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Abstract Before the advent of the wheat genomic era, a
wide range of studies were conducted to understand the
chemistry and functions of the wheat storage proteins,
which are the major determinants of wheat flour the
suitability of wheat flour for various end products, such as
bread, noodles and cakes. Wheat grain protein is divided
into gluten and non-gluten fractions and the wheat
processing quality mainly depends on the gluten fractions.
Gluten provides the unique extensibility and elasticity of
dough that are essential for various wheat end products.
Disulfide bonds are formed between cysteine residues,
which is the chemical bases for the physical properties of
dough. Based on the SDS-extractability, grain protein is
divided into SDS-unextractable polymeric protein (UPP)
and SDS-extractable polymeric protein. The percentage of
UPP is positively related to the formation of disulfide
bonds in the dough matrix. In the wheat genomic era, new
glutenins with long repetitive central domains that contain
a high number of consensus hexapeptide and nonapeptide
motifs as well as high content of cysteine and glutamine
residues should be targeted.

Keywords wheat gluten, consensus motifs, disulfide
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1 Wheat grain protein classification

Bread wheat grain proteins are generally divided into
gluten and non-gluten proteins (Fig. 1). Both gluten and
non-gluten proteins are located mainly in the embryo,
aleurone layer and endosperm of the grain, with the
endosperm containing most of the gluten. The gluten
protein fraction accounts for about 85% of total grain
protein. Based on the solubility in aqueous alcohols and
acid solution, glutens are divided into polymeric glutenins

and monomeric gliadins in a proportion of 40% and 60%,
respectively[1]. According to the molecular weight dis-
tribution, glutenins are classified into high molecular
weight (70000–90000 Da) glutenin subunits and low
molecular weight (20000–45000 Da) glutenin subunits
(HMW-GS and LMW-GS), which account for 40% and
60% of glutenin composition, respectively. Based on the
order of mobility on electrophoresis at low pH, monomeric
gliadins are classified into α/β-, g- and w-gliadins, which
represent approximately 55%, 30% and 15% in gliadin
fractions, respectively[2,3]. The non-gluten protein includes
albumins (water-soluble protein) and globulins (salt-
soluble protein). These are mainly biochemical functional
proteins such as chaperones and enzymes, which regulate
the accumulation and synthesis of storage proteins, and
grain growth[4,5].

2 Wheat gluten protein variations

Glutens are the major constituents of bread wheat grain
storage proteins and constitute 85% of the total. They are
mainly responsible for the processing quality of wheat
dough and were among the first proteins isolated and
studied by human beings. Their biological function is to
provide carbon, nitrogen and energy sources for seed
germination and seedling growth. Mutations or silencing
of such genes are not lethal for the plant, so the
evolutionary selection pressure on these genes is much
lower than for functional genes[6]. As a result, these genes
can accumulate more mutations, making them ideal model
molecules for studying a range of biological fundamental
processes[7–10]. It is worth noting that past work has been
primarily focused on the applied aspects of using these
proteins to increase wheat end product quality. Their value
in theoretical research has been largely ignored. So far,
only Zhang et al.[8] has reported a biological function other
than the storage function for gluten, an antifungal function
of a newly identified special gluten protein, namely avenin-
like protein, which is quite similar to the gliadins in
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structure. Until now, extensive studies have provided
substantial information about the relationship between
gluten structures and properties in relation to end product
quality. The first systematic study was conducted by
Osborne[2], who developed a classification for cereal-seed
proteins based on their sequential extraction and differ-
ential solubility. Four different groups were classified,
including (1) albumins, soluble in water and dilute buffers,
(2) globulins, not soluble in water but soluble in saline
solutions, (3) gliadins, soluble in 70% to 90% ethanol, and
(4) glutenins, soluble in dilute acid or alkali. The two
distinct groups of the gluten polymer that were classified
reflected their solubility in 70% ethanol, namely glutenins
and gliadins[11,12]. The gliadins are single polypeptide
chains and the glutenins are multichained structures of
polypeptides that are held together by disulfide bonds. The
high molecular weight of these polymeric structures is
responsible for their partial insolubility and for their
contribution to food-product quality. Therefore, the
classification of these proteins into monomeric and
polymeric forms is a good indicator of their functional
properties[13].
In most dicotyledonous, and some monocotyledon

seeds, the globulin types predominate in the seed.
However, in the Triticeae (wheat, barley and rye) the
major portion of seed proteins are not globulins, but classes
of protein characterized by regular repetitive domains with
unique and fundamental functional features[14,15]. These
proteins are glutenins in wheat and variation in them either
quantitatively or qualitatively has major effects on end
product quality[16–18]. It is worth noting that although some
water-soluble proteins are also found present in the dough
gluten matrix and have some impacts on wheat processing
quality[19], the glutenins and gliadins are still the dominant
proteins in defining wheat processing quality. The
predictive power of glutenin subunit proteins for flour
processing properties has been demonstrated for dough

rheological properties, such as dough extensibility and
elasticity[18,20,21]. Strong dough will form a cohesive mass
that has resistance to extension and can retain stability
during mixing. Such dough is able to hold the gas
produced during fermentation within evenly distributed
discrete cells in the dough structure. This results in a loaf
crumb in which the gas cells are of regular size and even
distribution. Such a crumb structure appears light in color,
fine and silky in texture, both highly desirable quality
attributes. Soft gluten will allow the gas cells to expand
excessively during fermentation, causing their walls to
collapse and the cells to coalesce together, resulting in the
bread having an open texture with a coarse wall
structure[22].
The investigation of glutenin proteins in relation to

dough properties have indicated two key variables: (1) the
nature of the protein allele[16,23] and (2) the level at which
the respective allele is expressed[24,25]. The control of the
level of expression of seed storage protein has been well
studied[26–28]. Studies of the regulatory mechanism of gene
expression performed by Wanous et al.[29] revealed that 15
chromosome arms had significant effects on Glu-B1-1, 19
on Glu-B1-2, 20 on Glu-D1-1 and 25 on Glu-D1-2. In
addition, the orthologous loci (both x-type and y-type
HMW-GS) are influenced by the same regulatory systems
and there is less correlation between paralogous genes,
although considerable conservation was observed at this
level. However, there are chromosome sequences not
coding for any structural genes that affect the expression of
seed storage protein encoding genes in wheat. Chromo-
some 1D and 2A sequences can affect the expression of
gliadin genes located on chromosome 6A and 6D,
respectively[30,31]. The DNA structures of most of the
glutenin genes have been determined[24,32–35]. The prola-
mins forming the polymer are mainly HMW-GS and
LMW-GS, while the monomeric (polymer non-participat-
ing) prolamins are called α/β-, g-, and w-gliadins. It is

Fig. 1 Classification of wheat grain proteins
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worth noting that the α- andw-gliadins have been confirmed
to be the cause of human celiac disease and wheat
intolerance, while the glutenins are classified as nontoxic,
weakly toxic or not as toxic as gliadins[36]. The variation in
celiac disease epitopes in the α-gliadin gene family of
hexaploid wheat has been extensively studied[37–39].
HMW-GS proteins are a major determinant of gluten

elasticity through promoting the formation of larger
glutenin polymers and thus are key factors for breadmak-
ing[40]. They are encoded by theGlu-1 lociGlu-A1,Glu-B1
and Glu-D1 that are located on the long arms of
chromosome 1A, 1B and 1D, respectively. Each locus
includes two genes linked together encoding two different
types of HMW glutenin subunits, x-type and y-type
subunits[41–43]. The x-type subunits generally have a
higher molecular weight than that of y-type subunits[44].
Payne and Lawrence[13] summarized the number of alleles
at Glu-1 loci, three allelic forms for Glu-1A, 11 alleles for
Glu-1B, and six alleles for Glu-1D. More alleles have been
identified since as reported by researchers[45–47]. Most
alleles in modern hexaploid wheat cultivars emerged
before hexaploid wheat was formed, only By18 subunit
has been confirmed to have emerged after hexaploid wheat
formation[48]. Many gluten alleles did not enter into the
hexaploid wheat during evolution or have been discarded
through modern breeding[7,35]. Although six genes exist
for HMW glutenin subunits, due to gene silencing, most
hexaploid wheat cultivars possess three to five HMW
glutenin subunits[33]. All hexaploid wheat genotypes
contain at least Bx, Dx and Dy subunit in their endosperm,
while most cultivars also contain a By subunit and an Ax
subunit. The gene encoding Ay subunit is usually
silent[33,49]. By introducing an active Ay gene into
Australian common wheat cultivars, Roy et al.[50] found
significant positive effects of the Ay subunit on processing
quality. Other allelic effects associated with HMW
glutenins have been well documented. The one most
reported and used is Dx5+ 10[16,51,52]. Increased dough
strength can also be achieved through an increase in
expression of the Bx7 subunit, which results in approxi-
mately 130 BU (Brabender units) over the average of the
other alleles at that locus[20,24]. It has been observed that
the overexpression of Glu-1Bx7 improves dough strength
by stabilizing the gluten network, whereas Glu-1Bx17 and
Glu-1Dx2 do not[53]. Compared to the normal Bx7 gene,
the gene conferring Bx7 overexpression has an 18 bp
insertion in the central repetitive domain, a 43 bp indel of
the 5′-region and the left and right junctions of the LTR
retrotransposon borders and the duplicated segment, and
has been used to developed PCR markers as well as high
throughput KASP markers for differentiating these two
genotypes[54,55]. Other allelic variants also have differen-
tial effects on dough quality, e.g., Glu-B1 subunits 17+ 18
are associated with strong dough while subunits 20x+ 20y
are associated with weak dough[56]. Statistical analysis of
large numbers of durum wheat genotypes confirmed the

strong correlation of g-gliadin 45 with good processing
quality and g-gliadin 42 with poor processing quality.
Moreover, loaf volume during the baking process has a
negative relationship with acetic acid-soluble glutenin and
a positive relationship with acetic acid-insoluble glute-
nin[11]. For extensibility, Cornish et al.[56] suggested this
was a more complex trait involving other parameters such
as LMW-GS and gliadin compositions. However, gliadins
appear to be less important in determining bread quality,
and the addition of gliadins or the overexpression of certain
gliadins can reduce dough strength[57]. Wieser[58] found
that hydrated gliadins have little elasticity but contribute to
the viscosity and extensibility of the dough system,
whereas, hydrated glutenins are responsible for both
cohesive and elastic properties.

3 Gluten protein structure and component
variations and their impacts on dough quality

Typically, the structure of gluten protein is determined by
three general domains, one central domain rich in a
repetitive structure constituting a β-reverse turn and two
terminal α-helix domains[59]. A long repetitive domain of
the glutenin is considered to have a positive influence on
wheat flour quality due to the formation of more β-reverse
turn structures[40,60]. The proportion of the consensus
hexapeptides and nonapeptides in the repetitive domain
also affect dough quality. Masci et al.[61] reported that a
large and regular repeated sequence domain increases the
viscosity and elasticity of doughs through intermolecular
interactions. Wang et al.[25] reported that the hexapeptide
motif is more important than the nonapeptide motif. In
terms of secondary and high order structure, gluten protein
can aggregate to form a complex protein network through
disulfide bonds during the dough mixing process. In
general, most y-type subunits contain seven cysteines (five
in the N-terminal domain and one in each of the repetitive
and C-terminal domains), the x-type subunits possess four
cysteines (three in the N-terminal domain and one in the
C-terminal domain)[62,63]. However, different subunits
possess different numbers of cysteines. For example, the
subunit 1Dx5 has five cysteines (three in the N-terminal
domain and one in each of the repetitive and C-terminal
domains) and 1Dx2 only has four cysteines, meaning that
1Dx5 possesses positive allelic effects over 1Dx2 on
dough strength[64,65]. Also, Ax2*B is a novel variant of the
Ax2* subunit, which contains an extra cysteine residue
located in the middle of its repetitive domain, exerts a
positive effect on the gluten properties[66]. In contrast,
Bx14 and Bx20 subunits have reduced numbers of cysteine
residues in their N-terminal domains and usually have
negative effects on dough strength[64]. Apart from the
disulfide bonds, Gilbert et al.[67] found that hydrogen
bonds formed through glutamine can stabilize the poly-
meric structure of glutenin. Studies have revealed that a
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high content of glutamine of both HMW and LMW
glutenins have positive effects on dough quality[68].
Extra covalent bonds and intermolecular crosslinks of
tyrosines in the form of isodityrosine or dityrosine were
found to form during the dough mixing and baking process
among gluten proteins of wheat at the site of repeats of
pairs of tyrosine residues throughout the central repetitive
domains[59]. Oxidizing agents, such as ascorbic acid,
azodicarbonamide, and potassium bromate, can facilitate
the formation of dityrosine or isotyrosine during the baking
processing. Therefore, tyrosine is also important for the
maintenance of secondary, tertiary or quaternary structure
of gluten despite being present at a relative low proportion
(3%–5%). Cysteine, glutathione, butylated hydroxyto-
luene and other reductive agents on the other hand are
capable of not only cleaving disulfide bonds but also
inhibiting tyrosine bond formation via their free radical
scavenging activities[62,69]. However, Peña et al.[70]

indicated that crosslinks between tyrosine residues appear
to be few and of little importance in the structure of the
gluten network compared to the disulfide bonds formed
between cysteine residues. Less than 0.1% of the tyrosyl
residues participate in the crosslinks by forming dityrosine,
isodityrosine, trityrosine and pulcherosine, and is deter-
mined by the number of tyrosyl residues in the central
repetitive domain of glutenins. Of those, dityrosine
residues are only of minor importance in the structure of
wheat gluten[71]. The large gluten polymers consisting of
HMW-GSs, LMW-GSs and other relevant proteins
determine the end-use value of wheat flour by affecting
dough mixing and gluten formation. However, there are no
definitive structural differences among different glutenin
subunits which show a close relationship with their ability
to form gluten.
Gluten component variations also have a significant

impact on dough physical and physicochemical properties.
The classic interaction network of gluten involves the
backbone formed by HMW-GSs joined by LMW-GSs and
gliadins through disulfide bonds and noncovalent bonds,
respectively[72]. Among them, the x-type HMW-GSs
confer wheat gluten strength and the ratio of tenacity/
extensibility (P/L), and LMW-GSs, together with gliadins,
function as solvent which modifies the rheological proper-
ties of dough either by interfering with the polymerization
of HMW-GS, or by altering relative amounts of different
glutenin subunit types[70]. In detail, W was strongly
relevant to the quantity of x-type HMW-GS. This has
been confirmed by Halford et al.[73] who showed that
wheat carrying the active alleles of Glu-A1 (containing
Ax1 or Ax2* subunit) can produce higher strength gluten
and this was further supported by the positive effects
associated with an active y-type HMW glutenin alleles
encoded by Glu-A1 (containing Ay subunit). Besides, a
positive correlation existed between rheological para-
meters W and P/L and the total quantity of x-type HMW-
GSs, while a negative correlation was found between P/L

and gliadins/HMW ratio and LMW/HMW ratio[53]. As
Ahmad et al.[3] proposed, correlations exist between
gliadins and certain rheological variables. Therefore,
there must be a balance between different types of proteins
for the formation of the gluten network and the HMW-GSs
contributing to the formation of gluten network, and
especially x-type glutenin subunits have an important role
in the polymerization, whereas gliadins interfere with the
polymerization. Furthermore, Uthayakumaran et al.[74]

found a relationship between extensibility and gliadin
quantity and a negative correlation between LMW-GSs
quantity and P/L results in an extensible property. These
results indicate that the quantities of different gluten
protein fractions are more important than the types of
alleles available[53]. A newly characterized storage protein
class, avenin-like proteins, that is similar to gliadin in
structure with high number of cysteine residues was found
to have positive effect on dough strength[75].
Different compositions of wheat storage proteins confer

different dough physical properties that are required by
different end products[76,77]. For example, pasta making
requires dough with high gluten strength, but dough for
biscuit making needs low gluten strength with high
extensibility. Breadmaking needs moderate gluten strength
and high extensibility dough, while noodle making needs
dough with a balance of gluten strength and extensibility in
order to protect dough from tearing during the manufactur-
ing process. In addition, confectionery products such as
cake and cookies need flour with weak gluten[78]. There-
fore, it is the balance between elasticity and extensibility
that determines the suitability and quality of wheat flour for
different end products.

4 Core factors affecting dough storage
protein composition and viscoelastic
properties

As mentioned above, gluten functionality is due to the
essential role of disulfide bonds, which are formed between
sulfhydryl groups of cysteine residue[79,80]. The cysteine
residue are important in the formation of a gluten network
and maintaining gluten functionality. Dough elasticity is
primarily associated with the polymeric glutenins, which
form both intramolecular and intermolecular disulfide
bonds, whereas, dough extensibility mainly results from
the monomeric gliadins, which form only intramolecular
disulfide bonds[79,81]. It has been reported that intramole-
cular disulfide bonds form more rapidly than intermole-
cular disulfide bonds[12]. According to the distribution of
cysteine residues, gluten subunits can be divided into
S-poor (w-gliadin and HMW-GS) and S-rich (α/β-,
g-gliadins and LMW-GS) subunits. The α/β-, g-gliadins
and LMW-GS contain two or four times more cysteine
residues than HMW-GS; w-gliadin contains no cysteine or
methionine residues[79].
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Differences in soil sulfur availability may change the
proportion of S-poor (w-gliadin and HMW-GS) and S-rich
(α/β-, g-gliadins and LMW-GS) subunits and thus alter the
grain storage protein composition, which may eventually
lead to variation in the grain quality[82–85]. Less sulfur
availability in grain leads to an increase of S-poor subunit
quantity including w-gliadin and HMW-GS, and there is a
slight reduction in the amount of gliadins and LMW-GS.
Therefore, a decreased sulfur content is positively related
to an increased ratio of HMW-GS to LMW-GS. These
compositional changes could lead to an increased elasticity
and a decreased extensibility in gluten functionality[86,87].
In contrast, high sulfur availability in grain relates to an
increased proportion of S-rich subunits, which results in an
increased proportion of LMW-GS, α/β/g-gliadin and a
decreased proportion of HMW-GS and w-gliadin, and an
altered molecular weight distribution[83,85,87–89]. Ulti-
mately, the effect of high sulfur content will decrease
elasticity and simultaneously increase extensibility[90,91].
Apart from the effects on gluten protein composition,

another possible impact of sulfur on dough quality is due to
the tripeptide glutathione. Sulfur uptake is generally in the
form of sulfate, which is then converted into cysteine that
forms disulfide bonds important in maintaining gluten
functionality through various steps involving activation
and reduction[92,93]. Furthermore, cysteine is metaboliized
into glutathione in free reduced and free oxidized (GSSG)
forms, as well as in the form of protein-glutathione mixed
disulfides[94]. First, the balance between GSSG and GSH is
maintained in favor of oxidants such as ascorbic acid and
potassium bromate, acting as electron sources[95–97]. Free
GSH could react with intermolecular disulfide bonds,
which results in breakdown of disulfide bonds and damage
to the the structure of polymeric glutenins that ultimately
weakens the elasticity of dough. However, free GSSG can
react with SH groups of gluten proteins, which results in
release of GSH and damages the linkages of disulfide
bonds, ultimately weakening the dough quality[98,99].
Therefore, an excessively high sulfur supply to wheat
may increase the formation of glutathione, which is
negatively related to dough quality and tends to decrease
wheat processing quality.
Based on the extractability of grain protein fractions in

the SDS extraction buffer, grain protein compositions can
be divided into SDS-unextractable polymeric protein
(UPP; glutenin macropolymer) and SDS-extractable poly-
meric protein (EPP). The concentration of UPP (~20–
40 mg$g–1) in total grain protein is crucial in determining
gluten strength and breadmaking quality[58]. UPP is
positively related to the formation of the gluten network
which is formed by interlinking disulfide bonds and
responsible for dough functionality. The percentage of
UPP is a reliable reference for dough quality. The growth
environment has less effect on UPP accumulation in the
process of grain development. In contrast, EPP has been
reported to be influenced by environmental factors[100,101].

Although the accumulation of polymeric proteins starts as
early as 7 d post-anthesis and lasts during the entire period
of grain development, the accumulation of UPP fraction
only begins at the later stage of grain development (from
30 to 45 d post-anthesis). Yu et al.[102] found that UPP
formation involves peptidyl-prolyl cis-trans isomerase
(PPIase) SUMOylation with the assistance of small
ubiquitin-related modifier 1 and that high nitrogen
availability facilitates this connection. Additionally, lumi-
nal binding protein 2 in the endoplasmic reticulum has a
similar function to PPIase in the aggregation of protein.
The formation of UPP is closely related to the process of
moisture loss during grain-filling[103]. It has also been
reported that the significant changes in size distribution of
polymers only occurs during the later stage of seed
development, which corresponds with the period of a sharp
increase in glutenin subunit amount during cell division
and enlargement. Glutenin subunits have a large number of
free SH groups and are oxidized during water loss, which
is also when UPP is formed[104,105].

5 Conclusions

Extensive studies have been conducted to understand the
fundamental mechanisms underlying the effect of gluten
on wheat end product quality. The HMW glutenin
proportion has the greatest impact on dough quality. The
current progress in wheat genome research has made it
easy to search for novel gluten genes for wheat quality
improvement. Based on the findings of gluten research, in
the wheat genomic era, new HMW glutenins identified
from wheat relatives and historical landraces with long
central repetitive domains that contain high number of
consensus hexapeptide and nonapeptide motifs as well as
high content of cysteine and glutamine residues should be
investigated for their potential to improve wheat end-use
quality.
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