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Abstract The near infrared (NIR) spectroscopy techni-
que has wide applications in agriculture with the
advantages of being nondestructive, sensitive, safe and
rapid. However, there are still more than 40 error sources
influencing the robustness and accuracy of its calibration
and operation. Environmental, sample and instrument
factors that influence the analysis are discussed in this
review, including temperature, humidity and other factors
that introduce uncertainty. Error sources from livestock
products, fruit and vegetables, which are the most common
objects in the field of NIR analysis, are also emphasized in
the second part. In addition, studies utilizing different
instruments, spectral pretreatments, variable selection
methods, wavelength ranges, detection modes and calibra-
tion methods are tabulated to illustrate the complications
they introduce and how they influence NIR analysis. It is
suggested that large scale of data with abundant varieties
can be used to build a more robust calibration model, in
order to improve the robustness and accuracy of the NIR
analytical model, and overcome problems caused by
confining analysis to too many uniform samples.
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1 Introduction

The near infrared (NIR) spectroscopy technique is a
powerful tool in the field of quality assessment for agro-
products, because it has the advantages of being
nondestructive, sensitive, safe and rapid. The first sector
of commerce to give it credibility was its application in the
grain industry[1]. Now, livestock products[2–6], fruit and
vegetables[7–15], marine products[16] are gradually being
evaluated using this technique. The analytical process is
illustrated by an example in Fig. 1, including steps of NIR

spectra acquisition, reference measurement as well as
multivariate calibration and prediction[7]. Beside determi-
nation of multivariate attributes of objects, discrimination
of objects from different seasons, cultivars, origins and
varieties have also been successfully studied[17–21]. With
the growing attention paid to agro-product security, the
NIR spectroscopy technique also has a broad application in
identification of adulteration in the food industry[22]. Since
research in the laboratory have been carried out for a long
time and is already yielded many satisfying results, a
growing range of portable and in-field NIR equipment has
come into commercial use in recent years[23–29]. The
ability and feasibility of NIR quality assessment have been
improved by optimizing the performance of prediction
model.
Although the NIR spectroscopy technique involves

reasonably simple steps to analyze or predict the quality of
products, there are still more than 40 possible error sources
in the whole process of analysis[30], which will affect the
results in various ways. These error sources have been
classified here into three types: errors from the external
environment, the sample and the instrument. Environ-
mental factors affect both the instrument and the sample,
which consequently influences the entire analytical process
and results. The sample is considered as the most
significant influencing factor in the use of NIR spectro-
scopy, which can influence the results through the process
of choosing representative samples, operations on sam-
ples[30] and biological variations between samples[18,19].
For different kinds of agro-products, there are various error
sources related to the sample. Indeed, with different types
of instruments, the accuracy and robustness of the model
will differ even though measurement parameters are kept
same. It is also important to ensure that the influence of the
instrument can be effectively controlled or avoided.
There have been few reviews systematically examining

how these factors affect the NIR analysis and how to
compensate for them in practical applications. In this
paper, recent studies on error source and their influence
on the NIR spectroscopy analysis are reviewed, the
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corresponding solutions and applications are discussed and
solutions and recommendations made for solving these
problems on the basis of this analysis.

2 Environmental factors

Higher feasibility and efficiency for measurement of agro-
products with the NIR spectroscopy technique could be
achieved, with only slight reduction in accuracy, if the
robustness of calibration could be improved, especially for
on-site applications. However, in the application of NIR
spectroscopy it is difficult to keep all measurement
conditions and parameters constant and the robustness of
the calibration model will be influenced by various
external factors, such as temperature, humidity and other
uncertain variables. In this section, the effects of these
environmental factors on NIR spectra and analysis are
explained. In addition, some suggestions for compensating
for these effects are proposed and compared.

2.1 Temperature

Unavoidable temperature fluctuation may occur because of
varying weather conditions or improper conditioning of
agro-products after harvest and these can have a crucial
influence on NIR analysis. Ambient temperature is
important in the whole process of NIR measurement and
analysis by affecting the temperature of the instrument, the
sample or a sub sample[30]. From a spectral perspective, the
wavelength that is most affected by temperature is the
moisture-dominant part. The absorbance value in NIR
spectra changes because vibration and rotation of O–H in
water molecular are changed due to temperature fluctua-
tions[30,31]. Thus, objects with higher moisture content will
suffer more from temperature fluctuations.

Factors that have an important influence on the
instrument, such as temperature fluctuation, can affect
both lamp output (intensity and quality) and detector
response[32] (wavelength sensitivity), as well as electronic
noise[33,34]. Any drift of the designed wavelength range in
the instrument will be followed by a change to the
regression coefficients of the calibration model. Martinsen
et al.[35] studied the effect of drift in wavelength
calibration. Although the drift was small (< 0.1 nm)
over a 12-month period, it was noted that a partial least
squares regression (PLSR) model based on short-wave-
length NIR could be very sensitive to such fluctuations,
e.g., a kiwifruit dry matter (DM) model showed a bias shift
of 7% DM for a 1 nm perturbation. However, introducing
the small wavelength perturbation into the training set
proved to be an effective way to reduce this error to less
than 1.7% per nm. When operating an NIR instrument in
different places in different ambient temperatures, changes
in temperature will lead to spectral variation. Hayes
et al.[34] monitored the spectral variation of quartz halogen
lamps due to temperature fluctuations. The lamp output
was spectrally stable for the time of the first measurement
(10 s), although total illumination was not stable until
approximately 40 min from start-up. However, when
predictive models were developed using second derivative
absorbance data, there was no statistically significant
impact in root mean square error of prediction (RMSEP)
on time of lamp warm-up (after 10 s). In practical
applications of the NIR spectroscopy technique, up to
50°C temperature variation can occur, where the previous
reference measurement is no longer suitable for the current
conditions. Thus, it is necessary to operate in the same
conditions where a reference measurement has been taken
in order to get high-accuracy of analytical results. Hence,
explanations of the procedure and frequency to conduct
reference measurements should be given to ensure and

Fig. 1 Schematic diagram of experimental procedures using NIR spectroscopy for sugar content analysis
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maintain the optimal performance of an NIR measurement
system. However, this also limits the versatility of a
specific NIR measurement instrument and can be incon-
venient for the measurement process.
There have been a large number of studies on the

influence of temperature on the NIR spectra of samples and
the research on wheat conducted by Williams et al.[36]

provides a representative example. It was shown that when
varying sample temperature from – 10 to 45°C, the read
protein was significantly linearly reduced due to the
sensitivity to temperature of the effective wavelength range
in the calibration model. The analysis also verified that this
reduction was not caused by changes in the moisture
content that occurred during grinding but was strictly a
result of temperature change, and was totally independent
of the algorithm. Yao et al.[37] collected and analyzed the
spectra of watermelon juice sample at nine temperatures,
varying from 0 to 40°C at intervals of 5°C to predict
soluble solid content (SSC). The result indicated that there
was an influence of temperature on NIR spectra in a
nonlinear way. The average absorbance shifted with the
change of temperature, is shown in Fig. 2.
There have been many studies on compensating for the

effect of temperature in calibration models[38]. For primary
applications, Williams et al.[36] proposed several methods
to compensate, including choosing a wavelength insensi-
tive to temperature for calibration, adjusting sample
temperature to the calibration temperature and construction
of a correction chart. Of these, the third can be considered
as the most effective and direct way to solve this problem,
although it suffers from a lack of automation and
convenience. It is more satisfactory and convenient to
utilize mathematical algorithms for compensating this bias
automatically. Yao et al.[37] used discriminant analysis and
PLSR to establish calibration models for nine different
temperatures. It turned out that the PLSR model estab-
lished at 20°C performed better than at any other

temperature. The result also indicated that the local
model was sensitive to fluctuations in temperature.
Additionally, the global model showed useful prediction
ability, which made temperature fluctuation a negligible
interference. Besides, there are many other studies[37–43]

that have proved that the global model can significantly
reduce the effect of temperature on NIR measurement.
However, the drawback of this approach is that the
required data collection is quite a large undertaking
because the local temperature model uses a calibration
set for a single selected temperature and a validation set for
other temperatures, while the global temperature model
contains all of the data sets. Based on large scale of data
sets, Acharya et al.[41] designed several methods of
population structuring for detecting the dry matter and
color of tomatoes with the aim of producing robust models
that take account of sample temperature. It was concluded
that temperature compensation created by adding spectra
of the same set of samples at different temperatures was
overwhelmed by continuing addition of 500 spectra at a
uniform temperature, resulting in a model that was not
robust to temperature. The use of a repeatability file was
regarded as the best way for temperature compensation to
predict dry matter of fruit, while selection of a wavelength
region to avoid water absorption features was recom-
mended for color prediction. Chauchard et al.[42] categor-
ized these temperature-compensating approaches into two
major types depending on whether the temperature is
measurable or not. For measurable temperatures, they
tested three methods. The first used a spectrum correction
while the second and third were based on regression
coefficients which vary with temperature fluctuations.
Studies where temperatures are non-measurable, have led
to robust calibration models and to a self-correcting model,
where fruit temperature is estimated using spectral data.
The efficient ways to compensate for temperature fluctua-
tion have been explored and these can also be potentially

Fig. 2 The average NIR spectra of watermelon juice at different temperatures. The arrow indicates direction of temperature increase.
Reprinted from Yao et al.[37], with permission from Elsevier.
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useful to minimize other external parameters in NIR
calibration. Also, spectral pretreatment can be adopted to
reduce the influence of temperature change in samples.
Roger et al.[43] presented a pretreatment method called
external parameter orthogonalization (EPO) which aimed
at removing from the calculated space the part mostly
influenced by the external parameter variations. This
method estimated this corresponding subspace by comput-
ing a principal component analysis on a small set of spectra
measured on the same objects, while the external
parameter was varied. An application for detecting the
influence of the fruit temperature on the sugar measure-
ment of intact apples is presented to better illustrate this
method. Without any spectral pretreatment, the bias in the
prediction of SSC was about 8 °Bx for a temperature
variation of 20°C. After EPO pretreatment, the bias was
less than 0.3 °Bx for the same temperature change. This
approach can also be considered for use in other similar
circumstances.
Research on the influence of temperature will lead to

more optimized temporal conditions where the measure-
ment should be conducted to attain a more accurate and
robust calibration model for the applications in the field of
food quality and security, which is similar for other
external parameters. For example, De Benedictis &
Huck[44] optimized NIR spectroscopy parameters by
varying investigated factors like layer thickness, number
of scans and temperature during measurement, in order to
obtain optimal response variables in the full factorial
design consisting of absorption intensity, signal-to-noise
ratio and reproducibility of the spectra. Optimized
combinations for liquid milk measurement have been
found to be 0.5 mm layer thickness, 64 scans and 25°C
ambient temperature.

2.2 Humidity

Humidity is one of the environmental factors that influence
the water status, which directly affects the absorbance of
near infrared spectra. However, there have been few
studies on the influence of humidity fluctuations on NIR
spectra and analytical model performance. Two stu-
dies[45,46] suggested that humidity made little difference
to NIR spectra, so there are only minor improvements to be
made by obtaining a better quality assessment model in
these cases. Compared to the high moisture of analyzed
objects, such as livestock products, fruit and vegetables,
dairy products and marine products, the amount of water in
the air can be neglected, therefore it has little impact. To
determine whether the change in humidity can influence
the NIR spectrum, Zhou et al.[45] established an airtight,
humidity-controllable test bed to change the humidity of
the environment. Final sample spectra were obtained by
removing the background spectra from the samples at
40%, 50%, 60%, 70% and 80% relative humidity (RH). It
was not known whether the influences of the sample

spectrum and the background were equal, so the trial was
divided into two groups: detecting background and sample
at each humidity level (Group 1) and detecting background
at 40% RH only (Group 2). The result showed that in both
Groups 1 and 2, humidity had little influence on NIR
spectra. However, humidity fluctuation dominates absorp-
tion fluctuation, but temperature and humidity affect
refraction fluctuation. If humidity fluctuations are suffi-
ciently strong they can dominate the refraction fluctuation
for some infrared frequencies, but not for visible
frequencies. Thus it will have little influence on NIR
spectra[46]. There are no specific studies showing the
optimal humidity condition for NIR analysis. Thus, more
in-depth and appropriate research should be conducted in
this area.

2.3 Other uncertain factors

Sometimes different working environments will generate
problems. For instruments in a laboratory, the influence of
external light can be effectively eliminated by ensuring an
effective seal in order to ensure stable working conditions.
When it comes to the in-field applications, especially with
portable NIR equipment, the spectra acquired may be
influenced by external light and other uncertain factors.
With the development of NIR spectroscopy technique,
although slightly better results were obtained under
laboratory conditions, the results obtained in the field
were also accurate enough to determine some quality
attributes of fruit[23–28], which improved the efficiency of
the evaluation process. For example, by comparing spectra
data recorded in two different experimental condition: on
trees in the field and under laboratory conditions with the
same portable NIR machine, Gracia & León[23] and
Leónmoreno[24] proved the feasibility of use of portable
NIR instrument for determination of oil and moisture
contents in intact olive fruit. Bessho et al.[25] also
demonstrated that a portable nondestructive measurement
system might be a powerful tool to easily estimate fruit
quality in the apple canopy. In addition, the external
variables affecting online agro-product NIR assessment
lines are very complicated and vary under dynamic
circumstances. Sun et al.[29] examined the effect of
movement speed of fruit on SSC measurement. The results
showed that a speed of 0.3–0.7 m$s–1 had little effect on
spectra and model performance, however these can be
considered as relatively slow speeds. At 0.5 m$s–1, the best
model for SSC was a PLSR model established with
original spectra, with its coefficient of determination and
RMSEP being 0.916 and 0.53, respectively.

3 Sample factors

Agro-products are object with high variation in their
physical attributes and chemical composition. They vary in
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shape, color, density, storage condition and so on. Most
error sources come from the sample itself and the process
of dealing with it. In the beginning, sample preparations
(e.g., smashing and mixing) were required for the analysis
of NIR measurement for agro-product, especially for seeds
and grains. Gradually, with the development of NIR
noninvasive detection, the need for this was reduced and
now there is no need for sample preparation. And the error
sources in this process are consequently eliminated. This
sector will consider different factors influencing livestock
products, fruit and vegetables, which lead to variations in
NIR spectra and influence the performance of prediction
model.

3.1 Livestock products

For livestock products, it is suggested that mincing
preparations is the best way to prepare material to analyze
meat by NIR spectroscopy technique[5,47]. In addition, the
performance of prediction models depends on the animal
species. Comapring the analysis of chicken breast, beef
and lamb, chicken breast had the best statistical analytical
model for crude protein and moisture, and those for beef
and lamb are worse, according to Prevolnik et al.[5].
However, for fat, beef was better predicted than chicken
breast while lamb remained the worst. This is because
major constituents are easier to predict than minor
compounds and beef obviously has the highest fat content.
Even muscle type can have an influence on the result and
this may be interpreted as the influence of texture and
different models have been prepared that vary several
influencing factors including muscle type. According to
calibration statistics, the prediction using a common
equation for several different muscle types seemed more
reliable than the equations obtained with studies of single
muscle, but the latter showed less bias. Mcdevitt et al.[48]

showed that NIR spectroscopy was successful able to
discriminate ground carcasses from three different geno-
types: fast-growing broiler, slow-growing broiler and
layer-type chicken. The varied genotypes of chicken
determined different contents of fat, crude protein and
ash, which explains the variation of NIR spectra. To
provide people with the opportunity to buy worthwhile,
healthy and safe merchandise, these differences are
combined with appropriate algorithms to realize the
classification of livestock product quality and identification
of adulteration in the industry. Several advanced algo-
rithms have been employed to identify adulteration and
sort livestock products, including artificial neural network,
discriminant analysis and other techniques[49–51]. One of
the most widespread applications is to monitor and predict
the spoilage of livestock products during storage and
transportation. Argyri et al.[50] used a machine learning
strategy in the form of a multilayer perceptron neural
network to correlate Fourier transform near infrared
(FT-NIR) spectral data with beef spoilage during aerobic

storage at chilling and abuse temperatures. The result of
this work indicated that the biochemical fingerprints during
beef spoilage obtained by FT-NIR spectroscopy in
combination with the appropriate machine learning
strategy have significant potential for rapid assessment of
meat spoilage. Chen et al.[51] demonstrated that the
FT-NIR spectroscopy technique combined with a classifi-
cation algorithm had the potential to determine pork
storage time associated with its freshness.

3.2 Fruit and vegetables

For fruit and vegetables, there are more influencing factors
from the growth stage and postharvest storage period.
Samples of various cultivars, orchards, districts and
seasons can all have an influence on NIR spectra. Peirs
et al.[18] researched the effect of cultivar, orchard and
season. Cultivar and season were responsible for a major
part of the spectral variability, whereas the influence of the
orchard was low, and only occurred for certain cultivars
during specific seasons. Bobelyn et al.[19] used functional
analysis of variance to interpret the variance in spectra with
respect to biological variability. The effect of cultivar,
storage period, origin and season on the accuracy of NIR
calibration models for the SSC and firmness of apple was
studied based on a large spectral data set for about 6000
apples of different cultivars and storage periods, and from
different origins and seasons, which all proved to be
significant. The largest difference in spectra was found
around the water absorption peaks (970, 1170 and
1450 nm). External validations using an independent
data set showed that the accuracy of the models increased
considerably when more variability was included in the
calibration data set. Guthrie et al.[20] found that calibrations
for total soluble sugar in intact pineapple were not
transferrable between the summer and winter growing
seasons. A combined calibration (data of three harvest
dates) validated reasonably well against a population set
drawn from all harvest dates. However, they came to the
conclusion that a lack of robustness of calibration was
indicated by poor validation within populations of fruit
harvested at different time. León et al.[21] studied the
influence of parent and harvest year on NIR determinations
of oil, moisture, oleic acid and linoleic acid contents in
intact olive fruit. When samples for each year and female
parent were analyzed separately by a PLS method with
validation against the other groups, calibration models
were accurate enough to predict all constituents in new
samples from a different female parents but were not
transferable across years. However, a calibration equation
of sufficient accuracy was obtained from the combined
data sets, which should prove to be a useful tool in olive
breeding programs.
Deciding how to choose samples appropriately is the

first step in obtaining a robust and representative prediction
model[52]. It was shown that having more variability
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between samples could, to some extent, improve the
robustness of calibration models. Peirs et al.[18] tested
the robustness of the calibration models of SSC with
respect to cultivars, orchards and seasons based on external
validations. It was found that the accuracy of the models
increased considerably when more variability was included
in the calibration set. Furthermore, overfitting of the
calibration model was avoided. However, adding more
data to the calibration set increased the chance of adding
atypical data, which can reduce the accuracy of model.
Thus, it was suggested that when the effect of a certain
factors is known a priori, e.g., cultivar, a specific
calibration model should be used. It is important to collect
calibration data that are sufficiently representative for
future samples to be analyzed with the calibration model
developed and to develop simple procedure for model
adaptation during application[19].
Also, a non-homogenized spectral distribution of

measured values of objects may make a difference to the
analysis for intact fruit and vegetables[53]. Thus, the
selection of measurement position can influence the
accuracy and robustness of NIR analytical results.
Slaughter et al.[54] determined SSC of intact tomato
using NIR and suggested that when used at a random
position along the equator of the fruit, rather than at the
blossom-end, the technique had significantly greater
accuracy. Thus, it was recommended that the fruit should
be oriented to allow measurement at the equator when
developing high-speed sorting equipment for SSC. Fan
et al.[55] studied the influence of variation of spectrum
measurement position on the NIR analysis of SSC for
apples (Fig. 3). This result indicated that the measurement

position influenced the prediction accuracy of SSC.
Compared with the local position model, the global
position model was well suited to controlling the
prediction accuracy of the calibration model for SSC
with respect to the variation of spectrum measurement
position. Next, competitive adaptive reweighted sampling
was used for the robust global position model to select the
most effective wavelengths. This indicated that a global
model established with effective wavelengths achieved
more promising results.
Last but not least, the size and texture of different fruit

types differ a lot, which will influence the choice of NIR
spectra’s transmission mode. Transmittance mode can
acquire the most complete internal information of fruit,
which will improve the prediction ability of NIR
calibration models. Due to limited penetration depth of
NIR light, the transmittance mode is more suitable for
small fruits, such as jujube and cherry. However, by
enhancing the intensity of light source, even watermelon
can be analyzed using transmittance mode. On the other
hand, for those fruits with a core, reflectance mode will be
more suitable because it will carry more information from
the part near the surface. Therefore, it is suggested that the
transmission path should be well designed according to the
features of the fruit sample to be tested.

4 Instrument and algorithm factors

To highlight the factors that may influence the accuracy
and robustness of measurement, spectral pretreatment,
detection mode, spectral range, modeling method and

Fig. 3 Schematic of the measurement positions of NIR reflectance spectra within an individual apple fruit. Reprinted from Fan et al.[55],
with permission from Elsevier.
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instrument all need to be taken into consideration. The
recent studies for quality analysis of livestock products

(Table 1), and fruit and vegetables (Table 2) are listed here
to illustrate these factors.

Table 1 Analysis of livestock product quality by NIR spectroscopy

Object Attribute Detection mode Spectral range Pretreatment
Modeling
method

Instrument
Optimal model perfor-

mance

Pork[2] Color
(L*, a*, b*),

pH value, TVB-N

Diffuse reflec-
tance

400–1000 nm S-G, SNV PLS Portable device RP: 0.92, 0.91, 0.92,
0.95, 0.96 (L*, a*, b*,
pH value, TVB-N)

Pork[3] TVB-N, WBSF Reflectance 10000–4000 cm–1 SNV SI-PLS Antaris II FT-NIR spec-
trophotometer

RC: 0.8398, RP: 0.8084
(TVB-N)

RC: 0.7533, RP: 0.7041
(WBSF)

Pork[4] Water content, cook-
ing loss, tenderness

Reflectance 350–1100 nm; 1000–
2500 nm

S-G, SNV PLS Online detection system RP: 0.9123, 0.9200,
0.9019 (respectively)

Pork[5] IMF Reflectance 1100–1830 nm * Modified PLS NIRS 6500 R2
CV: 0.84–0.99

SECV: 0.14%–0.53%
Beef[5]

Beef[56] Fat, moisture, protein,
myoglobin, stress
20%, stress 80%,
WBSF, tenderness,
juiciness, overall

appraisal

Reflectance 408–2492 nm; 1108–
2492 nm; 1500–

2460 nm

MSC, SNV,
SNVD, none

PLS, modified
PLS, PCR

NIRS 6500 Optimal R2
P: 0.98 (ten-

derness)

Broiler
breast[57]

Fatty acid Reflectance 400–2498 nm SNVD, WMSC Modified PLS NIRS 6500 R2
C: 0.86–0.98

R2
P: 0.83–0.97

Broiler
breast[58]

Fatty acid Reflectance 1100–1830 nm 2nd derivative Modified PLS LabSpec®2500 R2
CV: less than 0.60

Note: L*, the value of brightness; a*, the red-green axis; b*, the blue-yellow axis; TVB-N, total volatile basic nitrogen; WBSF, Warner-Bratzler shear force;
IMF, intramuscular fat; S-G, Savitzky-Golay filter; SNV, noise removal standard normal variable transformation; *, not mentioned; MSC, multiplicative scatter
correction; SNVD, noise removal standard normal variable transformation and detrend; WMSC, weighted multiplicative scatter correction; PLS, partial least square;
SI-PLS, synergy interval partial least square; PCR, partial component regressions; RP, correlative coefficient of prediction; RC, correlative coefficient of calibration;
R2
CV, determination coefficient of cross validation; SECV, standard error of cross validation; R2

P, determination coefficient of prediction.

Table 2 Analysis of the quality of fruit and vegetables by NIR spectroscopy

Object Attribute Detection mode Spectral range Pretreatment
Modeling
method

Instrument
Optimal model perfor-

mance

Apple[7] SSC Diffuse reflec-
tance

500–1100 nm;
1000–4000 nm

* ICA-SVM Ocean Optics model
USB2000 fiber spectro-

meter; antarisTMII
method development
sampling system

RP: 0.9455
RMSEP: 0.3691%

Orange[8] SSC Interactance
reflectance trans-

mittance

460–1000 nm * PLS VIS-SWNIR CCD spec-
trometer

RCV: 0.778–0.866
RMSECV: 0.329–0.518

Jujube[9] Inner insect-infesta-
tion

Interactance,
reflectance,
transmittance

310–1100 nm;
1000–2150 nm

* DA Handy Lambda II &
Solid lambda NIR2.2t2

100% (interactance)
90% (reflectance)

97% (transmittance)

Peach[10] SSC, pH Diffuse reflec-
tance

325–1075 nm S-G, MSC PLS, LS-
SVM

Fieldspec Pro FR, Ana-
lytical Spectral Devices,

Inc.

RP: 0.9537, RCV: 0.9485
(SSC)

RP: 0.9638, RCV: 0.9657
(pH)

Apple[11] ITB Diffuse transmit-
tance

650–950 nm * PLS Prototype based on time-
delayed integration spec-

troscopy;

R2
P: 0.7–0.9

RMSECV: 4%–7%

Prototype based on large
aperture spectrometer

R2
P: ~0.9

RMSEP: ~4.1%
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From the instrument perspective, for different samples
the wavelength range and detection mode vary, which is
consistent with the previous discussion. When it comes to
detection mode, reflectance is the most common spectral
acquisition mode in NIR analysis shown in the tables. This
may be due to its convenience for configuration and
transmittance mode will sometimes lead to overheating of
samples. However, the transmittance mode shows better
prediction ability than reflectance mode. Interactance mode
combines the features of reflectance and transmittance
mode, which can also yield satisfying results. The NIR
instrumental system normally consists of light source,
monochromator, detector, sample compartment and optical
accessory[59]. In recent years, the instrument has become
portable and automated. From the tables, it can also be seen
that online and portable equipments have shown reason-
able prediction ability while laboratory studies yielded
better prediction models and results.
From the algorithm perspective,parts of pretreatment,

variable selection and modeling are important. There are
various spectral pretreatment algorithms, such as Savitzky-
Golay (S-G) smoothing, standard normal variable (SNV)
transformation and multiplicative scatter correction, all
with the same aim of removing useless information in NIR
spectra. An S-G filter and SNV are commonly used to
preprocess spectra before establishing models. S-G filters
can be used to minimize noise effects. SNV can be applied
to remove slope variation and correct for scatter
effects[2,60,61]. Variable selection methods are used to
make the model more efficient and effective. However,
these two steps are not always necessary for prediction.
Last but not least, mathematical algorithms, such as partial
least squares, multilinear regression and principal compo-
nent analysis are employed to develop calibration models.

Sometimes different algorithms will be combined to
improve the performance of a calibration model.

5 Conclusions

The influencing factors that can affect NIR analysis have
been summarized and classified into several types in this
review. Some appropriate methods are discussed that can
be considered to compensate for these influences in order
to improve the robustness and accuracy of NIR prediction
model.
Among environment factors, temperature has the most

obvious influence on NIR spectra, while humidity has a
minor influence. Ambient temperature affects both spectral
output of instruments and also the sample. To minimize the
influence of temperature, it is suggested to carry out
experiments at a controlled temperature. However, for
occasions with inevitable temperature fluctuation, global
temperature models can be used to compensate for its
influence. In current applications, NIR analysis is usually
conducted in a specific temperature range according to the
guidelines for the conditions where reference measure-
ments are taken.
For livestock products, sample status (being minced or

intact), muscle species (texture) and storage time will
affect NIR spectra. These differences are combined with
appropriate algorithms to realize the classification of
livestock product quality and identification of adulteration
in the industry. For fruit and vegetables, cultivar, parent,
orchard, district, season, storage period, measurement
position, size, texture and corresponding transmittance
mode are all factors that will influence the performance of
NIR spectra and analysis. Therefore, robust models can

(Continued)

Object Attribute Detection mode Spectral range Pretreatment
Modeling
method

Instrument
Optimal model perfor-

mance

Pear[12] DM, SSC Reflectance 680–1000 nm;
1100–2350 nm

S-G, SNV PLS Agriquant FT-NIR spec-
trometer

R2
CV: 0.78–0.84

Blueberry[13] Inner insect-infesta-
tion

Reflectance 650–1100 nm;
600–1700 nm

* PLS Two scanning spectro-
meters

82%, 76.9%

Tomato[14] Total soluble solids,
lycopene and β-caro-

tene

Diffuse reflec-
tance

* MSC, 2nd deriva-
tive

PLS Buchi NIRlab N-200
spectrometer

RP: 0.9998, 0.9996,
0.9981

RMSEP: 0.4157,
21.5779, 0.7296

Mango[15] TSS, acidity, firm-
ness, storage period

Reflectance 1200–2400 nm 1st derivative,
2nd derivative

MLR, PCA,
PLS

Quantum 120 R2
P: 0.9276, 0.6085,

0.8226, 0.9380 (respec-
tively)

Note: SSC soluble solids content; ITB, internal tissue browning; DM, dry matter; TSS, total suspended solids; *, not mentioned; S-G, Savitzky-Golay filter;
MSC, multiplicative scatter correction; SNV, standard normal variable transformation; ICA-SVM, independent component analysis-support vector machine;
PLS, partial least square; DA, discriminant analysis; LS-SVM, least square-support vector machine; MLR, multilinear regression; PCA, principal component analysis;
RP, correlative coefficient of prediction; RMSEP, root mean square of prediction; RCV, correlative coefficient of cross validation; RMSECV, root mean square of cross
validation; R2

P, determination coefficient of prediction; R2
CV, determination coefficient of cross validation.
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only be developed with sufficiently representative samples
varying in the corresponding variables.
In addition, instrument and algorithm also play an

important role in the process of NIR spectroscopy analysis.
The choice of instrument and algorithm should suit the
features of the samples being tested. There is a trend that
the range of portable and online equipment will grow
fast, in order to meet the needs of the agro-products
industry. Improving model accuracy and robustness when
applied to samples that are moving is still a crucial problem
to solve.
To conclude, the performance of NIR prediction model

can be influenced by many environmental factors that
affect the instrument and the sample itself. To improve
model performance in NIR analysis, choosing an appro-
priate instrument, spectral range, modeling method,
spectral pretreatment and representative sample is crucial.
Sometimes the outcome depends greatly on the experience
and knowledge of the operator and the guidelines are
highly recommended in order to minimize sources of error
for different batches of experiments. Thus, a database for
NIR spectra of different objects should be established,
based on standard and fixed reference measurement
procedures. Calibration models in NIR instruments and
systems should be updated regularly and in accordance
with the specific operating conditions.
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