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Abstract Emergent coronaviruses (CoVs) such as
SARS-CoV and MERS-CoV have posed great threats to
public health worldwide over the past two decades.
Currently, the emergence of SARS-CoV-2 as a pandemic
causes greater public health concern. CoV diversity is due
to the large size and replication mechanisms of the
genomes together with having bats as their optimum
natural hosts. The ecological behavior and unique immune
characteristics of bats are optimal for the homologous
recombination of CoVs. The relationship of spatial
structural characteristics of the spike protein, a protein
that is critical for recognition by host receptors, in different
CoVs may provide evidence in explaining the coevolution
of CoVs and their hosts. This information may help to
enhance our understanding of CoV evolution and thus
provide part of the basis of preparations for any future
outbreaks.
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1 Introduction

The human coronaviruses (CoVs) have been reported to
represent only a minimal threat to public health[1]until the
outbreak of severe acute respiratory syndrome (SARS)
caused by SARS-CoV in 2002 and 2003[2]. The Middle
East respiratory syndrome coronaviruses (MERS-CoV)
then emerged in Middle Eastern countries in 2012[3] and
cases continue to be reported. The recent COVID-19
outbreak, associated with the novel coronavirus SARS-
CoV-2, in December 2019[4] shows a significantly larger
scale of infection than previous CoV outbreaks and has

therefore caused greater public health concern worldwide,
and was designated a pandemic by WHO on March 11,
2020.
Bats are a major source of zoonotic viruses[5] and have

been demonstrated to be reservoirs for several emergent
viruses including SARS-related coronaviruses (SARSr-
CoVs)[6], Ebola virus[7] and Marburg virus[8]. SARS-CoV
and MERS-CoV are highly transmissible and most likely
originated in bats[9]. SARS-CoV-2 has a high similarity of
genome sequence to SARSr-CoVs[10], demonstrating a
high potential to be of bat origin. SARS-CoV-2 uses
cellular receptors for cell entry, whereas both SARS-CoV
and SARS-CoV-2 use the angiotensin-converting enzyme
2 (ACE2)[6,11] and MERS-CoVuses dipeptidyl peptidase 4
(DPP4, also known as CD26)[12].
In this review, we focus on the physiological character-

istics of bats and the protein structural biology of the virus
in humans. Specifically, we emphasize the adaptability of
bats as the reservoirs of CoVs from the perspective of their
immune characteristics and ecological behavior. We also
emphasize the structural characteristics of these emerging
viruses and their host receptors which may facilitate virus
transmission. It is intended that this information will
enhance our understanding of the evolutionary relation-
ships between the new emerging CoVs and their hosts, and
help in the development of countermeasures against any
future outbreaks of novel CoVs.

2 Epidemics and transmission of CoVs

2.1 CoV taxonomy and scope of infection

CoVs are members of the subfamily Coronavirinae in the
family Coronaviridae of the order Nidovirales (Interna-
tional Committee on Taxonomy of Viruses). All CoVs
share similarities in the organization of the viral genome
and can be separated into four genera based on
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phylogenetic clustering: Alphacoronavirus (α-CoV), Beta-
coronavirus (β-CoV), Gammacoronavirus (γ-CoV) and
Deltacoronavirus (δ-CoV). CoVs are ecologically diverse.
The hosts of α-CoVand β-CoVare thought to be restricted
to mammals whereas γ-CoV and δ-CoV infect birds but
some can infect mammals[13]. For example, pigs can be
infected by porcine deltacoronavirus (PDCoV)[13,14].
A variety of diseases in farm and companion animals

have been attributed to CoV infections such as infectious
bronchitis virus (IBV) and canine respiratory CoV which
cause respiratory symptoms in chickens[15] and dogs[16],
respectively. Other CoV infections in animals result in
gastrointestinal symptoms including transmissible gastro-
enteritis virus[17], porcine epidemic diarrhea virus[18],
PDCoV[14], swine acute diarrhea syndrome CoV[19],
bovine CoV[20,21], feline CoV[22] and canine CoV[23].
Four of the seven CoVs known to infect humans (NL63,

229E, OC43 and HKU1) induce only mild upper
respiratory diseases and mild enteritis, with symptoms
such as the common cold[24], whereas the remainder of the
CoVs, including SARS-CoV, MERS-CoVand the recently
emerged SARS-CoV-2, cause acute clinical symptoms
characterized by severe pneumonia[25,26]. Human CoV
229E and NL63 belong to the genus α-CoV, and OC43,
HKU1, SARS-CoV, MERS-CoV and SARS-CoV-2 are
members of β-CoV.

2.2 Transmission of SARS-CoV

During the SARS epidemic the initial patients had a history
of animal exposure before developing the disease. After
SARS-CoV was isolated from two patients[27] the SARS-
CoV antigen and antibody were found in palm civets
(Paguma larvata) from screening in a live animal
market[28], and then palm civet was considered to be the
intermediate host of SARS-CoV. In 2005, there were
reports that the novel human SARSr-CoVs were found in
bats (Rhinolophus)[29,30] suggesting that bats are the
natural hosts of SARS-CoV. In 2013, a novel bat CoV
from Chinese horseshoe bats (F. Rhinolophidae) closely
related to SARS-CoVwas found in Yunnan, China, and the
use of ACE2 for cell entry by the novel bat CoV was
identified, providing the strongest evidence that Chinese
horseshoe bats are natural reservoirs of SARS-CoV[6].
Subsequent serological methods found that a range of
animal species had virus-specific antibodies[31] in addition
to humans who live in close proximity to caves where bats
carrying diverse SARSr-CoVs roost[32].

2.3 Transmission of MERS-CoV

After the first outbreak of MERS in 2012 the MERS-CoV
was isolated from the sputum of a 60-year-old man who
presented with acute pneumonia in Saudi Arabia[3]. Soon
after, a virus detected in a species of bat (Taphozous

perforatus) had full nucleotide identity to MERS-CoV
from the human patient[33], suggesting that bats are the
natural host of MERS-CoV. In 2014, two isolates of
MERS-CoV from a dromedary and from a patient who
died of MERS-CoV infection had identical genome
sequences[34], indicating that the transmission of MERS-
CoV infection was through close contact with the infected
camel and that camels can be the intermediate host of
MERS-CoV. In serological studies high positive rates of
MERS-CoV neutralizing antibodies were detected in
camel serum samples from east Africa (even in serum
samples collected in 1983)[35] and Pakistan[36], suggesting
persistent and widespread virus circulation in these
animals.

2.4 Potential hosts and transmission of SARS-CoV-2

A previously unknown β-CoV (now known as SARS-
CoV-2) was discovered from patients with pneumonia[4].
The genome sequence of SARS-CoV-2 has 79.6% identity
to a SARS-CoVand 96.0% identity to a bat CoV, providing
strong evidence that the virus is of bat origin and that bats
are a natural host[10]. Currently, the available evidence
indicates that pangolins (Manis javanica) may serve as an
intermediate host for SARS-CoV-2 due to the high
sequence identity between SARS-CoV-2 and a CoV
isolated from pangolins[37,38], as well as use of the same
cell entry receptor (ACE2) but the confirmation of an
intermediate hosts for SARS-CoV-2 is not yet possible due
to sequence diversity on the spike (S) protein[39].

3 Immunological and ecological
characteristics of bats

3.1 Evolution of bats

Bats may be the most abundant, diverse and geographi-
cally dispersed vertebrate animals which evolved early and
have changed relatively little[40]. Taxonomically, bats are
members of the order Chiroptera (including the suborders
Yinpterochiroptera and Yangochiroptera), having a sister
relationship with the order Fereuungulata (including
carnivorous animals such as cats, civets, dogs, pangolins
and weasels) within the clade Scrotifera, with all of them in
the superorder Laurasiatheria[41]. The civet and camel are
members of the order Fereuungulata, which are considered
to be intermediate hosts of SARS-CoV and MERS-CoV,
respectively[28,34]. Through prediction of species evolution
for the understanding of biogeographical history, Africa
has been suggested to be the center of origin of modern-
day bat families[42].
The corresponding ancient origins of zoonotic viruses

such as rabies virus[43] maintained in bats indicate a long
history of coevolution. For replication, viruses in bats may
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have used cellular receptors and biochemical pathways that
are conserved in mammals, and this may enhance the
capacity for transmission of bat-associated viruses to other
mammal[5]. Bats display unique immune characteristics
and ecological behavior, and are widely considered to be
the natural host of a range of zoonotic viruses such as
rabies virus[43,44], hantaviruses[45], Nipah virus[46], Hendra
virus[47], Ebola virus[7], and the emergent CoVs such as
SARS-CoV[2] and MERS-CoV[3].

3.2 Ecological behavior of bats facilitates virus
transmission

The unique flight capability of bats is used for daily
acquisition of food and seasonal long-distance migra-
tions[48] and this may promote virus transmission and
recombination. Rabies virus variants have been identified
in migrating subpopulations[49] or might exist between the
migrating and nonmigrating subpopulations[50]. In a study
of CoV transmission related to bat migration, frequent
recombination events were identified between different
strains of the SARSr-CoVs in Rhinolophus, Chinese
horseshoe bats, (SARSr-Rh-BatCoV) during migration[51].
The host shift in SARSr-CoVs was mostly related to
geographical structure (CoVs from adjacent provinces
were clustered) rather than to bat species[52], indicating the
impact of migration in SARSr-CoVs transmission by bats.
Bats are the only land mammals that use echolocation

for navigation. Echolocation signals powered by the
muscles of bats can generate droplets of oropharyngeal
fluids that may promote the airborne transmission of
viruses such as rabies virus[53].
The daily torpor and seasonal hibernation of certain bat

species with reduced metabolic activity and body tem-
perature at night and during winter lead to significant
energy savings[54]. Hibernating bats can serve as a viral
reservoir and this is conducive to high-level recombination
events in the rabies virus[55]. The CoVs identified in
hibernating bats (Myotis lucifugus) appeared to be from
two distinct clades and the virus infection occurred before
hibernation[56], suggesting that two closely related CoVs
may circulate in bats during hibernation.
The long lifespan might be related to the inhibition of

telomere shortening in the bat genus with greatest long-
evity[57]. Also, the possible antiviral mechanisms of bats
may help maintain the viruses and promote the transmis-
sion to different animals[5]. Persistent viral infections in
long-lived bats, together with the large population size and
gregarious roosting behavior which may have a substantial
impact on the basic reproductive number of infections,
greatly increases the potential for intra- and interspecies
transmission of viruses[5].
All these studies demonstrate the importance of zoonotic

virus spillover from bats to other animals.

3.3 Unique immune characteristics of bats

The unique immune characteristics of bats contribute to the
dynamic equilibrium of virus coexistence. Vertebrates
respond to viral infections by inducing interferons (IFNs)
that trigger antiviral defense by inducing the interferon-
stimulated gene (ISG). Type I IFNs, composed of multiple
α subtypes and a single β subtype, are an important part of
the immune response to viral infection[58]. Two signal
transduction pathways are used for Type I IFN expression:
(1) a toll-like receptor (TLR)-dependent pathway that
depends on the reorganization of viral double-stranded
RNA, single-stranded RNA and CpG DNA via TLR in
cells for subsequent IFN-β expression, and (2) a TLR-
independent pathway which depends on intracellular
sensors such as retinoic acid-inducible gene I and
melanoma differentiation-associated gene-5 for detection
of viral components in the cytoplasm, and then transacti-
vation of IFN-β mRNA[59]. Interferons and viruses
maintain an equilibrium in Nature that allows regulation
of viral replication[58]. Bat IFN-β shares the highest
sequence identity with pig IFN-β at both the nucleotide
and amino acid levels[60]. Also, stimulation of bat primary
kidney cells with exogenous bat type I IFNs resulted in
increased type I IFN mRNA expression[60], thus, the high
level expression of IFNs can facilitate the equilibrium
between bats and their viruses.
The potential repressor (c-Rel) binding motif in bat

TNFα promoter can inhibit the expression of the
inflammatory gene TNFα[61]. In addition, the secretion of
IL-1β is downregulated and the activation of NLRP3
inflammatory bodies is significantly dampened during viral
infection[62]. Myxovirus resistance gene (Mx) is an
important antiviral ISG, encoding two homologous
proteins, Mx1 and Mx2. Bat Mx1 gene is close to its
human ortholog MxA phylogenetically, and the encoded
protein Mx1 can significantly reduce the polymerase
activity of viruses circulating in bats, including Ebola
and influenza A-like viruses[63]. Compared to human ISGs
in IFN-stimulated cells, ISG expression in some species of
bats has the same early induction kinetics but distinct late-
phase decline[64]. Notably, in unstimulated cells, bat ISGs
were expressed more highly than their human equiva-
lents[64]. This stand-by mechanism of interferon expression
in bats can ensure that the high level of antivirus
inflammatory response can be quickly induced in the
early stages of infection for rapid control of virus
replication, and subsequently the unique rapid decline
results in reduced cytotoxicity in bats (this stage was not
observed during human ISG response to infection), which
can prevent the severe pathological consequences in
humans, such as severe pneumonia, due to the prolonged
inflammatory response after viral infection.
Flight is energetically a very costly form of locomotion

and results in high levels of oxygen free radicals caused by
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increased metabolic activity[65], making animals more
prone to DNA damage[66]. Excessive energy expenditure
due to an increase in immune response responsible for
DNA repair is energetically costly[67]. Bats may therefore
have evolved special mechanisms to suppress the activa-
tion of the immune response caused by DNA damage,
thereby reducing the inflammatory response and against a
free-radical effect on aging in certain species with small
size and high metabolic rates[68]. In bats the evolutionary
suppression of inflammation and consequent susceptibility
to virus infection is counteracted by constitutive expres-
sion of innate immune genes or novel genes to target
viruses[69], and this creates opportunities for stable and
dynamic circulation of the virus in bat populations.
These immune responses reveal a tight control of viral

replication by the innate immune defense in bats, possibly
contributing to the stable coexistence between bats and
their viruses.

4 CoV spike protein and its host receptors
in virus adaptation

4.1 Cell entry and host-switch by spike protein

The S protein of CoVs is highly glycosylated and can be
divided into two functional domains: S1 that is responsible
for receptor binding and S2 that responsible for cell
fusion[70]. CoV S protein is a typical class I virus fusion
protein and is characterized by the formation of an α-
helical coiled-coil structure[71]. Cell entry by CoVs mainly
relies on S protein which mediates the functions of receptor
binding and subsequent fusion of the viral and cellular
membranes, thereby releasing the viral nucleocapsid into
the cytoplasm[72]. CoVs use a variety of receptors to
activate fusion, and S protein alterations are sufficient to
extend or alter the host range such as the ability of cross-
infection between murine CoV and feline infectious
peritonitis virus (FIPV)[73,74], the interspecies S protein
switching of IBV[75], and the possible tropism switch of
feline enteric CoV and FIPV[76,77].

4.2 SARS-CoV tropism by spike protein alteration

ACE2, a type I integral membrane protein abundantly
expressed in lung tissue, is a functional receptor for SARS-
CoV[78]. The S protein of SARS-CoV from the outbreak in
2002–2003 showed a higher binding affinity to human
ACE2 than that of the S protein driven from the strains of
humans and palm civets isolated in 2003–2004. Notably,
the lower affinity can be complemented by specific residue
mutation in human ACE2 or viral S proteins[79], indicating
that SARS-CoV has structural selectivity with cellular
receptors that may be caused by the accumulation of
mutations in the S protein during evolution. This type of
mechanism of S protein structural alteration (residue

changes necessary for adaptation to the receptor)[80,81]

may explain the success or failure of SARS-CoV
transmission[79,82].

4.3 MERS-CoV tropism by spike protein alteration

MERS-CoV uses DPP4 as the cellular receptor for entry,
and the cellular restriction of MERS-CoV is determined by
DPP4 expression rather than by downstream restriction
factors[12]. In a cell line expressed a species-derived variant
of DPP4, a suboptimal variant of MERS-CoV adapted the
cell by the accumulation of mutations in the S protein,
resulting in the enhancement of cell entry by altering the
surface charge distribution of the S protein[83]. In addition,
bat DPP4 proteins from seven species were all interacting
with the receptor binding domain (RBD) of MERS-
CoV[84]. Substitution of key residues and their adjacent
amino acids of bat DPP4 leads to the decreased binding
affinity to the MERS-RBD[84], which may be caused by the
shift in H-bond pairs (induced by the mutation-caused
hydrophobicity), the limitation of the conformational
flexibility[84] and the diverse glycosylation patterns of the
S protein[85]. The diversity of bat DPP4 may confer the
evolutionary stress for the cell adaptation of MERS-CoVs,
and may have led to the generation of diversified strains
during coevolution[84].

4.4 High spatial similarity of S1-RBD between
SARS-CoV-2 and SARS-CoV

Until March 8, 2020, a total of the 447 items (438 viral
proteins and 9 non-viral compounds such as peptides)
could be found by searching for CoV in Research
Collaboratory for Structural Bioinformatics Protein Data
Bank (RCSB PDB, rcsb.org). Crystal structure data (PDB
entry) are mainly focused on the SARS-CoV and MERS-
CoV that caused the previous epidemics, and the SARS-
CoV-2 in terms of the fast release in RCSB (Fig. 1). The S
protein and the main proteinases (Mpro and 3CLpro) are
dominant (Table 1) in the available PDB data.
In computational analysis of protein spatial structure the

root-mean-square deviation (RMSD) is a standard tool for
comparing the similarity of two molecular structures[86],
the lower values indicating higher similarity, and vice
versa. According to the comparison based on the available
spatial structural data for CoV S proteins, it was found that
the similarity of RBD of S protein between SARS-CoV-2
and SARS-CoV (RMSD of 1.021 Å) is higher than that
between SARS-CoV-2 and MERS-CoV (RMSD of 2.351
Å) (Fig. 2), and this is consistent with the sequence
comparison result for the S protein from these CoVs[10],
indicating that the evolutionary pattern of SARS-CoV-2 is
highly SARS-CoV related. The high similarity of S
proteins between SARS-CoV-2 and SARS-CoV, together
with the accumulation of mutations in S protein, may
promote the host adaption of these CoVs.
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Fig. 1 The available PDB data on CoVs in RCSB. The other CoVs include 229E, NL63, OC43, PEDV, PRCV, TGEV, PDCoV, IBV,
FIPV, MHV, HKU1, HKU4, HKU5, HKU9, Bov-CoV, and rat CoV; the other NSP include NSP1, NSP3, NSP4, NSP7, NSP8, NSP9,
NSP10, NSP12, NSP13, NSP14, NSP15 and NSP16; the other proteins include viral proteins E (envelope protein), HE, M (membrane
protein), N (nucleocapsid protein), ORF7A, ORF9b, together with the antibodies of CoVs.

Fig. 2 Comparison of the spatial structure of the receptor binding domains (RBD) of CoV S protein. The PDB data are listed as:
SARS-CoV-2 S (PDB: 6VSB), SARS-CoV S (PDB: 5XLR) and MERS-CoV S (PDB: 5X59).
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5 Summary

Over the past two decades the emergence of CoVs such as
SARS-CoV, MERS-CoV and the new SARS-CoV-2 have
caused great threats to public health. CoV diversity is
fundamentally due to the large size and replication
mechanisms of the genome and bats being optimal natural
hosts. The ecological behavior and unique immune
characteristics of bats promote the homologous recombi-
nation of CoVs, which may increase the accumulation of
infectious CoVs in humans. The highly variable S protein
is the major determinant of CoV tropism. From an
evolutionary perspective the infectious CoVs show con-
vergence with hosts at the molecular level under the stress
of natural selection, and this highlights the need for virus
surveillance and the development of antiviral strategies
focusing mainly on S proteins in preparations for any
future outbreaks.
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