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Abstract Pluripotent stem cells (PSCs) are characterized
by their capacity for high self-renewal and multiple
differentiation potential and include embryonic stem
cells, embryonic germ cells and induced PSCs. PSCs
provide a very suitable model for the studies of human
diseases, drugs screening, regenerative medicine and
developmental biology research. Pigs are considered as
an ideal model for preclinical development of human
xenotransplantation, therapeutic approaches and regenera-
tive medicine because of their size and physiological
similarity to humans. However, lack of knowledge about
the derivation, characterization and pluripotency mechan-
isms of porcine PSCs hinders progress in these biotechnol-
ogies. In this review, we discuss the latest progress on
porcine PSCs generation, evaluation criteria for pluripo-
tency, the scientific and technical questions arising from
these studies. We also introduce our perspectives on
porcine PSC research, in the hope of providing new ideas
for generating naive porcine PSCs and animal breeding.
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1 Introduction

Pluripotent stem cells (PSCs) are characterized by their
developmental competence to give rise to properties of all
three germ layers, including germ cells, but excluding the
extra-embryonic tissues. Three types of PSCs have been

reported: embryonic stem cells (ESCs), which are derived
from the inner cell mass (ICM) of blastocysts and conform
to the general standards of pluripotency; embryonic germ
cells (EGCs) from primordial germ cells and induced PSCs
(iPSCs), which are derived from differentiated cells with
forced expression of selected transcription factors. Since
PSCs have capabilities of in vitro self-renewal and
competence for development of three germ layers both in
vivo and in vitro, they are regarded as a powerful model for
functional genomics research, and hold great potential in
cell transplantation pharmacy, human genetic disease
treatment and livestock breeding.
Pigs are important farm animals and also one of the best

candidates for human disease models and as xenotrans-
plantation donors because of their well-known similarities
to humans in organ size as well as morphology and
physiology. The establishment of porcine PSC lines can
facilitate the application of pig cells in both biomedical and
agricultural fields, especially for the evaluation of
efficiency and safety of stem cell related therapies in
human. Although great progress on mouse and human
PSCs has been achieved in recent decades, research on
PSCs in pigs and other large animals has encountered huge
difficulties, and there are no porcine PSC lines available
that fulfill all the characteristics of mouse ESCs, especially
the germline chimeras. This situation indicates that the
exploration of PSCs from pig and other large animals has
significant theoretical importance for understanding the
specific regulation of pluripotency in different species.
In this review, we summarize progress on the derivation

of pig ESCs, EGCs and iPSCs, discuss the methods for
evaluation of the pluripotency of porcine PSCs, analyze
the challenges to the generation of naive porcine PSCs and
provide a perspective for future studies.
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2 Derivation of porcine embryonic stem
cells

Great effort has been expended to derive porcine ESCs
(pESCs) since the first report by Evans and Kaufman[1] in
1990 due to their promising potential in both biomedical
and agricultural fields. Although pESC-like cell lines that
satisfy general pluripotency criteria have been reported,
including the capability of extensive self-renewal, expres-
sion of alkaline phosphatase (AP), OCT4 (also named
POU5F1) and a panel of other markers, as well as the
ability to differentiate into derivatives of all three germ
layers in vitro and in teratomas, there have been few reports
of the development of these pESC-like cells into germline
chimeras. Furthermore, according to the definition of
mouse ESCs, pESCs have not been successfully produced
that show the complete characteristics of the naive state.
ESCs have been considered to arise as a result of a

selective adaptation process to the culture conditions and
to be an artifact rather than a physiological cell type[2] and
considerably greater attention needs to be paid to the
optimization of in vitro culture conditions to acquire
pESCs.

2.1 Embryo stage for establishing pESCs

Embryo development stage is an important factor for ESCs
derivation. By comparison between human and mouse
embryos, the porcine embryo is unique due to its extended
preimplantation development. Studies on preimplantation
embryo development indicate that the compaction of
blastomeres happens around days 4–5 post in vitro
fertilization or the last in vivo insemination, and blastocysts
develop with clearly differentiated ICM and trophectoderm
(TE) around days 5–6[3]. OCT4, one of the key transcrip-
tion factors governing pluripotency, is expressed in both
ICM and TE of porcine embryos, and this expression
pattern clearly differs from that of mouse embryos[4].
GATA6[4] and Vimentin[5] begin to be expressed in some
of the cells in ICM on days 8 and 9, respectively, which
indicates the initiation of the further differentiation of ICM.
The species-specific developmental pattern of porcine
preimplantation embryos makes it difficult to identify the
appropriate developmental stage to use to derive pESCs
from the approaches used to produce mouse and human
ESCs.
Porcine preimplantation embryos at different develop-

mental stages have been used to establish pESCs, but the
results from different researchers are not consistent. Days
7–9 blastocysts were used by Evans et al.[6] in the first
reported attempts to derive pESCs, and ESC-like cell lines
were derived from these blastocysts. In contrast with this
result, ESC-like cell lines or ESC-like colonies that could
survive for more than a few passages have generally been
derived from expanding or hatched blastocysts, although

the day ranges for collection of the blastocysts varied from
days 5–9[7–10]. Pre-compaction embryos and morulae have
also been used to derive pESCs, but the attachment rates of
these embryos were low and none of the embryos began
outgrowth[11]. Moreover, it has been reported that hatched
blastocysts and elongating blastocysts around days 10–11
have been used to derive pESCs[12] and ESC-like colonies
could be derived from 50% of the isolated embryonic discs
and could be maintained in culture for at least 8 weeks,
while only a few ESC-like colonies were derived from
days 5–6 blastocysts in this study. Chen et al.[8] collected
days 6–8 porcine embryos for derivation of pESCs. They
classified the collected embryos into morulae, early
blastocysts, expanding blastocysts, early hatched blasto-
cysts, intermediate hatched blastocysts and late hatched
blastocysts according to morphology, and found two types
of ESC-like colonies formed from early hatched blas-
tocysts, which were called type A and B. Only type B
colonies were isolated from ICM of late hatched
blastocysts, and no colonies survived more than five
passages in the morulae group. One cell line derived from
type A colonies generated a chimeric piglet with overt
pigmentation chimerism, although this chimeric piglet did
not show germline chimerism, which was suggested by the
limited offspring. In contrast with these results, Xue
et al.[10] reported ESC-like cell lines derived from
expanding to early hatched embryos. The reported ESC-
like cells could survive more than 75 passages and retained
their pluripotent characteristics and normal karyotype after
transfection with fluorescent protein gene DsRed. These
ESC-like cells could contribute to the chimeric develop-
ment of both ICM and TE in expanding blastocysts and
chimeric development of both fetus and placenta to day 50
gestation.
It is difficult to ascertain which developmental stages of

porcine embryos are appropriate to use to derive pESCs
because there is a lack of consistency in these reports. The
post estrus and insemination dates for in vivo embryos or
post fertilization for in vitro embryos are not an accurate
criterion to define the developmental stages because the
developmental speed of embryos from the same in vivo
ovulation or in vitro fertilization is different and results in
embryos with different morphologies at the same time
point. Embryo morphology is an alternative criterion for
determination of the developmental stages and it has
advantages for comparing embryos employed in different
studies. According to the morphology criteria, expanding
and early hatched blastocysts might be considered first for
derivation of pESCs because most of the reported ESC-like
cells lines were derived from these two developmental
stages regardless of the day of development[7–10]. Also,
this suggestion is supported by the results on expression of
genes associated with pluripotency in preimplantation
embryos[4,13–16].
Other considerations related to selection of embryos for

derivation of pESCs include the origin of the embryos and
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the methods for seeding. Progress on these two topics has
been comprehensively reviewed[17,18], so they will not be
discussed in this review. The relationship between stages
of embryo development and derivation of PSC in mice,
humans and pigs are summarized in Fig. 1.

2.2 Development of culture conditions

ESCs derived from embryos are not identical to the
pluripotent blastomeres, ICM cells or epiblast cells. To a
certain extent, the biological characteristics of ESCs
depend on culture conditions. The conversion of mouse
EpiSCs into ESCs in 2i/LIF culture system and the
conversion of mouse ESCs to expanded PSCs (EPSC), or
vice versa, provides clear evidence for the importance of
culture conditions[19–22]. Compared to the large number of
studies examining appropriate culture conditions for
mouse and human ESCs, minimal data are available for
ESCs culture conditions of domestic animals[23]. In the
early years, ESC cultural conditions were developed
mainly for mouse ESCs[6,24,25] and then human ESC
culture systems were carefully studied[10,26]. Generally, the
culture medium consists of Dulbecco’s Modified Eagle’s
Medium (DMEM) supplemented with 2-mercapthoetha-
nol, L-glutamine, antibiotics, nucleosides, non-essential
amino acids, fetal bovine serum (FBS) and different
cytokines, and alternative components. For the basic
medium, variations of DMEM from high glucose to low

glucose[27,28], α-MEM[29,30], KO-DMEM[10,31], and com-
binations of DMEM with Ham’s-F10[32,33] or F12[10,31]

have been examined. The results from different studies are
not consistent, but pESC-like cell lines have predomi-
nantly been derived from DMEM medium without
consideration of glucose concentrations. FBS has an
important but contradictory role in the derivation of
pESCs. It is believed that FBS contributes positively to
the attachment of embryos to feeder layers and the
derivation of outgrowths, but it is also the main source
of potential differentiating factors in ESC culture. Defined
serum-free replacement (KOSR) was introduced to replace
FBS for further improved ESC cultures, and there are
increasing reports on the use of KOSR for pESC
derivation[10,27,34].
The feeder layer is a fundamental feature for ESC

cultures. It is generally believed that the feeder layer
provides an attachment matrix for the seeded embryos, the
subsequent outgrowth and passaged cells, cytokines such
as leukemia inhibitory factor (LIF) to stimulate cell
proliferation and inhibit cell differentiation. The wide use
of feeder layer conditioned medium indicates the great
importance of feeder layers for the release of specific
factors and the attachment ability of the matrix and the
evidence indicates that little success could be achieved
from feeder-layer-free culture systems[32,35]. Although
there are reports about the effects of different feeder-
layer cells on pESCs derivation[7,9,12,24], STO cell lines or

Fig. 1 Derivation of pluripotent stem cells from different embryo development stage
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mouse embryonic fibroblasts are normally used as feeder
cell layers because they are easy to prepare and have
comparatively few variations in biological characteristics
(Table 1).
LIF and basic fibroblast growth factor (bFGF) are two

cytokines that have been clearly demonstrated to be crucial
for regulating networks of mouse and human ESCs,
respectively. There are still debates concerning the exact
function of LIF and bFGF in pESCs cultures, although
results from different reports indicate that both LIF and
bFGF can exert a positive influence on the survival,
proliferation and self-renewal of pESCs[9,26,31,34]. The
function of LIF and bFGF on the pESC-like cell culture has
been examined and the results showed that LIF is
dispensable for cell survival, and bFGF is necessary for
inhibition of cell differentiation[10]. Some other cytokines
have also been examined for their potential benefit for the
derivation of pESCs, such as transforming growth factor-
beta (TGF-β)[43], epidermal growth factor[43] and stem cell
factor (SCF)[43], however, these factors did not have any
obvious effects on porcine stem cells.
Great attention is paid to small molecules in the study of

ESCs because of their success in derivation of rat and
mouse ESCs from the so-called non-permissive NOD
strain. This has been further strengthened by the reports on
ciPS and expanded PSCs (EPSCs), in which small
molecules were carefully screened and combinations of
selected small molecules were used to derive iPSCs from
differentiated somatic cells without introducing transcrip-
tion factors into cells[21,44] or EPSCs from precompaction
embryos[22]. Reports on these small molecules have
included glycogen synthase kinase 3 beta inhibitor
CHIR99021 (CH), Erk signaling inhibitor PD184352
(PD)[45] and KLF4 substitute Kenpaullone (KP)[46], and
showed that mouse ESC-like cell lines can be derived from
porcine embryos, and some cell lines can be cultured
continuously over 100 passages without any overt
morphological changes, which indicates these small
molecules have great values for the derivation of pESCs.
However, there are also contradictory reports on the effects
of these small molecules when employed in pESCs

cultures[45,47]. It is clear that small molecules have
shown great potential for derivation of ESCs, and intensive
screening is needed to achieve optimal concentrations and
combinations of the small molecules to support authentic
pESCs derivation.

3 Pluripotent stem cells derived from
germlines

3.1 Derivation of pluripotent stem cells from primordial
germ cells

Primordial germ cells (PGCs) are embryonic cells that
migrate from the root of the allantois to the genital ridge,
where they ultimately give rise to gametes[48]. PGCs do not
belong to the stem cell population at any stage during
embryonic development, but they can indefinitely prolif-
erate under certain in vitro culture conditions and generate
a PSC population. Using component defined culture
systems, porcine PGCs derived from 24 to 28 dpc genital
ridge can proliferate steadily and are known as embryonic
germ cells (EGCs)[41,49]. In 1992, it was first reported that
mouse unipotent PGCs can be converted into EGCs[36,50].
Subsequent research also demonstrated that EGCs could be
established from human PGCs[39]. EGCs share several
important characteristics with ESCs, including their
morphology, pluripotency and capability of contributing
to germline chimeras when injected into blastocysts[51,52].
Unlike ESCs, EGCs are inseparable from the feeder cell

type. Growth factors including LIF, bFGF and SCF are
essential for the derivation of porcine EGCs[39]. PGCs
could be reprogrammed into iEGCs using small molecules
and transcription factors of OCT4 and C-MYC[53]. In
addition, hypoxia induces reprogramming of PGCs by
deregulating expression of OCT4[54]. In human PGCs, the
expression of endogenous KLF4 and C-MYC is similar to
EGCs, but the expression levels of SOX2 and OCT4 are
lower than EGCs. Thus, the reprogramming of PGCs into
iPSCs can occur only by employing two transcription
factors, SOX2 andOCT4[55]. Only one study has found that

Table 1 Pluripotent stem cells derived from primordial germ cells

Species Cell source Culture system Differentiation potential Reference

Mouse 8.5 dpc PGCs
7.0 dpc PGCs

11.5–13.5 dpc PGCs

STO feeder layer+ SCF, LIF, bFGF
STO feeder layer+ SCF, LIF, bFGF

MEF feeder layer+ LIF, SB431542, Kempaullone

Chimera
ES-like cells, teratomas

Chimera

[36]
[37]
[38]

Human 5–9 weeks PGCs
106 dpc PGCs

4–13 week PGCs

STO feeder layer+ LIF, bFGF, Forskolin
DMEM+ 10% NBS

Knockout DMEM+ 20 KSR+ LIF+ bFGF+ Forskolin

EG-like cells, all three germ layer
cells

ES-like cells
ES-like cells, all three germ layer

cells

[39]
[40]

Porcine E25–27 PGCs
E25–27 PGCs

STO feeder+ SCF+ bFGF+ LIF
Using a growth-factor-defined culture system supple-

mented bFGF

ND
Chimera

[41]
[42]

Note: ND, not determined.
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a porcine iPSC line could be established by transfecting six
human reprogramming factors (OCT4, SOX2, NANOG,
KLF4, LIN28 and C-MYC) which possessed the ability to
produce chimeric offspring[42] (Table 1). However, there
have been no subsequent reports on the production of
porcine chimeras. Most iPSC lines fulfilled the criteria of
pluripotency, but the cells could not contribute to chimeras
or generate cloned piglets[56–60].

3.2 Derivation of pluripotent stem cells from testis

Spermatogonia stem cells (SSCs) are the only type of stem
cells in the body that transmits genetic information to
offspring[61,62]. They can continuously generate differen-
tiating spermatogonia[63]. Generally it is considered that
SSCs are equal to A-single (As) cells. However, the
number of SSCs qualified by transplantation is only
0.002%, which indicates that not all As spermatogonia
function as SSCs[64]. To date, SSCs are the only adult stem
cells showing significant OCT4 expression, which is a
specific marker for pluripotent and germ cells. The role of
OCT4 in germ cell development was elucidated by the
demonstration that knockout of this gene led to apopto-
sis[65,66]. During the SSCs culture process, germline stem
cell (GSC) clones could be observed, which were typically
grape-like clusters[67] (Table 2). Using neonatal Sertoli
cells as the feeder and DMEM/F-12 culture medium
supplemented with 10% KSR and four cytokines, the
undifferentiated spermatogonia could proliferate in vitro
for at least 2 months without loss of stemness[67]. Our
preliminary study demonstrated that Peptide-coating 2D is
beneficial to the long-term culture of porcine male germ
cell-derived clones (pGDCs), and lipid seems effective in
prolonging the culture time of pGDCs in vitro (unpunished
data of Jinlian Hua research group). In addition, germline-
derived PSCs (gPSCs) can be observed with a low
frequency under certain culture conditions for both
mouse and human cells[69–72], being morphologically
similar to mouse ESCs. These ESC-like cells were
phenotypically similar to ESCs/GSCs except for their
genomic imprinting pattern. Kossack et al.[69] found that
conversion of GSCs into gPSCs did not alter their
imprinting status. gPSCs did not result in the birth of
pups after tetraploid complementation (0/82), which was

likely due to the imprinting status of gPSCs, whose DMRs
of H19 and ICRs of Igf2r are maintained as androgenetic
patterns. This result was also supported by a report
showing that DNA methylation of imprinted genes is
critical for fetal development[73]. It is important to note that
paternal imprinting patterns of H19 and Igf2r in gPSCs are
not altered, even after 20 passages. Unlike PSCs from the
testis of newborns[74], gPSCs from adult GSCs still
maintained an androgenetic pattern in DMRs of H19.
Furthermore, these ESC-like cells formed chimeras when
injected into blastocysts[74,75]. All these studies support the
notion that, compared to somatic cells, germ cells have the
distinct potential to be converted into ESC-like stages
without the introduction of exogenous reprogramming
factors[69]. The molecular mechanisms underlying the
natural shift from a unipotent to a completely pluripotent
cell during the establishment of mouse ESC-like cells from
SSCs are not yet completely understood[76]. However, in
cultures with growth factors, the cell density of SSCs
during culture, the time period after initiation of the
culture, and the length of the culture might all be key
factors in the transition process[77–80]. Furthermore, this
phenomenon seems to be age-dependent. Several studies
of long-term cultivation for SSCs failed to prevent this
spontaneous shift of SSCs to pluripotent ESC-like
cells[81,82].

3.3 Derivation of pluripotent stem cells from ovary

Female GSCs (FGSCs) isolation from neonatal and adult
mice and long-term culture have attracted considerable
interest in stem cell biology[83,84]. FGSCs have been
isolated independently by at least two research groups and
from a number of species (human, mouse and rat). Wang
et al.[85] found that stably proliferating FGSCs from
neonatal or prepubertal mouse ovaries can be converted to
female ESC-like cells within one month under ESCs
culture conditions. These cells exhibited ESC-like char-
acteristics such as ESCs morphology, expression of
pluripotency markers and had a normal karyotype. Also,
they could differentiate into the three germ layers in vitro,
form teratomas in vivo and contribute to chimeras and the
germline (Table 3). Dissected cells from porcine thecal
layers maintained similar characteristics to mouse FGSCs

Table 2 Pluripotent stem cells derived from testis

Species Cell source Culture system Differentiation potential Reference

Mouse Neonatal testis MEF feeder layer+ standard ESCs culture conditions Chimera [68]

Human Testicular cells hESCs culture conditions All three germ layers, no teratoma [69]

Porcine Neonatal testicular cells DMEM/F-12+ 10% KSR and four cytokines Colonize in vivo and differentiate [67]

Table 3 Pluripotent stem cells derived from mouse ovary

Cell source Culture system Differentiation potential Reference

Neonatal mouse ovary cells ESCs culture conditions All three germ layers, Teratomas, Chimera (dead) [85]
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and ESCs over 4 months of in vitro culture. At present,
however, controversy remains over the biological sig-
nificance of these cells.

4 Induced pluripotent stem cells

4.1 Overview and progress on induced pluripotent stem
cells

iPSCs with a gene expression profile and developmental
potential similar to embryonic stem cells can be generated
from mouse somatic cells using a cocktail of four
transcription factors[86], and the four factors OCT4,
SOX2, KLF4 and C-MYC, called Yamanaka factors[87].
The generation of iPSCs with OSKM has been described
as direct reprogramming in contrast to reprogramming via
nuclear transfer. Chimeric mice produced by microinjec-
tion of iPSCs into a blastocyst[88] and iPSC-mouse
generated by tetraploid complementation, suggest that
the pluripotency of these cells is equivalent to that of ESCs
cells[89].

4.2 Progress on inducing pluripotent stem cells of pig and
other large animals

Lines of iPSCs have been generated from some domes-
ticated ungulates, such as sheep[90,91], pigs[87,92,93] and
cattle[94,95]. Porcine iPSCs have been produced in many
laboratories using various induction methods and show
pluripotency to some degree[59,93,96,97]. Porcine iPSCs
could pass the test of germline chimera production at the
molecular genotyping levels using PCR[42,98], but stable
chimerism remains to be determined. Thus far, porcine
iPSCs have not been shown to pass the crucial test of
authentic pluripotency by generation of all-iPSC pigs
through tetraploid embryo complementation.
Although iPSC technology has great potential for

clinical application, its safety has attracted extensive
attention[99]. Until recently, most of iPSCs were generated
using integrating retroviral vectors, but the persistent
expression of exogenous genes raises the risk of cancer, if
it is not silenced[100,101]. Additionally, the residual
expression of exogenous factors may interfere with the
normal differentiation function of iPSCs and affect their
ability to form chimeras[100,102,103]. Before using iPSCs
clinically, the inserted transgenes have to be either deleted
or effectively silenced after the cells have been repro-
grammed. With other approaches, for example using non-
integrating vectors[104,105], introduction of stemness pro-
teins[106,107], or pharmaceutically with a suitable combina-
tion of small molecules, have been developed to address
this problem to a certain extent[44,108,109]. Recently, a new
method to generate iPSCs with CRISPR activation through
precise epigenetic remodeling of endogenous loci shed
light on how targeted chromatin remodeling triggers

pluripotency induction[110].
Authentic porcine iPSCs cannot survive in culture

following the silencing or downregulation of the repro-
gramming factors. The key signaling pathways in pig,
mouse and human iPSCs indicate that the core transcrip-
tional network necessary for maintaining pluripotency and
self-renewal in pig is different from that in mouse but has
significant similarities to human iPSCs[111]. The current
transcriptome data confirmed that the JAK-STAT3 signal-
ing pathways were not fully activated in porcine iPSCs due
to the lack of a LIF receptor, but porcine iPSCs are unable
to maintain self-renewal soon after LIF withdrawal[112,113],
while LIF-based cell medium with specific protein kinase
inhibitors can sustain porcine iPSCs in the mESC state[111].
Therefore, understanding the key signaling pathways that
regulate cell renewal in porcine pluripotent cells may help
improve culture conditions and allow for establishment of
stable porcine iPSCs. The identification of culture condi-
tions of pluripotent cells from livestock would accelerate
biological research in these species and enhance their
utility as animal models.

5 Criteria for evaluating pluripotency in
porcine stem cells

It is important to establish good criteria to evaluate the
pluripotency of porcine stem cells. Most evaluation criteria
for porcine PSCs are based on those used for mouse PSCs.
We summarize below the methods used to evaluate the
pluripotency of porcine stem cells in recent decades.

5.1 Morphological parameters

5.1.1 Morphology of stem cells

Most porcine PSCs have an epithelial-like colony mor-
phology (Tables 4–6), which is very similar to human ESCs
or mouse epiblast stem cells (EpiSCs)[29,115,121,138,147,148].
They show a large, flat and round (polygonal in rare cases)
shape with compact colonies and distinct borders, with
relatively small diameters and a high nucleus-to-cytoplasm
ratio, a single nucleus with multiple nucleoli, and are
sensitive to tryptase. These cells grow more slowly and
have limited capability to be integrated into host
blastocysts[92,120,122,134,141,143]. Another type of porcine
PSCs was shown to have a mouse ESCs morphology, i.e.,
small, not flat and with a compact, glistening, doom shaped
appearance. These cells have a high nuclear-to-cytoplas-
mic ratio with short cell cycle interval, grow more
vigorously and are capable of undergoing successful
differentiation both in vivo and vitro, and are considered
to have high developmental potential and show naive
status of porcine PSCs[29,49]. In general, morphology of
stem cell represents a basic indicator for pluripotency of
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Table 4 Characteristics of porcine embryonic stem cells

Cell
sources

Morphology Pluripotent markers Differentiation in vivo Differentiation in vitro

ReferencePluripotency
state

Colony
formation
time/rate

Passage Karyotype
Pluripotency

factors
Surface
markers

AP Teratoma Chimera EB
Multilineage
differentiation

potency

In vivo
and
in vitro
embryos

ESC-like 10% p14 Normal OCT4,
NANOG

SSEA-1 – ND CP + + [114]

EpiSC-like 5–7 d p>41 Normal OCT4,
NANOG,
SOX2,

TDGF1, REX1

SSEA4,
TRA-1-60,
TRA-1-81

AP – ND + + [29]

1.6%–

9.5%
p≥9 Normal NANOG – AP

(weak)
ND ND + + [115]

In vivo
embryos

ESC-like > 6 d,
> 43%

ND ND OCT4,
NANOG,
SOX2

CK18 AP ND ND ND + [116]

EpiSC-like 5–7 d p>12 Normal OCT4,
NANOG,
SOX2,
NODAL

SSEA-1 – ND ND + + [117]

ND OCT4, SOX2,
NANOG

TRA-1-60,
TRA-1-81

AP ND ND ND ND [33]

In vitro
embryos

ESC-like 5–8 d p>48 Normal OCT4,
NANOG,

SOX2, REX-1

SSEA-1,
SSEA-4,
TRA-1-60,
TRA-1-81

AP – ND + + [118]

5.1% p≈100 Normal OCT4,
NANOG

SSEA-1,
SSEA-4

AP ND ND ND ND [45]

8–13 d p>15 Normal OCT4,
NANOG

– – ND CB + + [119]

ND p>50 Normal OCT4, KLF4,
STAT3, SOX2,

NANOG,
LIN28

SSEA-1
(strong),
SSEA-4
(weak)

AP + ND ND + [46]

EpiSC-like 39% p< 52 Normal OCT3, OCT4,
NANOG

SSEA-4 AP + ND + + [120]

5–8 d,
>26.2%

p>25 Normal OCT4,
NANOG,

SOX2, REX-1

– AP – ND + + [121]

17.6% ND ND OCT4, SOX2,
NANOG

– AP ND ND + + [122]

13–16 d p>75 Normal OCT4, SOX2,
NANOG

– AP + CP + + [10]

10.7% p>90 Normal OCT4 SSEA-4,
TRA-1-60,
TRA-1-81,

AP + ND + + [123]

9 d p>36 Normal OCT4, SOX2,
NANOG

– AP + ND + + [124]

ND < 29% ND ND OCT4,
NANOG,
SOX2,
C-MYC

– AP ND ND ND ND [125]

Note: AP, alkaline phosphatase; EB, embryoid body; ND, not determined; CP, chimeras piglets; CB, chimeric blastocysts.
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porcine stem cells. However, pPSCs with a hESC-like
morphology were also reported to contribute to chimera
formation[10].

5.1.2 Colony formation and maintenance of pluripotency

Authentic ESCs are able to self-renew and proliferate
continuously in vitro with undifferentiated characteristics.
Naive-state stem cells, like mouse ESCs, can be propa-
gated after dissociation to single cells, however, this same
treatment can rapidly damage porcine PSCs with colonies
that need to be detached from the feeder layer and passaged
mechanically. Therefore, colony formation rate and
doubling time are important indicators of pluripotency in
porcine PSCs. In fact, most studies focus on the primary
colony formation time (7–10 d after being plated onto the
feeder layer) or rate (percentage of established porcine
PSCs from blastocysts) rather than the date of colony
formation and doubling time of established pESC and
EGC lines[45,46]. This gap in studies of porcine PSCs
deserves serious attention because fast and steady
proliferation and passage are important characters of
PSCs.

5.1.3 Karyotype analysis

Karyotype analysis is important because PSCs, including

porcine PSCs, with abnormal karyotype cannot be used for
research. Giemsa banding is widely used for porcine PSCs
because this method can produce a visible karyotype by
staining condensed chromosomes. Most porcine PSCs are
normal in karyotype (38 chromosomes), but a few porcine
iPSCs have been found with abnormal chromosome
numbers and karyotypic instability which occurred with
increased numbers of passages[135]. Overall, considering
the safety and clinical application of piPSCs, karyotype
analysis might be an indispensable assay before clinical
studies.

5.2 Pluripotency markers

5.2.1 Pluripotency factors

OCT4 is considered to be key for pluripotency because
it is expressed specifically in the ICM of blastocyst and
ESCs of mice and humans, and its expression ceases in the
subsequently differentiated cells and tissues[15]. However,
the expression pattern and regulation mechanism of OCT4
in porcine embryos or PSCs are quite different from
those in mice[149,150]. The pluripotency factors, including
of OCT4, REX1 and KLF4, are still the main markers
widely used in evaluating pluripotency of porcine PSCs
(Tables 4 – 6). In recent years, researchers have begun to
realize the limitation of these factors for porcine PSCs and

Table 6 Characteristics of porcine embryonic germ cells

Cell
sources

Morphology Pluripotent markers Differentiation in vivo Differentiation in vitro

Refer-
ence

Pluripotency
state

Colony forma-
tion time/rate

Passage Karyotype Pluripotency
factors

Surface
markers

AP Teratoma Chimera
formation

EB Multilineage
differentiation

potency

Fetuses
(days 17–
30)

ESC-like 7–10 d p14 ND – – AP ND CP + ND [41]

8 d p54 Normal OCT4 SSEA-4,
TRA-1-81,
SSEA-1

AP ND ND + + [141]

6–9 d ND ND – SSEA-1 AP ND ND + Endoderm [142]

6–9 d ND ND – SSEA-1 AP ND ND + ND [142]

ND p≈35 ND OCT4,
SOX2,

NANOG,
REX1,
C-MYC

SSEA-4,
TRA-1-60,
TRA-1-81

AP + ND + + [143]

ND p12 Normal – – AP ND CP + + [48]

ND p21–23 ND – – AP – CP + + [144]

5–7 d p>20 Normal OCT4 SSEA-1
(weak),
SSEA-3,
SSEA-4,

AP + ND + + [145]

ND 5–8 d ND ND – – AP ND ND ND ND [146]

ND 7–10 d p>31 Normal – SSEA-1 AP ND CP ND ND [49]

Note: AP, alkaline phosphatase; EB, embryoid body; ND, not determined; CP, chimeras piglets.
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additional pluripotent factors have been identified to
evaluate pluripotency of porcine PSCs, such as TDGF1,
CK18, STAT3, LIN28 and C-MYC.

5.2.2 Stem cell surface markers

Stem cell surface markers, such as stage-specific embryo-
nic antigen SSEA-1 (mouse ESC-specific), SSEA-3 and
TRA-1-81 (human ESCs-specific), have been used to
characterize both mouse and human PSCs[151]. However,
ICM in porcine blastocysts cannot exclusively express the
naive-state marker SSEA-1[152]. Neither the blastocysts
(D5/6) nor the epiblasts (D9/10) express any human ESCs-
surface markers, suggesting a precluded active state of
pluripotency[153]. It is generally considered that porcine
PSCs expressing SSEA-1 have a high developmental
potential, however, porcine iPSCs have been shown to
maintain pluripotency for more than 50 passages and
contribute to chimera formation without the expression of
SSEA-1[42]. Thus, it is difficult to distinguish which PSCs
lines possess a higher pluripotency by detecting stem cell
surface markers.

5.2.3 Alkaline phosphatase

Alkaline phosphatase (AP) is the first molecule demon-
strated to be a reliable marker for undifferentiated ESCs in
pig[154] and some researchers use AP activity as the early
detection marker during porcine iPSC establishment[137].
Porcine iPSCs and ESCs with weak AP activity have
limited developmental potential and insufficient differen-
tiation ability, suggesting that AP activity is not only an
indicator of stem cells but also a potential evaluation
marker for pluripotency in porcine stem cells[46,125,133].

5.3 X-chromosome activation

The active X-chromosome (XaXa) state pluripotent cells
are considered as naive-state stem cells and are capable of
development into chimeras after injection into allogeneic
embryos[155]. Therefore, X-chromosome activation is
considered to be a key indicator that a pluripotent cell is
in a naive or primed state[155]. For porcine iPSCs, three cell
lines generated by the expression of transcription factors
OCT4, KLF4 and C-MYC showed naive-like iPSC proper-
ties with an activated X-chromosome, as well as high
embryonic chimera incorporation efficiency[97,126,130]. In
addition, Haraguchi and colleagues successfully estab-
lished a unique cell line derived from ICM of porcine
embryo that exhibited LIF-dependency but not bFGF-
dependency, and could be considered as naive-state cells as
mouse ESCs; however, the X-chromosome status in this
cell line was XaXi[45].
XIST is a dominant regulator gene of XCI used to

monitor the X-chromosome activation status. However, the

regulatory mechanisms and expression patterns in pigs are
complicated and not well defined[156,157]. Also, many
studies only determined PSCs to be in the naive state using
the expression of XIST or H3K27me3 staining but did not
test other capabilities, such as germline chimerism. Thus,
application of evaluation X-chromosome activation in
porcine PSCs will be limited until these problems have
been solved.

5.4 Differentiation ability of stem cell in vivo and in vitro

5.4.1 Teratoma

The efficiency of teratoma formation in established porcine
ESCs and EGCs lines was low for all teratoma detection
reported for porcine PSC lines (Table 4; Table 6), which
suggests that current culture systems cannot maintain the
pluripotency of porcine PSCs. However, reprogramming
somatic cells to a pluripotent state by the iPSC methods has
demonstrated some level of success in teratoma formation
(Table 5). The high teratoma formation rate found in
porcine iPSCs may be because they can maintain their
populations of undifferentiated cells by expressing onco-
genes, which raises issues of the safety of application of
piPSCs in clinical studies.

5.4.2 Chimera assay

High rates of production of chimeric blastocysts (up
to 83.3%) can be obtained through aggregation of
blastomeres from early stage embryos with different
genetic background and most of the cells will then undergo
a further differentiation leading to the formation of
trophoblastic cells. However, the efficiency of blastomere
aggregation with porcine PSCs is very low (Tables 4–6).
Most groups would opt to use early embryo injection and
select the early morula without compaction for injection
because of the collapse of blastocoels. However, porcine
PSCs have been reported to produce chimeric animals
based on the coat color and microsatellite examination, but
no researchers have been able to obtain chimeras by
germline transmission.

5.4.3 Tetraploid complementation

Tetraploid (4N) complementation is considered as a key
evaluation criterion for detection of pluripotency in stem
cells[158,159]. Full term development of embryos from stem
cells injected into the tetraploid embryos would prove the
pluripotency of cells. Unfortunately, no studies have
obtained viable piglets by tetraploid complementation
using porcine ESCs, EGCs and iPSCs (Tables 4–6), which
could be explained by the primed pluripotent state of
pPSCs used.
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5.4.4 Embryoid body formation

Embryoid body formation (in vitro) is now routinely used
to confirm pluripotency of stem cells. In porcine PSCs,
embryoid bodies with a similar morphology to that
described for mice were formed and they had three germ
layer markers (endoderm, mesoderm, and ectoderm).
However, the embryonic body generated from porcine
EGCs is restricted to a simple embryoid body, not to a
cystic form[142].

5.4.5 Multilineage differentiation potency

In porcine ESCs and EGCs, most of the cell lines can
differentiate into three embryonic germ layer cell types
(Table 4; Table 6). In addition, porcine iPSCs have been
coaxed to differentiate into several neuronal lineages[140],
cardio myocytes[132,134] and even hepatocytes[160]. Such
abilities of porcine PSCs to form different tissues are
critical and will of benefit for future development of
preclinical studies, but there are still many issues to be
resolved before these cells can be used in a safe and
reproducible manner.

6 Challenges and prospects

PSCs can differentiate into various tissues and organs in
animals, which means they have been widely used in
clinical research and breeding, and naive mouse ESCs not
only propagate steadily in vitro but also perform tetraploid
compensation and germline transmission[161]. However,
defects still exist with PSC lines derived from large
animals. At present, the embryonic stem cells of existing
large animals have encountered similar problems. PSCs
cannot be propagated stably in vitro for the long-term and
PSCs are unable to produce teratoma and chimera animals
although they have certain differentiation abil-
ities[10,45,118,162,163].
Relative to the embryonic stem cell lines, studies on

iPSCs in large animals has made more progress, especially
for pigs. However, there are still some difficulties, cell
propagation is dependent on exogenous genes and cannot
produce germline chimeric offspring[59,127,130,164,165].
These problems need to be solved urgently for the study
of PSCs in large animals. In addition, the establishment of
naive PSCs in porcine and some other kinds of livestock
has significant valuable for biomedical research and animal
breeding.

6.1 Generation of high quality pluripotent stem cells

Over the last three decades, substantial efforts have been
made to generate PSCs from livestock. Reasons for the
poor research outcomes are not entirely clear and key

questions remain surrounding the basic biology of PSCs,
for example: what is the best embryonic stage for isolating
pluripotent cells from porcine embryo; what are the
pluripotent markers and signaling pathways that regulate
pluripotency in pigs, and what are the optimal culture
conditions for sustaining long-term in vitro culture of
pESC lines? The solution to these problems will facilitate
the establishment of pESCs[29,111,166].
Unique regulatory signaling pathways may be asso-

ciated with porcine ICM development. Mouse, human and
pig embryos differ in co-expressed genes related to fatty
acid metabolic processes, lipid metabolic processes, the
biological aspects of the cytoplasm, nucleus, mitochondria
and protein binding. Large numbers of lipids exist in the
porcine early embryos and lipids supplement promotes
mesenchymal–epithelial transition (MET) through the
cAMP/PKA/CREB signal pathway and upregulates the
E-cadherin expression during porcine somatic cell repro-
gramming. These findings may facilitate understanding of
the lipid metabolism and lay the foundation for derivation
of bona fide porcine embryonic stem cells[167]. Micro-
RNAs play a very important role in regulating reprogram-
ming, pluripotency and cell fate decisions and hpiPSCs
and mpiPSCs under different pluripotent states revealed
significant differences in the miRNA signatures. These
differentially expressed miRNAs may play important roles
in pluripotent regulation in pigs.
Given the prospective advantages and current limita-

tions, many researchers have recently emphasized the
importance of establishing validated pESCs. It has been
noted that defining the optimum stage of embryonic
development for stem cell derivation and a clear under-
standing of key signaling pathways that regulate the
pluripotency of pESCs, would be beneficial for obtaining
stable pESC lines[17,168,169].

6.2 Porcine PSCs application in clinical medicine

Given that pigs have immunological and physiological
similarities to humans, a porcine model provides the ideal
non-primate system for clinical research. Porcine PSCs are
important for modeling embryonic development and
disease processes in biomedical research, and they are
especially important for transplantation medicine, immu-
nology and the study of the circulatory system[3,170].
Inactivation of porcine endogenous retroviruses opens

the possibility of porcine-to-human xenotransplanta-
tion[171]. Porcine iPSCs can differentiate into photorecep-
tors which can integrate into the damaged swine neural
retina, laying a foundation for retinal stem cell transplanta-
tion[172]. Porcine iPSC grafted into the myocardium can
differentiate into vessel cells, which result in increased
formation of new vessels in an infarcted heart. Direct
intramyocardial injection of porcine iPSCs can improve
left ventricular function in an immunosuppressed porcine
AMI model[173]. Generation of functional hepatocytes
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from porcine iPSCs is considered to be a promising
therapy for patients with liver diseases[174], and robust
neural differentiation from porcine iPSCs can fill the need
for a powerful model to study autologous neural iPSCs
therapies[140]. Moreover, insulin produced by pigs is
widely used to treat diabetes, pig heart valves have been
transplanted for over 50 years and skin transplants have
been applied to human burn victims for over 30 years[175].
Transplantation of porcine hearts from α (1,3)-galactosyl-
transferase knockout pigs has increased graft survival over
previous methods[176].Thus, establishment of pESCs
provide a useful tool for future cell transplantation and
for studying disease mechanisms.

6.3 Porcine PSCs application in animal breeding

For agricultural purposes, PSCs can serve as a valuable
genetic engineering tool to improve the generation of
livestock through introduction of advantageous genes that
are important economically and in disease resistance traits.
The potential benefits of transgenic livestock have been
discussed and reviewed by many researchers over the past
20 years, but for the most part the promise has remained
unfulfilled due to insufficient research effort[177]. As a
substitute for pESCs, porcine iPSCs were used to generate
cloned animals using somatic cell nuclear transfer[178],
which is a valuable tool for generating transgenic animals.
This suggests that application of PSCs in cloning might
help reproduce a large number of endangered animals in
the near future[179], and perhaps new animal species can be
obtained with heterologous chimeric technology.
In addition, PSCs have great potential to generate

primordial germ cells capable of initiating meiosis and

generating haploid gametes, oocyte and sperm[180]. The
fertility of these in vitro-derived haploid gametes may
produce viable and fertile offspring[181]. This would be of
substantial value for finally achieving in vitro germ cell
induction in domestic species and establishing a new
animal breeding system to meet future meat and milk
demand[182,183]. In such a system, porcine and other larger
animals’ embryonic stem cells can be differentiated into
oocyte and sperm. The oocyte and sperm can be fertilized
in vitro, then embryos can be used to produce next-
generation ESCs, or can be transferred into the uterus to
produce live born. This laboratory animal breeding system
would greatly shorten breeding time (Fig. 2).
In summary, although we have made a great deal of

progress on mammalian pluripotency stem cells, signifi-
cant problems still persist and many scientific issues need
to be explored further.
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