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Abstract Phosphorus is the second most important
macronutrient after nitrogen and it has many vital functions
in the life of plants. Most soils have a low available P
content, which has become a key limiting factor for
increasing crop production. Also, low P use efficiency
(PUE) of crops in conjunction with excessive application
of P fertilizers has resulted in serious environmental
problems. Thus, dissecting the genetic architecture of crop
PUE, mining related quantitative trait loci (QTL) and using
molecular breeding methods to improve high PUE
germplasm are of great significance and serve as an
efficient approach for the development of sustainable
agriculture. In this review, molecular and phenotypic
characteristics of maize inbred lines with high PUE, related
QTL and genes as well as low-P responses are summar-
ized. Based on this, a breeding strategy applying genomic
selection as the core, and integrating the existing genetic
information and molecular breeding techniques is pro-
posed for breeding high PUE maize inbred lines and
hybrids.

Keywords maize, phosphorus use efficiency, quantitative
trait loci, genetic study, molecular breeding, genomic
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1 Introduction

Phosphorus is a macro element required for biological
growth and development, in particular it is essential for the
synthesis of important biochemical substances such as
DNA, RNA and ATP in all living organisms!'*!. In its
natural state in soil, P exists in the form of organic
phosphorus (P,) and inorganic phosphorus (P;), with the
former accounting for 50% to 80% of soil P!l As for the
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latter, phosphate (PO4*") is the main form. Conversion of
P, and P; can be achieved via orthophosphatel® "\, P; has
three states in the soil: water-soluble, adsorbed and
mineralized. However, most of the phosphates are chelated
or precipitated with Fe?*, AI** and Ca*" ions, which results
in the fixation of phosphate ions in the soil. Only a very
small number of the water-soluble ions H,PO, and
HPO,* can be directly used by plants, accounting for less
than 0.01% of available P in the soil and even less than
0.001% in the low-P fields. As a result, P use efficiency
(PUE) in the soil ranges from 20% to 30%, limiting crop
yields by 30%—40%!"-7"'?1. Meanwhile, temperature,
moisture, pH and other soil factors also affect the P
concentration and form. The dynamic balance of P in the
soil is important for regulating the circulation of nutrients
in nature®>1. Moreover, the worldwide status of P resource
utilization has been of great concern in that 5.7 billion
hectares of soil is deficient in P. Meanwhile, the demand
for P fertilizers will reach its peak in 2033['"*'*1 In
addition, the excessive application of P fertilizers has
caused serious environmental pollution problems. Hence,
it is extremely urgent to improve the PUE of crops.
Facing the increasing contradiction between the global
population growth and the shortage of P resources, it is
paramount to understand the molecular mechanisms of
crop P utilization in order to further improve crop PUE. By
using genetics and molecular biology methods to select
P-efficient crops, significant economic and ecological
benefits can be derived. In this review, the characteristics
of P-efficient inbred lines are summarized by comparing
the phenotypic and omics changes of different genotypes
under low-P stress. Furthermore, PUE-related quantitative
trait loci (QTL) or genes in maize, which have previously
been mined, are assessed for their suitability to conduct
molecular breeding. Differences in the tolerance to low-P
conditions between different heterotic groups and the
changes of heterotic patterns under low-P stress are
reanalysed and summarized. Finally, we propose an
integrated molecular breeding strategy taking genomic
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selection (GS) as core to select P-efficient inbred lines and
hybrids, which will provide a theoretical basis for breeders
to select high PUE materials.

2 Phosphorus use efficiency in plants

Plants absorb P mainly through roots, which is a complex
process affected by the chemical and physical state of soil,
the interaction between roots and soil, and the interaction
between roots and microorganisms[15 1. PUE, as used here,
is the ratio of grain yield or biomass per unit P supply in a
low-P environment!'®'*1, PUE can be split into two parts,
P uptake efficiency (PupE) and P utilization efficiency
(PutE). The relationship among these is PUE = PupE x
PutEl'%2%2!1] PypE can be calculated using the formula,
PupE = P, / Py, where Py is the total P content including
grain and shoot tissues and Py is the total amount of P
available in soil. PutE can be calculated using the formula
PutE = grain yield / P'®?. PupE refers to the ability of
plants to absorb P from the soil, which is affected by the
root morphological architecture, soil state and microorgan-
ism****!. Furthermore, PutE is related to the ability of
plants to transfer absorbed P into yield””). In plants, the P;
transporters, for instance, promote the transport of P
between roots and soil surface as well as between different
tissues and organs’**. Under low-P stress, in a maize
recombinant inbred lines (RIL) population, the correlation
between PupE and PUE is different from that between
PutE and PUE. The former ranges from 0.48 to 0.53, and
the latter from 0.32 to 0.381°1. Also, the respective
contribution of PupE and PutE to PUE is different, with
PupE explaining 71% to 100% of maize hybrid yield
variation””-**1. Therefore, PupE is the focus of genetic
improvement.

3 Genotypic differences in response to
low-P starvation in maize

Under low-P stress, P-efficient lines show dominance in
biomass in that they have greater root: shoot ratio, nodal
rooting, nodal root laterals, adventitious roots, root hair
density and basal root whorl number but less root cortex
than P-inefficient lines®**'!. The regulation of hor-
mones, such as auxin, ethylene, gibberellic acid and
abscisic acid, changes the root morphology of plants,
namely, the number of primary roots, the length of lateral
root and root hair, and increases the secretion of organic
acid ions, protons, neutrons and phosphatases, which
increase the crop P uptakel'”?*3%32734  Physiological
responses to P deficiency involve the release of organic
acids, protons and enzymes and modifications of root
architecturel' “*°!. Analyzing the physiological indicators
of Q1319 and its mutant Qi319-96, showed P-efficient line
Qi319-96 had a better ability to reconstruct lipid composi-

tion of membranes and had higher V-ATPase activity under
P deficiency condition™*!. Taking the P-efficient maize
inbred line W23 and the P-inefficient inbred line W22 as
research objects, under a hydroponic low-P environment,
H' and Ca®" ions in W23 were increased by 89% and
225%, respectively, the shoot biomass of W23 was 38%
higher than W22, but there was no difference in root
biomass between the two lines. Nevertheless, the W23 root
elongation zone was significantly longer than that of
W22 Under the low-P stress, carboxylate efflux from
roots can also be used as an important reference factor for
screening P-efficient lines®”). Under low-P stress, plant
leaves accumulate more anthocyanin pigments to protect
chloroplasts and nucleic acids in tissues; additionally, plant
height and ear height are reduced, but the plant height: ear
height ratio is increased®®**. Under two different low-P
conditions, for an inbred population, the number of kernels
per ear decreased respectively by 24% and 28%, and the
yield decreased by 36% and 31%, respectively*”). When
the phenotypes of different traits of a maize population
were assessed, it was found that the low-P tolerance in
different genotypes was significantly correlated with the
phenotype of plants under low P. Both can be used for
screening and genetic analysis of low-P tolerant germ-
plasm™'!. According to the definition of PUE, biomass and
yield are still the main selection criteria when screening for
P-efficient germplasm, but both traits are very complex
quantitative traits controlled by many minor QTLI* 41,

4 Plant molecular responses to low-P
starvation in maize

Plants have developed a complete system to adjust P
absorption, utilization and recycling in order to ensure
normal growth and development under low-P stress. This
process is known as the phosphate starvation response
(PSR)!'?*! and involves changes to transcriptional,
genomic, and metabolic regulatory networks. By analyzing
the maize root transcriptome of P-efficient lines on
different days after P deficiency, 820 upregulated and
363 downregulated response genes involved in metabolic,
signal transduction, and developmental gene networks
were identified*®). In maize, five Phtl genes which
contribute to phosphate uptake and allocation across soil
and shoot have been identified*”). Through comparison of
sequencing RNA reads of Qi319 and 99038 under normal
and low-P environments, the researchers identified seven
novel and known miRNA families!*®!. Additionally, a
study by Du et al.1*”) showed that the miRNA399-ZmPHO?2
pathway is key in the regulation of P uptake, and LncRNA1
interacts with miRNA399 to make plants adapted to low P.
By comparing and the root proteome of Qi379 and its
mutant 99038, 73 upregulated and 95 downregulated
differentially expressed proteins were identified. These
proteins were involved in cellular and metabolic processes,
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especially in carbon metabolism and cell proliferationt™!.

By analyzing the phosphoproteome and proteome of
Qi319 roots in four stages, it was revealed that 6%
phosphoprotein involved in metabolic and cellular path-
ways changed under low-P treatment, and low P induced
the modifications of carbon flux in metabolic processes”').
P-sensitive line HM-4 and P-tolerant line PEHM-2 were
used to investigate the P starvation effect at the metabolite
level. Analysis of the results showed that accumulation of
di- and trisaccharides and metabolites of ammonium
metabolism, particularly in leaves, and decrease of
phosphate-containing metabolites and organic acids as
well as increase of glutamine, asparagine, serine in shoot
and root occurred”*,

5 Genetic study of PUE-related traits

The PSR of plants leads to changes in plant phenotype,
which are the basis for selecting high PUE genotypes.
However, genetic analyses are the foundation for under-
standing the metabolic pathways and molecular breeding.
The genetic structure of the target trait includes the number
of QTL controlling the traits, the QTL effect, the mode of
action of QTL (additive, dominant and epistatic effects)
and the genotype-by-environment interactions?”*). Based
on the research purpose, the traits related to P efficiency are
divided into four categories: (1) traits related to P;
availability in the soil; (2) traits related to P uptake by
plant roots; (3) traits related to P utilization; and (4) yield-
related traits!>*!. In maize research, information on many
effective QTL has been mined using different genetic
populations (Table 1).

The genetic architecture of PUE, PutE and PupE traits of
a population of 140 RILs backcrossed with both parental
lines, P-efficient inbred line L3 and the P-sensitive inbred
line L22, showed that the dominant effects contributed
more to PUE and its components than the additive effects.
Importantly, the QTL detected for PUE correspond to 80%
of those found for PupE traits, indicating that PupE and
PUE have a similar genetic basis®”. Using a BC,Fs
established by crossing rice varieties Nipponbare and
Kasalath, traits such as P uptake, PUE, dry weight and tiller
number were identified in a low-P environment. QTL were
found on chromosomes 2, 4, 6, 10 and 12, and of those
QTL, a QTL at the interval of G227—C365 on chromosome
2 was found for both P uptake and PUE. Likewise, a QTL
at the marker interval G2110-C443 on chromosome 12
was found consistently for the traits of P uptake, PUE, dry
weight, and tiller number. Subsequently, by constructing a
chromosome segment substitution line population, the
important QTL Phosphorus uptake 1 (Pupl) was identi-
fied!®7%. Phosphatase activity is also very important for
plant roots to absorb P. Qiu et al'®®), used the inbred lines,
082 and Yel07, as parents to construct a F,.3 population of
180 individuals. A stable QTL in the bnlg1350-bnlg1449

region of chromosome 10 was found for the acid
phosphatase activity in roots. Two stable QTL, one at
umc2083—umc1972 on chromosome 1 and the other at
umc2111—-dupssr10 on chromosome 5, were found for acid
phosphatase activity in rhizosphere soil. Subsequently,
phosphatase activity in leaf tissue in two low-P environ-
ments was assessed for QTL mapping, and six QTL were
identified. Only QTL A4P9, located within the 546 kb
interval of chromosome 9 ac219—ac2096 marker interval,
was found in different environments'®”). Cai et al.**) used
plant and ear height combined with yield-related traits in a
low-P environment for QTL mapping, which resulted in a
total of 25 QTL. QTL mapping was performed for leaf
area, leaf chlorophyll content, flowering and yield traits
under low-P in bin 2.03/2.04, bin 2.06/2.08, bin 4.01/4.02,
bin 5.03/5.04, bin 6.07, bin 9.03, bin 10.03/10.04 intervals,
when mining QTL for the different traits!®*). By taking the
root traits of the RIL population (including the lateral root
length, the lateral root number and the plasticity of lateral
root number) under low-P as target traits, five QTL were
mined on chromosomes 1, 2, 3 and 6 for lateral root length,
with the largest phenotypic variance explained (PVE) of
9.98% and the smallest PVE 0f4.04%. A QTL with a PVE
of 10.4% was found on chromosome 2 for lateral root
number, and a QTL with a PVE of 10.2% was found on
chromosome 4 with regard to the plasticity of lateral root
number®®),

In addition to QTL mapping using a biparental
population, genome-wide association analysis (GWAS)
based on linkage disequilibrium using the historical
recombination of inbred lines results in a higher resolution
of mapping and has achieved great success in resolving
complex traits of plantst”' 7. However, there are only a
few reports on using GWAS to analyze PUE or low-P
tolerance-related traits. Xu et al*!. used two association
populations to perform GWAS analysis using phenotypes
under low-P stress and low-P tolerance index (LPTI). The
target traits comprised biomass, development-related traits
and yield-related traits. Using the differentially expressed
genes in the transcriptome data of the P-tolerant line
CCM454 and the P-sensitive line 31778 as a validation, a
total of 259 significantly associated genes were mined,
which were mainly involved in four biochemical path-
ways, viz., transcriptional regulation, reactive oxygen
scavenging, hormone regulation and remodeling of cell
wall. Luo et all”). used 338 inbred lines to perform GWAS
analysis and found five significant peaks for morphological
traits. Metabolites with significant differences in the
extreme pools of six P-sensitive inbred lines and six P-
tolerant inbred lines were detected. Furthermore, by
combining significantly associated SNPs with genes
involved in different metabolite pathways, five genes,
GRMZM2G050570, GRMZM2G039588, GRMZM2G051806,
GRMZM2G039588, GRMZM5G841893 were identified.
These two studies combined GWAS with transcriptome or
metabolome data to mine genes involved in the P
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metabolic pathway. The approach of combining multio-
mics data results in a better understanding of the
inheritance and regulatory pathways of PUE-related traits.
Some synthetic multiparent populations such as nested
association mapping, multiparent advanced generation
intercrosses, multiparent population consisting of serval
doubled haploid (DH) or RIL populations combine the
advantages of linkage analysis and association mapping.
At the same time, rich genomic and phenotypic variation
and a clear genetic structure of maize make it possible to
resolve many complex traits with greater flexibility and
efficacy!’*®*1. Although such multiparent populations
have unparalleled advantages in QTL mapping and genetic
analyses, genetic studies of low-P tolerance are currently
limited to biparental QTL mapping and association
mapping. Hence, there is still considerable scope for
improvement of genetic population studies for PUE.

6 Phenotypic difference between heterotic
subgroups

Heterosis refers to the phenomenon where the phenotype
of the F-generation performs better than those of parents,
and maize is the most successful crop for the utilization of
heterosis. A study using 456 inbred lines and their
phenotypic data of shoot and root at the seedling stage in
anormal and low-P environment led to the classification of
lines into low, medium and high tolerance to low-P
conditions, and specifically, the identification of 23
P-efficient and 109 P-sensitive lines. P-efficient lines in
the temperate subpopulations were 1323, 81162, 04K5672

Ed Temperate

and Dan599, P-efficient lines in the tropical/subtropical
subpopulations were CIMBL120, CIMBL131, CIMBL14
and CML431, P-inefficient lines in the temperate sub-
populations were Dan340, Zheng22, ZZ01, XZ698, and
P-inefficient lines in the tropical/subtropical subpopula-
tions were CIMBLI10, CIMBL106, CIMBL110 and
CIMBL114531, Based on the agronomic traits and yield
traits of 826 lines (including 580 tropical/subtropical and
246 temperate maize inbred lines), the synthetic LPTI was
calculated to screen for high PUE lines. The temperate
low-P-tolerant inbred lines in the temperate subpopulations
were CXS100, Fu746 and LHS51, the low-P-inefficient
inbred lines in the tropical/subtropical subpopulations were
CML426, CML432 and CML470, the P-inefficient lines in
the temperate subpopulation were CXS132, CXS135,
CXS18 and CXS21, and the low-P-inefficient lines in the
tropical/subtropical subpopulations were CML486,
CML454, CML40 and CML29860!*'). By rearranging
the data of Zhang et al.l*'! it can be found that the
temperate lines have higher tolerance to low P (P < 0.001)
(Fig. 1).

Xu et al.l*” used the same index as Zhang et al.l*'! to
perform genetic analysis of low-P-tolerant lines to screen
germplasm resources. P-efficient inbred lines were
CP619F, JI35, 89-1 and 374, whereas P-inefficient lines
were 200B, LH193, LH220HT and 4676. It is clear that the
genetic materials selected in different studies differed
greatly, which was mainly due to (1) differences in genetic
materials per se; and (2) the differing target traits and
indicators. Therefore, the question of which indicator
should be used to screen for low-P-resistant lines is still
open to discussion. Most studies use phenotypes under
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Distribution of low-P tolerance ranking of temperate and tropical/subtropical subpopulations. (a) Histogram of tolerance ranking

of temperate (left) and tropical/subtropical (right); (b) boxplot of tolerance ranking of the two subpopulations. Significance test was based

on Student’s ¢-test. Data sources from Zhang et al.™*!J,
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low-P stress or LPTI as screening indicators.

Liu et al.®*¥ used three P-efficient inbred lines (Zao27,
428 and YuanYinl) and three P-inefficient inbred lines
(7922, Chen9411 and 8703-2) as parents to produce 15 F,
hybrids by crossing as a complete diallel. It was found that
for most traits, under the stress of low P, the relative
midparent heterosis changed from 20.3% to 446%, while it
varied between —7.73% and 2308% under high-P
conditions, and that the midparent heterosis of most root
system architecture-related traits under low P was higher
than that under normal P. Ige et al.®! used 10 open
pollinated cultivars to construct hybrids by a complete
diallel cross. Their work revealed that the midparent
heterosis and the better-parent-heterosis are reduced under
low-N stress. Moreover, AMATZBR-WC2B (white flint)
with flint endosperm and white grain color showed the
highest general combining ability (GCA). DMR-LSR-Y
(yellow dent) with dent endosperm type and with yellow
grain color and BR9943DMRSRG (white flint) with flint
endosperm and white grain color had the lowest GCA.
Under low-N conditions, the hybrids DMR-LSR-W
(yellow dent) x BR9928DMRSR (yellow flint) and
BR9922DMRSR (yellow flint) x TZBRELD-4COW
(white flint) have the highest specific combining ability
(SCA). Narang & Altmann'™®! used two Arabidopsis
accessions, C24 and Col-0, which differed in the
absorption capacity of hydroxyl phosphate, and found
that the heterosis of F; hybrids was derived from the
accumulation of a large number of excellent dominant
genes. The hybrids inherited the long root hair length of
C24, the long root length of Col-0, and the enhanced
phosphate transporter expression of C24. Physiological
genetic changes result in hybrids with a higher PUE. Under
low-P stress, phenotypic analysis of lines and hybrids from
different heterotic groups is used to identify high GCA
inbred lines and high SCA hybrids, which in turn are
promising candidates for evaluating, predicting, and
selecting high PUE maize hybrids.

7 Molecular breeding methods in plants

Standard breeding mainly chooses individuals according to
their phenotypes, which has great utility. Molecular
markers can be used to select the background and
foreground of genetic material, and to achieve gene
pyramiding, which improves the accuracy and predict-
ability of maize breeding®”). In Arabidopsis, MYB62,
ARF7 and ARFI9 have been reported to increase the
absorption of P by root®**1. PypI is a very important
QTL located on chromosome 12 of rice, with the rice
variety Kasalath serving as the donor of this favorable
allele. It was found that in low-P soils, the P uptake and
yield of lines carrying Pupl were higher, which holds true
for different genetic backgrounds and environments!”’!,
Furthermore, overexpressing the PSTOLI gene, which

encodes a protein kinase, confers a phenotype of increased
root dry weight, P uptake, and yield in the rice varieties
IR64 and Nipponbare!'*!. By homologous alignment with
published PUE-related genes in rice and Arabidopsis,
many genes with potential applications in maize had
been discovered, for example GRMZM2GO0171 64131,
GRMZM2G111354%), GRMZM2G135978"""?). How-
ever, there has been no report of the application of genes
in maize breeding until now. In recent years, a series of
gene editing technologies have become increasingly
common in human and plant research, among which the
most widely and successfully used technology is
CRISPR!®!. The CRISPR system has been used to
improve quality and quantity traits of maize!”**). CRISPR
technology only transforms endogenous genes and has
broad prospects for application in the creation of new
genetic breeding lines. For maize, there is no report on the
use of CRISPR technology to obtain high PUE maize
germplasm. This underlines the fact that knowledge of a
gene or QTL is necessary for its application via MAS,
transgenic approaches, or CRISPR.

In 2001, Meuwissen et al””®!. proposed the concept of
GS, in which molecular markers covering a whole genome
and phenotypic information of a training population are
used to establish linear models (such as TBLUP, BayesA
and GBLUP) to predict the genomic estimated breeding
valuel””). Bernardo and Yul™! performed a simulation
analysis in maize DH breeding and demonstrated that
genome-wide selection has greater genetic advances than
MAS. Subsequently, GS has been widely carried out in the
study of maize inbred line selection, hybrid phenotypic and
heterosis prediction, and has achieved great efficiencies in
important agronomic traits, quality and yield of maize!”*~
1961 The prediction accuracy of GS is affected by multiple
factors, such as the genetic structure of a trait, the number
of markers, the size of the training population, and the
kinship among individuals!'®” "% Lyra et al.l''' used
phenotypes under low-N to calculate different selection
indices and used GBLUP and RKHS/GK to evaluate the
accuracy of single-trait and multi-trait models. For the two
investigated models, the highest accuracy of harmonic
mean index was 0.4 and 0.41, respectively. The multi-trait
model can also improve the GS accuracy of yield. By using
an association population of 11 phenotypes, it was
observed that haplotype-GS comprising the information
of linkage disequilibrium and wBayes with the information
of significant QTL have a higher prediction accuracy for
some simple traits!*’). Therefore, the method of GS has a
high accuracy and genetic progress for prediction and
screening of high PUE lines is enhanced.

8 Molecular breeding for high PUE in maize

Based the research discussed above, we propose a strategy
for screening P-efficient maize lines and cultivars by
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Fig. 2 A strategy for breeding high PUE inbred lines and hybrids.

combining various molecular breeding methods (Fig. 2).
Rich genetic resources are the basis for crop genetic
improvement and breeding!''*"'"*l. Organizations such as
the Chinese Academy of Agricultural Sciences, the
International Maize and Wheat Improvement Center and
Leibniz Institute of Plant Genetics and Crop Plant
Research have established gene banks, and researchers
can order seed resources online. Since the sequencing of
maize variety B73 in 2009!''*!, large-scale whole-genome
sequencing of maize has been undertaken, and 1.25 million
markers of 540 inbred lines have been constructed by
integrating RNA-Seq data, SOK chips and genotyping by
sequencing datal''®. By means of the whole genome
sequencing data of 1218 inbred lines, researchers con-
structed the third generation HapMap of maize!'' " and the
genome sequencing data has been shared on the web page
of ‘maizego’ and ‘panzea’. At present, in most studies, the
collection of phenotypic data still relies on labor, but large-
scale high-throughput automated phenotypic identification
platforms have been established to overcome this limita-
tion' '™, For example, candidate gene mining by combin-
ing high-throughput agronomic phenotypic data and
correlation analysis has been performed in ricel''*).
Imaging systems have also been applied to study plant
roots””), and this automated phenotypic identification
platform is likely to have broad application in crop
phenotypes and genetic research. Also, statistical methods
for the association of phenotypic and genotypic data are
used for linkage mapping and GWAS. Other methods that
only use extreme plant materials for gene mapping (such as

MutMap!'?”, BAR-Seq!'?"!, QTL-Seq!'**), QTG-Seq!'**
and XP-GWAS!'?*) have proved beneficial in genetic
research on quality and quantitative traits. Moreover,
bulked segregant analysis of genomes, metabolomes, and
proteomes has great potential for genetic mapping, plant
breeding, and molecular marker development!' >, Overall,
with the above resources and technologies that allow
increased knowledge for a candidate gene or QTL we then
can use MAS, transgenic approaches and CRISPR to
verify the candidate gene function(s) and select targeted
chromosome fragments for genetic improvement, thereby
achieving superior gene selection and broadening the
genetic basis for low-P tolerance in maize.

Since maize is a crop with strong heterosis, it is not
enough to only select or improve elite inbred lines; rather,
it is necessary to select excellent inbred lines in different
heterotic groups to form hybrids. Within each heterotic
group, DH technology can be used to obtain pure inbred
lines in early generations. Based on the genotypic
information of these lines, the subgroup structure of the
lines can be determined by using the methods of principal
component analysis and genetic distance!’>'?*"'?]. There
are two main advantages to grouping genetic materials:
(1) the farther the genetic distance between subgroups, the
greater the heterosist'?”'*"1; (2) the kinship of the lines
within one subgroup is close, and the relationship between
the training group and the testing group is close, which can
lead to a high accuracy of GS!'!10%13171331 " According to
a clustering structure, a GS model can be established in
each subgroup. The difficulty in phenotyping a large
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number of DHs can be solved by using GS methods to
predict the PUE-related traits. At the same time, QTL or
genetic information related to PUE traits can also be
integrated into a GS model to improve prediction
accuracy!'**). Hybrid breeding entails selecting elite inbred
lines with a high GCA, followed by crosses of pairs of lines
with a high SCA. Therefore, some core germplasm
resources should be selected from each subgroup to
make test crosses. Then, a hybrid prediction model can
be established based on the multienvironment evaluation
for hybrids and their parental lines!'*>'*%. In addition, the
genotype by environment interaction can be integrated into
a linear model to improve accuracy!'*”"'*%l thereby
achieving the selection of high PUE hybrids.
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