci Rev 2015;2(2):167–82.
- [8] Rosmaninho MG, Moura FCC, Souza LR, Nogueira RK, Gomes GM, Nascimento JS, et al. Investigation of iron oxide reduction by ethanol as a potential route to produce hydrogen. Appl Catal B Environ 2012;115–116:45–52.
- [9] Li D, Li X, Gong J. Catalytic reforming of oxygenates: state of the art and future prospects. Chem Rev 2016;116(19):11529–653.
- [10] Yang F, Deng D, Pan X, Fu Q, Bao X. Understanding nano effects in catalysis. Natl Sci Rev 2015;2(2):183–201.
- [11] Liu Y, Zhao G, Wang D, Li Y. Heterogeneous catalysis for green chemistry based on nanocrystals. Natl Sci Rev 2015;2(2):150–66.
- [12] Dharanipragada NVRA, Galvita VV, Poelman H, Buelens LC, Detavernier C, Marin GB. Bifunctional Co- and Ni-ferrites for catalyst-assisted chemical looping with alcohols. Appl Catal B Environ 2018;222:59–72.
- [13] Haribal VP, Chen Y, Neal L, Li F. Intensification of ethylene production from naphtha via a redox oxy-cracking scheme: process simulations and analysis. Engineering 2018;4(5):714–21.
- [14] Zeng L, Cheng Z, Fan JA, Fan LS, Gong J. Metal oxide redox chemistry for chemical looping processes. Nat Rev Chem 2018;2(11):349–64.
- [15] Cheng Z, Qin L, Fan JA, Fan LS. New insight into the development of oxygen carrier materials for chemical looping systems. Engineering 2018;4(3):343–51.
- [16] Chung C, Qin L, Shah V, Fan LS. Chemically and physically robust, commercially-viable iron-based composite oxygen carriers sustainable over 3000 redox cycles at high temperatures for chemical looping applications. Energy Environ Sci 2017;10(11):2318–23.
- [17] Han L, Zhou Z, Bollas GM. Model-based analysis of chemical-looping combustion experiments. Part I: structural identifiability of kinetic models for NiO reduction. AIChE J 2016;62(7):2419–31.
- [18] Jiang B, Dou B, Wang K, Zhang C, Song Y, Chen H, et al. Hydrogen production by chemical looping steam reforming of ethanol using NiO/ montmorillonite oxygen carriers in a fixed-bed reactor. Chem Eng J 2016;298: 96–106.
- [19] Richardson JT, Scates RM, Twigg MV. X-ray diffraction study of the hydrogen reduction of NiO/α-Al₂O₃ steam reforming catalysts. Appl Catal A Gen 2004; 267(1–2):35–46.
- [20] Cheng F, Dupont V, Twigg MV. Temperature-programmed reduction of nickel steam reforming catalyst with glucose. Appl Catal A Gen 2016;527:1–8.
- [21] Giannakeas N, Lea-Langton A, Dupont V, Twigg MV. Hydrogen from scrap tyre oil via steam reforming and chemical looping in a packed bed reactor. Appl Catal B Environ 2012;126:249–57.
- [22] Yoshida T, Tanaka T, Yoshida H, Funabiki T, Yoshida S. Study on the dispersion of nickel ions in the NiO-MgO system by X-ray absorption fine structure. J Phys Chem 1996;100(6):2302–9.
- [23] Zhao Y, Hu L, Gao S, Liao M, Sang L, Wu L. One-step self-assembly fabrication of high quality Ni_xMg_{1-x}O bowl-shaped array film and its enhanced photocurrent by Mg²⁺ doping. Adv Funct Mater 2015;25(21):3256–63.
- [24] Saitoh T, Kinoshita K, Inada M. Bandgap bowing in Ni_{1-x}Mg_xO alloy. Appl Phys Lett 2018;112(4):041904.
- [25] Wei GCT, Wuensch BJ. Composition dependence of ⁶³Ni diffusion in singlecrystal NiO–MgO solid solutions. J Am Ceram Soc 1973;56(11):562–5.
- [26] de Masi R, Reinicke D, Müller F, Steiner P, Hüfner S. The suppression of NiO reduction in Fe/NiO systems by use of an ultrathin MgO buffer layer, investigated by photoemission and low energy electron diffraction. Surf Sci 2002;516(1–2):L51521.
- [27] Huang JJ, Liu W, Yang YH. Phase interactions in Mg–Ni–Al–O oxygen carriers for chemical looping applications. Chem Eng J 2017;326:470–6.
- [28] Denton AR, Ashcroft NW. Vegard's law. Phys Rev A 1991;43(6):3161-4.
- [29] Hu YH, Ruckenstein E. An optimum NiO content in the CO_2 reforming of CH_4 with NiO/MgO solid solution catalysts. Catal Lett 1996;36(3–4):145–9.
- [30] Helali Z, Jedidi A, Syzgantseva OA, Calatayud M, Minot C. Scaling reducibility of metal oxides. Theor Chem Acc 2017;136(9):100.
- [31] Niedermeier CA, Råsander M, Rhode S, Kachkanov V, Zou B, Alford N, et al.

Band gap bowing in $Ni_x Mg_{1-x}$ O. Sci Rep 2016;6(1):31230.

- [32] Blank SL, Pask JA. Diffusion of iron and nickel in magnesium oxide single crystals. J Am Ceram Soc 1969;52(12):669–75.
- [33] Coenen K, Gallucci F, Mezari B, Hensen E. van Sint Annaland M. An in-situ IR study on the adsorption of CO_2 and H_2O on hydrotalcites. J CO_2 Util 2018;24: 228–39.
- [34] Ferencz Z, Erdőhelyi A, Baán K, Oszkó A, Óvári L, Kónya Z, et al. Effects of

support and Rh additive on Co-based catalysts in the ethanol steam reforming reaction. ACS Catal 2014;4(4):1205–18.

- [35] Zanchet D, Santos JBO, Damyanova S, Gallo JMR, Bueno JMC. Toward understanding metal-catalyzed ethanol reforming. ACS Catal 2015;5(6): 3841–63.
- [36] Chu PK, Li L. Characterization of amorphous and nanocrystalline carbon films. Mater Chem Phys 2006;96(2–3):253–77.