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Abstract Somatic cell nuclear transfer (SCNT)-derived
piglets have significantly higher stillbirth rate and postnatal
mortality rate than artificial insemination (AI)-generated
piglets. The question whether the low survival rate of
SCNT piglets was related to birth weight, umbilical cord or
placenta development was investigated. In this study,
stillbirth rate, neonatal death rate, birth weight, umbilical
cord status, placental parameters and placental gene
expression patterns were compared between SCNT and
AI piglets. Results showed that mortality rates at birth and
during the neonatal stage of SCNT piglets were signifi-
cantly higher than those of AI piglets. The incidence of
abnormal umbilical cord in SCNT and SCNT-liveborn
(SCNT-LB) piglets was significantly higher than in AI and
AI-liveborn (AI-LB) piglets. Birth weight, placental
weight, placental surface area and placental efficiency in
SCNT and SCNT-LB piglets were significantly lower than
those of AI and AI-LB piglets. Placental expression
profiles of imprinting, angiopoiesis and nutrient transport-
related genes were defective in SCNT-LB piglets com-
pared with those in AI-LB piglets. Thus, the low survival
rate of SCNT piglets may be associated with abnormal
umbilical cord and placenta development. These charac-
teristics may have resulted from aberrant expression of
angiogenesis, nutrient transport, and imprinting-related
genes in the placentas.
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1 Introduction

Pig somatic cell nuclear transfer (SCNT) technique have
valuable applications in agriculture, bioscience, and
biomedicine[1–5]. However, SCNT-generated cloned
porcine embryos only have a full-term developmental
rate of approximately 1%[6], which is considerably lower
than the developmental efficiency of in vivo fertilized pig
embryos[7]. Furthermore, previous reports indicated that
the cloned pigs were had stillborn rates of 17%–
32.8%[8–12] and 48%–74.5% mortality from birth to
weaning[12–14], which is much higher than in vivo
fertilization-derived piglets (3%–8% and 10%–18%,
respectively)[15–17].
Low birth weight, which parallels intrauterine growth

retardation (IUGR), is believed to be related to the survival
ability of the fetus in the uterus and/or after birth[18–20].
Placental dysfunction is also considered the major cause of
IUGR, late fetal loss, and postnatal death[14,21–24]. In
addition, umbilical cord malformation is associated with
fetal death and neonatal mortality[12,14,25]. Therefore, the
high stillbirth rate and postnatal death rate observed in
SCNT piglets could be related to retarded intrauterine
growth and abnormal placenta and umbilical cord devel-
opment.
Relatively limited information is available in the

literature, however, on the assessment of birth weight
and placenta and umbilical cord development in cloned
piglets. In this study, we compared the birth weight,
umbilical cord status, placental traits and placental gene
expression patternss between SCNT and artificial insemi-
nation (AI)-derived piglets.
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2 Materials and methods

2.1 Production of piglets by SCNT and AI

Piglets were produced following the protocols described in
a previous report[14].

2.2 Placenta and umbilical cord collection and analysis

At birth, placental umbilical cord with a number
representing the birth order of a piglet was used to
distinguish individual placentas. This method was adapted
from Wilson et al.[26]. Briefly, one assistant gently held the
piglets to prevent umbilical breakdown caused by the
movement of the piglets at birth. A prenumbered piece of
sterile surgical thread was tied to the umbilical cord end
close to the placenta, while a second assistant tied a sterile
surgical thread round the cord at about 4 cm from the
umbilicus of piglets to prevent blood loss. The cord was
then cut between two ligatures, and the tagged umbilical
cord was allowed to retract back into the uterus. After
placental expulsion, the placentas were dissected and
analyzed. The piglets were immediately dried and
weighed, and birth order was recorded corresponding to
the tagged umbilical cord on the placenta. After expulsion,
individual placentas were dissected from secundines, and
placental tissue samples were immediately collected from
the center of individual placenta, washed with PBS and
stored in liquid nitrogen. Each placenta was weighed after
the attached amniotic membrane, necrotic tips of a
vascularized chorion and umbilical cord were removed.
Each placenta was then spread unwrinkled on paper, and
the placental surface area was estimated by doubling the
area on the paper bounded by a line traced around the
placenta. Placental efficiency was defined as the ratio of
piglet birth weight to placental weight. Placental tissue
samples were used to analyze gene expression. Addition-
ally, the umbilical cord status of piglets during farrowing
was recorded to obtain the proportion of abnormal
umbilical cords in piglets.

2.3 Quantitative real-time PCR

Total RNA was extracted from placenta tissue using Total
RNA Kit (Omega Bio-tek, Inc., Norcross, GA, USA). The
RNA concentration was measured by Nanodrop 2000
(Thermo Fisher Scientific, Waltham, MA, USA). RNA
quality was analyzed using nondenaturing agarose gel
electrophoresis. Only RNA samples that did not show
signs of degradation were used and stored at -80°C.
Subsequently, cDNA was synthesized from 1 mg of total
RNA using PrimeScript RT Reagent Kit (Takara Bio, Otsu,
Shiga, Japan). The cDNA was stored at -20°C for further
analysis. Quantitative real-time PCR was performed using
SYBR Select Master Mix Kit (Thermo Fisher Scientific,

Waltham, MA, USA) and EcoTM Real-Time PCR System
(Illumina, San Diego, CA, USA). The primer information
for target genes is presented in Table 1. Each reaction
mixture (10 mL) contained 1 mL of cDNA solution, 0.3 mL
of 10 mmol$L–1 of each specific primer, 5 mL of SYBR
Select Master Mix, and 3.4 mL of ddH2O. The reactions
were run as follows: initial denaturation at 95°C for 5 min;
followed by 40 cycles of 95°C for 10 s, 60°C for 15 s, and
72°C for 20 s; and finally a melting cycle at 95°C for 15 s,
55°C for 15 s, and 60°C for 15 s. The transcripts of all
genes were quantified in triplicates. Specificity of the PCR
reaction was confirmed through a single peak in the
melting curve. b-actin was used as an endogenous control
to normalize gene expression throughout this study. The
relative gene expression level of the target gene was
calculated through the 2–ΔΔCT method.

2.4 Statistical analyses

Differences in the survival rate and incidence of abnormal
umbilical cord (AUC) between SCNT and AI groups were
analyzed by c2 tests. Differences in birth weight, placental
traits, and placental gene expression levels between the
SCNT and AI groups were analyzed by one-way ANOVA
using the SPSS 19.0 software (IBM Corp., Armonk, NY,
USA). Values are presented as mean�SEM. Significant
difference of means between two different groups was
determined at P< 0.05.

3 Results

A total of 111 male piglets were delivered by 20 artificially
inseminated sows, and 58 male cloned piglets were
farrowed from 13 recipient sows (Table 2). The stillbirth
rate and postnatal death rate of SCNT piglets were
significantly higher than those of AI piglets (stillbirth
rate, 20.7% vs. 5.4%, P = 0.002; postnatal death rate,
65.2% vs. 5.7%, P< 0.001) (Table 2).
The umbilical cords of newborn piglets were divided

into normal umbilical cord and AUC according to their
characteristics (Fig. 1). The incidence of AUC in SCNT
piglets was significantly higher than that in AI piglets
(39.7% vs. 10.8%, P< 0.001). SCNT-liveborn (SCNT-LB)
piglets also exhibited a significantly higher AUC fre-
quency than AI-liveborn (AI-LB) piglets (32.6% vs.
14.2%, P = 0.009). However, the SCNT-stillborn (SCNT-
SB) group and AI-stillborn (AI-SB) group showed no
significant differences in the incidence of AUC (66.7% vs.
33.3%, P = 0.18) (Table 3).
Birth weight, placental surface area, placental weight,

and placental efficiency of the AI and AI-LB groups were
significantly higher than those of the SCNT and SCNT-LB
groups (P< 0.001) (Table 4). Birth weight, placental
surface area, and placental weight of AI-SB piglets were
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also significantly higher than those of SCNT-SB piglets
(P< 0.05), but placental efficiency was not different
between the two groups (P> 0.05) (Table 4)
Placental mRNA expression levels of six imprinted

genes and seven non-imprinted genes related to angiogen-
esis, nutrient transport, and apoptosis were examined and
compared between the AI-LB and SCNT-LB groups.

Expression levels of angiogenesis-related vascular
endothelial growth factor receptor 2 (VEGFR2), nutrient
transport-related solute carrier family 2 member 3
(SLC2A3) and solute carrier family 38 member 4
(SLC38A4) in SCNT-LB placentas were significantly
lower than those in AI-LB placentas (P< 0.05). However,
expression levels of angiogenesis-related vascular

Table 2 Comparison of stillbirth rate and postnatal death rate between SCNT-derived and AI-derived piglets

Item No. of litters Total piglets born Stillborn Postnatal death

AI 20 111# 6 (5.4/%) 6 (5.7/%)*

SCNT 13 58 12 (20.7/%) 30 (65.2/%)

P-value – – 0.002 < 0.001

Note: #Only male AI-derived piglets were included in this table, because SCNT-derived piglets were cloned from male donor cells. *Postnatal death and survival were
only recorded four days after birth.

Table 1 Sequences of primers used for the analysis of gene expression in the placenta

Gene Sequence (5′–3′) Product size/bp GenBank accession no.

BCL-2 F: TTGCCGAGATGTCCAGCCA 255 XM_003121700.4

R: CATCCCAGCCTCCGTTATCCT

BAX F: AAGCGCATTGGAGATGAACT 251 XM_013998624.1

R: CGATCTCGAAGGAAGTCCAG

VEGFA F: GCCTTGCTGCTCTACCTCCA 271 NM_214084

R: TGGCGATGTTGAACTCCTCAGT

VEGFR2 F: GAGTGGCTCTGAGGAACGAG 209 BQ603967

R: ACACAACTCCATGCTGGTCA

PHLDA2 F: TCAAGGTGGACTGCGTGGAG 147 NM_001174057

R: GGCGGTTCTGGAAGTCGATGA

CDKN1C F: TGGACCACGAGGAGCTGAGT 100 HQ679903

R: GGCACGTCCTGCTGGAAGTT

IGF2 F: CGTGGCATCGTGGAAGAGTG 168 X56094

R: CCAGGTGTCATAGCGGAAGAAC

H19 F: GGCCGGAGAATGGGAAAGAAGG 148 AY044827

R: CGCAGTGCTGCGTGGGAACG

PEG3 F: GGAGTGTGCGGAGACCTTCA 118 EF619475

R: CTCGGTGGGATGGGAGTTCT

GRB10 F: GGTCCGTGCATCGTTCAGA 101 NM_001134965

R: TCCAACAAACCAGCCAACCT

SLC2A1 F: GCAGGAGATGAAGGAGGAGAGC 258 EU012358

R: ACGAACAGCGACACGACAGT

SLC2A3 F: GCCCTGAAAGTCCTCGGTTCCT 252 XM_003355585

R: ACACGGCGTTGATGCCAGAGA

SLC38A4 F: CGTGGTCATGGTGCCCAACAAC 118 XM_021092582

R: ACTGCCGTGAAGAGAGCCCTTG

b-actin F: CCACGAGACCACCTTCAACTC 131 DQ845171

R: TGATCTCCTTCTGCATCCTGT
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endothelial growth factor A (VEGFA) and nutrient
transport-related solute carrier family 2 member 1

(SLC2A1) were not different between the two groups
(P> 0.05). Expression levels of apoptosis regulator BCL-2
and BCL2 associated X (BAX) were also not different
between the two groups (P> 0.05). Among the six
investigated imprinted genes, H19, growth factor receptor
bound protein 10 (GRB10) and pleckstrin homology-like
domain family A member 2 (PHLDA2) had significantly
lower mRNA expression levels, whereas paternally
expressed 3 (PEG3) had significantly higher mRNA
expression levels in SCNT-LB placentas than in AI-LB
placentas (P< 0.05). However, no difference was found in
the mRNA expression level of insulin-like growth factor 2
(IGF2) and cyclin-dependent kinase inhibitor 1C
(CDKN1C) between the SCNT-LB and AI-LB placentas
(P> 0.05) (Fig. 2).

4 Discussion

In this study, the SCNT piglets had 20.7% stillbirth rate,
which is similar to that (17%–24%) reported by Estrada
et al.[10], Kurome et al.[11], and Park et al.[12]. Moreover,
the neonatal mortality rate of SCNT-LB piglets reached
65.2%. This remarkably high death rate of neonatal cloned

Table 3 Comparison of the frequency of abnormal umbilical cords (AUC) between AI and SCNT piglets

Item Total piglets Piglets with AUC

AI 111 17 (10.8%)

SCNT 58 23 (39.7%)

P-value – < 0.001

AI-LB 105 15 (14.2%)

SCNT-LB 46 15 (32.6%)

P-value – 0.009

AI-SB 6 2 (33.3%)

SCNT-SB 12 8 (66.7%)

P-value – 0.18

Fig. 1 Phenotype of normal umbilical cord (NUC) and
abnormal umbilical cord (AUC) in newborn piglets. NUCs are
light red and spiraled (green arrow). AUCs are dark, are not
spiraled, and have severe occlusive thrombus (black arrow).

Table 4 Comparison of birth weight and placental parameters between AI and SCNT piglets

Item Birth weight/g Placental weight/g Placental surface area/cm2 Placental efficiency/(g$g–1)#

AI (n = 111) 1430�35 177�5 2530�69 8.41�0.16

SCNT (n = 58) 1040�47 147�6 1850�76 7.17�0.21

P-value < 0.001 < 0.001 < 0.001 < 0.001

AI-LB (n = 105) 1440�36 177�6 2530�71 8.43�0.17

SCNT-LB (n = 46) 1130�41 157�6 1950�74 7.36�0.24

P-value < 0.001 0.036 < 0.001 < 0.001

AI-SB (n = 6) 1400�127 180�20 2500�356 7.79�0.29

SCNT-SB (n = 12) 714�127 107�13 1450�203 6.42�0.49

P-value 0.004 0.007 0.012 0.082

Note: Values are presented as mean�SEM. #Placental efficiency represents the ratio of birthweight to placental weight
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pigs was also consistent with previous studies[12,13,27].
These data indicated that a large portion of cloned piglets
die during late gestation period, at birth, and the during
neonatal stage.
The high incidence of AUC could be one of the factors

responsible for the high stillbirth rate and neonatal death
rate in SCNT piglets. AUC would restrict blood flow or
oxygen transport to the fetuses, leading to intrauterine
asphyxia or hypoxic injury which could result in stillbirth
and/or postnatal mortality[28–30].
Placental deficiency is also a significant cause of

stillbirth and even postnatal death[21,31,32]. In this study,
placental surface area, placental weight and placental
efficiency of SCNT piglets were significantly lower than
those of AI piglets. These results suggest that the high
death rate at birth and during neonatal stage of SCNT
piglets could be attributed to abnormal placenta develop-
ment.
Imprinted genes play critical roles in the regulation of

placenta development[33–35]. The results showed that four
examined imprinted genes (H19, GRB10, PHLDA2 and
PEG3) exhibited aberrant expression patterns in the
placentas of the SCNT piglets. Defective expression of
imprinted genes could be related to the abnormal placenta
development observed in the SCNT piglets. In addition,
the expression levels of angiopoiesis-related VEGFR and
nutrient transport-related SLC2A3 and SLC38A4 in the
placentas of SCNT piglets were significantly reduced. This
phenomenon implies that the SCNT-derived fetuses in the
uterus were in a state of malnutrition, which not only
causes low birthweight but also leads to stillbirth and/or
postnatal mortality.

5 Conclusions

In summary, SCNT piglets exhibited high stillbirth rate and
neonatal death rate. The low survival rate of SCNT piglets
was associated with AUC and abnormal placenta devel-
opment. These anomalies could have resulted from the
aberrant expression of angiogenesis, nutrient transport and
imprinting-related genes in the placentas.
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