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Abstract The central concept of precision agriculture is
to manage within-field soil and crop growth variability for
more efficient use of farming inputs. Remote sensing has
been an integral part of precision agriculture since the
farming technology started developing in the mid to late
1980s. Various types of remote sensors carried on ground-
based platforms, manned aircraft, satellites, and more
recently, unmanned aircraft have been used for precision
agriculture applications. Original satellite sensors, such as
Landsat and SPOT, have commonly been used for
agricultural applications over large geographic areas
since the 1970s, but they have limited use for precision
agriculture because of their relatively coarse spatial
resolution and long revisit time. Recent developments
in high resolution satellite sensors have significantly
narrowed the gap in spatial resolution between satellite
imagery and airborne imagery. Since the first high
resolution satellite sensor IKONOS was launched in
1999, numerous commercial high resolution satellite
sensors have become available. These imaging sensors
not only provide images with high spatial resolution, but
can also repeatedly view the same target area. The high
revisit frequency and fast data turnaround time, combined
with their relatively large aerial coverage, make high
resolution satellite sensors attractive for many applications,
including precision agriculture. This article will provide an
overview of commercially available high resolution
satellite sensors that have been used or have potential for
precision agriculture. The applications of these sensors for
precision agriculture are reviewed and application exam-
ples based on the studies conducted by the author and his
collaborators are provided to illustrate how high resolution
satellite imagery has been used for crop identification, crop
yield variability mapping and pest management. Some
challenges and future directions on the use of high
resolution satellite sensors and other types of remote

sensors for precision agriculture are discussed.
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1 Introduction

Precision agriculture started with the research and deve-
lopment of grid soil sampling, soil sensors, yield monitors,
positioning systems, and variable rate technology in the
mid to late 1980s. With advances in global positioning
systems (GPS), geographic information systems (GIS),
remote sensing and sensor technology, the agricultural
community has witnessed a rapid growth of a new body of
precision agriculture technologies since the 1990s[1–4].
Overall, the adoption of precision agriculture is relatively
slow and varies by technology type, but precision
agriculture as a farming strategy is gradually changing
the way farmers manage their fields[5,6]. Some technolo-
gies developed for precision agriculture have become
standard practices in production agriculture. For example,
yield monitors and automatic guidance systems are the two
most widely adopted precision agriculture technologies by
individual farmers today in the USA. Other technologies,
such as GPS-based soil sampling, real-time crop and soil
sensors, remote sensing and variable rate technology, have
been used by some producers, crop consultants and
agricultural dealers for site-specific applications of fertili-
zers, herbicides, fungicides, water, seeds and lime. The
central concept of precision agriculture is to identify
within-field variability and manage that variability. More
specifically, precision agriculture employs a suite of
electronic sensors and spatial information technology
(i.e., GPS, GIS and remote sensing) to map within-field
soil and crop growth variability and to tailor farming inputs
(e.g., fertilizers, pesticides, seeds and water) to the specific
conditions in each area of a field with the aim to increase
farm profits and reduce environmental impacts.
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Remote sensing applications in precision agriculture
have been steadily increasing since the 1990s due to
improvements in spatial, spectral and temporal resolutions
of both airborne and satellite remote sensors. Airborne or
satellite imagery allows a farmer to have an overhead view
of the crops growing on the entire field or the entire farm.
In addition to numerous ground-based soil and crop
sensors, remote sensing imagery has become a major data
source for documenting soil and crop growth variability
because it provides a continuous view of all fields in the
imaging area. Mulla[7] reviewed the key advances of
remote sensing in precision agriculture and the remaining
knowledge gaps.
Images from the original remote sensing satellites, such

as Landsat and SPOT, have long been used to monitor crop
growing conditions, identify crop types and estimate crop
yields over large geographic areas for agricultural
applications[8–12]. However, this type of imagery has
limited use for assessing within-field crop growth
variability for precision agriculture because of its coarse
spatial resolution and long revisit time. Therefore, airborne
imaging systems have been widely used for precision
agriculture since the 1990s. Among the advantages of
airborne imaging systems are their relatively low cost, high
spatial resolution, and real-time/near-real-time availability
of images for visual assessment, and their ability to obtain
data in narrow spectral bands in the visible, near-infrared
(NIR), and shortwave infrared (SWIR) portions of the
electromagnetic spectrum[13,14].
Airborne imaging sensors can be categorized as multi-

spectral and hyperspectral based on the number of spectral
bands and band widths. Multispectral imaging sensors
typically measure reflected or emitted energy in 3–12
different spectral bands. In contrast, hyperspectral imaging
sensors measure radiation in tens to hundreds of narrow
spectral bands across the electromagnetic spectrum.
Images produced from hyperspectral sensors contain
considerably more spectral detail than images from
multispectral sensors and have a great potential to detect
subtle differences between similar ground objects and
features. Moran et al.[15] reviewed some of the applications
and addressed the potential of image-based remote sensing
to provide spatially and temporally distributed information
for precision agriculture applications.
Airborne multispectral imagery has been widely used in

precision agriculture for assessing soil variability[16],
mapping crop growth and yield variability[17–19], detecting
crop insect infestations and disease infections[20,21] and
mapping water status[22]. Airborne hyperspectral imagery
has also been evaluated for assessing soil fertility[23],
mapping crop yield variability[24–26] and detecting crop
pests[27–30].
Advances in high resolution satellite sensors have

significantly narrowed the gap in spatial resolution
between the original satellite imagery and airborne

imagery. When the IKONOS satellite was successfully
launched into orbit in 1999, it made history with the first
high resolution commercial remote sensing satellite.
IKONOS provided multispectral data in three visible
bands and one NIR band with 3.28-m resolution at nadir.
Two years later, QuickBird was launched to deliver
multispectral images with 2.62-m resolution at nadir in
four spectral bands similar to those of IKONOS. Until
2008, when GeoEye-1 was launched to provide finer image
data, IKONOS and QuickBird offered industry-leading
panchromatic and four-band multispectral imagery.
Following the success of IKONOS and QuickBird,

numerous commercial high resolution satellite sensors
have become available. Remote sensing from space is
rapidly changing with many countries and commercial
firms developing and launching new satellite imaging
systems. Over the last few years, the world has seen a
proliferation in the launch of high resolution imaging
satellites. Most of these satellites offer multispectral
imagery with resolutions from 1.24 to 4 m, including, in
chronological order, KOMPSAT-2, GeoEye-1, World-
View-2, Pléiades-1A, KOMPSAT-3, Pléiades-1B, Sky-
Sat-1, SkySat-2, WorldView-3, Gaofen-2, KOMPSAT-3A,
TripleSat, and WorldView-4, Cartosat-2C, GaoJing-1 01/
02 and Cartosat-2D. Other sensors offer multispectral
imagery with spatial resolutions from 5 to 10 m, including
SPOT 5, Rapideye, SPOT 6, SPOT 7, Sentinel-2A,
Sentinel-2B and several others.
These imaging sensors not only provide images with

high spatial resolution, but also can repeatedly view the
same target area. The high revisit frequency and fast data
turnaround time combined with their relatively large aerial
coverage make high resolution satellite sensors attractive
for many applications, including precision agriculture. In
the next section, details about these satellite sensors will be
given. In Section 3, their applications in precision
agriculture will be discussed and application examples
are provided to illustrate how high resolution satellite
imagery has been used for crop identification, mapping
crop yield variability and pest management. In the last
section, some challenges and future trends on the use of
high resolution satellite sensors and other remote sensors
for precision agriculture are discussed. Some of the
advantages and limitations of the use of different types
of remote sensing imagery for precision agriculture are
also discussed.

2 High resolution satellite sensors

2.1 Sensors with spatial resolutions of 5 m or finer

Table 1 summarizes most of the high resolution satellite
sensors that have been launched since 1999 with spatial
resolutions of 5 m or finer in multispectral bands. All the
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sensors listed in the table contain a panchromatic band,
which has a much higher spatial resolution than the
corresponding multispectral bands.

2.1.1 IKONOS

IKONOS was the first high resolution satellite sensor
launched into space on September 24, 1999. It provided
0.82-m panchromatic images in the 450–900 nm spectral
range and 3.28-m multispectral imagery in the blue (450–
520 nm), green (510–600 nm), red (630–700 nm) and NIR
(760–850 nm) bands. The panchromatic and multispectral
imagery can be merged to create 1-m color imagery (pan-
sharpened). The radiometric resolution was 11 bits and the
image swath was 11.3 km at nadir. IKONOS was originally
owned by Space Imaging and then acquired by GeoEye,
Inc. (Herndon, VA, USA) to become part of its constella-
tion of high resolution satellites. GeoEye was merged into
DigitalGlobe, Inc. (Longmont, CO, USA) on January 29,
2013. IKONOS was deactivated on March 31, 2015, but
archived IKONOS images remain available.

2.1.2 QuickBird

QuickBird, the second commercial high resolution satel-

lite, was launched by DigitalGlobe on October 18, 2001.
QuickBird provided panchromatic and multispectral data
in essentially the same spectral ranges as those of
IKONOS, but at finer spatial resolutions: 0.6-m for
panchromatic data and 2.4-m for multispectral data. Pixel
depth was 11 bits, but the image swath at nadir was wider
at 16.4 km and the sensor can tilt up to 45° off-nadir.
QuickBird was deactivated in early 2015.

2.1.3 KOMPSAT-2, -3 and -3A

In addition to DigitalGlobe’s constellation, many other
companies have launched their constellations of high
resolution satellites. KOMPSAT-2, also referred to as
Arirang-2, was developed and launched by the Korea
Aerospace Research Institute, Daejeon, South Korea on
July 28, 2006. KOMPSAT-2 acquires 1-m panchromatic
imagery and 4-m multispectral imagery in blue, green, red
and NIR bands. KOMPSAT-3, launched on May 17, 2012,
is capable of 0.7-m panchromatic and 2.8-m multispectral
resolution. As a sister spacecraft to KOMPSAT-3,
KOMPSAT-3A was launched on March 25, 2015 to
provide 0.55-m resolution in the panchromatic band, 2.2-
m resolution in the four standard spectral bands and 5.5-m
resolution in an additional mid-wave infrared band (3.3–
5.2 µm).

Table 1 High resolution satellite sensors with spatial resolutions of 5 m or finer in multispectral bands

Sensor name Year launched Number of multispectral bandsa Multispectral pixel sizeb/m
Panchromatic
pixel sizeb/m

Radiometric
resolution/bit

Revisit time/d

IKONOS 1999c 4 3.28 0.82 11 3

QuickBird 2001c 4 2.62 0.65 11 1–3.5

KOMPSAT-2 2006 4 4 1 10 1

GeoEye-1 2008 4 1.65 (1.84)d 0.41 (0.46)d 12 3

WorldView-2 2009 8e 1.84 0.46 11 1.1–3.7

Pléiades-1A 2011 4 2 0.5 12 1

KOMPSAT-3 2012 4 2.8 0.7 14 1

Pléiades-1B 2012 4 2 0.5 12 1

SkySat-1 2013 4 2 0.9 10 1

SkySat-2 2014 4 2 0.9 10 1

WorldView-3 2014 28f 1.24 0.31 11 1–4.5

Gaofen-2 2014 4 3.2 0.8 14 5

KOMPSAT-3A 2015 5g 2.2 0.55 14 1

TripleSat 2015 4 3.2 0.8 10 1

WorldView-4 2016 4 1.24 0.31 11 1–4.5

Cartosat-2C 2016 4 2 0.65 11 7

GaoJing-1 01/02 2016 4 2 0.5 11 4

Cartosat-2D 2017 4 2 0.65 11 7

Note: a All sensors except the ones with a superscript have four standard spectral bands (blue, green, red and near-infrared); b at nadir; c retired in 2015; d orbit altitude
was raised in 2013; e eight spectral bands (coastal, blue, green, yellow, red, red edge, near-infrared 1 and near-infrared 2); f the same eight spectral bands as WorldView-
2 at 1.24 m, eight shortwave bands at 3.7 m and 12 CAVIS bands at 30 m for improved atmospheric corrections for clouds, aerosols, vapors, ice and snow; g four
standard spectral bands at 2.2 m and one mid-wave infrared at 5.5 m.
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2.1.4 GeoEye-1

On September 6, 2008, GeoEye launched GeoEye-1, the
first of its second-generation high resolution satellites after
IKONOS. This satellite offers unprecedented spatial
resolution by simultaneously acquiring 0.41-m panchro-
matic and 1.65-m four-band multispectral (i.e., blue, green,
red and NIR) imagery with a revisit time of less than 3
days. The spectral ranges are similar to those of IKONOS.
The pixel dynamic range is also 11 bits. The image swath is
increased to 15.2 km. During late summer of 2013, the
orbit altitude of the GeoEye-1 satellite sensor was raised
from 680 to 770 km. As a result, the nadir spatial
resolutions of GeoEye-1 were changed to 0.46 m for
panchromatic data and 1.84 m for multispectral data.
GeoEye became part of DigitalGlobe in January 2013.

2.1.5 WorldView-2, -3, and -4

WorldView-2, launched into space on October 8, 2009,
was the most technologically-advanced high resolution
satellite ever launched before its twin, WorldView-3,
reached orbit. WorldView-2 collects 0.46-m panchromatic
data in 450–800 nm and 1.85-m multispectral imagery in
eight visible to NIR (VNIR) spectral bands: coastal (400–
450 nm), blue (450–510 nm), green (510–580 nm), yellow
(585–625 nm), red (630–690 nm), red edge (705–745 nm),
NIR 1 (770–895 nm) and NIR 2 (860–1040 nm). Its unique
combination of high spatial and spectral resolution
provides new opportunities and potential for a variety of
practical remote sensing applications. WorldView-2
images are distributed at either 0.5- or 0.6-m resolution
for the panchromatic band and at either 2- or 2.4-m
resolution for the multispectral bands, depending on the
viewing angle of the sensor. The image swath at nadir is
16.4 km and the average revisit time is 1.1 days.
WorldView-3, launched on August 13, 2014, is the more

sophisticated twin of DigitalGlobe’s WorldView-2. World-
View-3 collects panchromatic data at 0.31 m, the same
eight VNIR spectral bands as WorldView-2 at 1.24 m,
eight SWIR bands (1195–2365 nm) at 3.7 m and 12 CAVIS
bands (405–2245 nm) at 30 m for improved atmospheric
corrections for clouds, aerosols, vapors, ice and snow
(CAVIS) with an average revisit time of less than one day.
Due to US government regulations, SWIR data are
currently only provided at 7.5-m resolution. Not only is
WorldView-3 the highest resolution satellite ever launched,
it features one panchromatic band and 28 multispectral
bands of remotely sensed data. The high resolution
panchromatic and multispectral bands, which have the
same spectral ranges as those of WorldView-2, are ideal for
visual analysis and plant health assessments. The eight
SWIR bands are ideal for mineral and hydrocarbon
exploration and 12 CAVIS bands are ideal for improved
atmospheric corrections for clouds, aerosols, vapors, ice

and snow (CAVIS).
WorldView-4, previously known as GeoEye-2, was

launched on November 11, 2016. WorldView-4 provides
0.31-m panchromatic and 1.24-m four-band multispectral
imagery with a revisit time of less than one day. As the
satellite started its life as GeoEye-2 and was later renamed,
WorldView-4 has the same spectral bands as GeoEye-1
and similar spatial resolutions as WorldView-3. World-
View-3 and 4 currently offer the highest resolution satellite
imagery with unmatched spectral bands and collection
times.

2.1.6 Pléiades-1A and -1B

Pléiades-1A and -1B are operated by Airbus Defense and
Space in Toulouse, France. Pléiades-1A was launched on
December 16, 2011. Joined by its twin, Pléiades-1B, in
space on December 2, 2012, they provide 0.5-m panchro-
matic and 2-m four-band multispectral (i.e., blue, green,
red and NIR) products with daily revisit time and 20-km
footprints. It should be noted that the native resolution of
Pléiades-1A and -1B is 0.7-m panchromatic and 2.8-m
multispectral before it is processed for delivery.

2.1.7 SkySat-1 and -2

SkySat-1 and -2 are the first two microsatellites built by
Google’s Terra Bella (formerly called Skybox Imaging) in
Mountain View, CA, USA to collect high resolution
panchromatic and multispectral images of Earth. The
satellites operate in a polar inclined, circular orbit at
approximately 450 km above Earth. SkySat-1 was
launched on November 21, 2013, while SkySat-2 was
launched on July 8, 2014. The optical imagery of each
satellite covers a panchromatic band (450–900 nm) at
0.9 m and four multispectral channels (blue 450–515 nm,
green 515–595 nm, red 605–695 nm and NIR 740–
900 nm) at a resolution of 2 m at nadir. A ground swath of
8 km is covered at nadir. Stereo imaging is supported by
the satellites. The sensor can also capture high-definition
video in its panchromatic channel.
Terra Bella ultimately plans a 24-satellite constellation

occupying four different polar-orbit planes that will
provide high resolution imagery and full-motion video
for commercial sale. SkySat-3, the third satellite of Terra
Bella, was launched on June 22, 2016, and SkySat-4, -5, -6
and -7 were launched on September 16, 2016. More will be
launched in the coming years. The company’s goal is to be
able to provide high resolution satellite imagery of any
place on Earth multiple times a day. On February 3, 2017,
Google announced that it would sell Terra Bella and its
SkySat satellite constellation to Planet Laboratories, Inc.
(San Francisco, CA, USA) and enter into a multi-year
agreement to purchase SkySat imaging data.
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2.1.8 Gaofen-2

The Gaofen-2 satellite, designed and developed by the
China Academy of Space Technology in Beijing, China,
was launched on August 19, 2014. It is capable of
collecting images with a ground sampling distance of
0.8 m in a panchromatic band and 3.2 m in four
multispectral bands (i.e., blue, green, red and NIR) on a
swath of 45 km. It has a revisit time of five days. Gaofen-2
is one of the seven satellites in the China High-Resolution
Earth Observation System constellation to be completed by
2020. So far, four Gaofen satellites have been launched
with Gaofen-2 providing the highest resolution panchro-
matic and multispectral imagery. Gaofen-1 offers 2-m
panchromatic and 8- and 16-m multispectral data, while
Gaofen-3 provides multi-polarized C-band synthetic
aperture radar data at meter-level resolution and Gaofen-4
covers a large imaging area with coarse spatial resolution
and high temporal resolution.

2.1.9 TripleSat

The TripleSat constellation, built by Surrey Satellite
Technology Ltd., Guildford, UK, was launched on July
10, 2015. TripleSat consists of three identical satellites in
the same orbital plane exactly 120° apart, making it
possible to target anywhere on earth once per day. The
TripleSat constellation delivers 0.8-m visible panchromatic
(450–650 nm) and 3.2-m four-band multispectral images
with a 24-km swath.

2.1.10 Cartosat-2C and -2D

Following the successful launch of Cartosat-2, -2A and
-2B to provide panchromatic data, the Indian Space
Research Organization launched Cartosat-2C and -2D on
June 22, 2016 and February 15, 2017, respectively. The
two satellites carry identical sensors to provide 0.65-m
panchromatic data and 2-m multispectral data in the four
standard spectral bands. Cartosat-2E carrying the sane
sensors is planned to be launched in 2017.

2.1.11 GaoJing-1 01/02

GaoJing-1, also known as SuperView-1, is a constellation
of Chinese civilian remote sensing satellites operated by
Beijing Space View Tech Co. Ltd. The first pair of
satellites was launched on December 28, 2016. These
satellites are spaced at 180° on the same orbit to provide
images with 0.5-m panchromatic resolution and 2-m
multispectral resolution in the four standard spectral
bands. A second pair of this type was launched in early
2018, bringing the constellation to four satellites phased
90° from each other on the same orbit.

2.2 Sensors with spatial resolutions of 5–10 m

Table 2 summarizes most of the high resolution satellite
sensors with spatial resolutions of 5–10 m in multispectral
bands. The three SPOT sensors also contain a panchro-
matic band.

2.2.1 SPOT 5, 6, and 7

In addition to Pléiades-1A and -1B, SPOT 5, 6, and 7 are
operated by Airbus Defense and Space. SPOT 5 was
placed into orbit on May 4, 2002 and decommissioned on
March 31, 2015. It offered panchromatic data at 2.5–5 m
and multispectral data at 10 m for the green, red and NIR
bands and 20 m for the SWIR band (1.58–1.75 µm). SPOT
5 covered 60 km � 60 km or 60 km � 120 km in twin-
instrument mode and provided an ideal balance between
high resolution and wide-area coverage.
SPOT 6 was launched on September 9, 2012, while

SPOT 7 was launched on June 30, 2014. SPOT 6 and 7 are
capable of imaging the earth with a resolution of 1.5 m in a
panchromatic band and a resolution of 6 m in four
multispectral bands (i.e., blue, green, red and NIR). The
imaging swath of the SPOT twins is 60 km at nadir. SPOT
6 and 7 are phased in the same orbit as Pléiades-1A and
-1B at an altitude of 694 km, forming a constellation of
two-by-two satellites, 90° apart from one another. They
form a constellation of earth-imaging satellites designed to

Table 2 High resolution satellite sensors with spatial resolutions of 5–10 m in multispectral bands

Sensor name Year launched Number of multispectral bandsa Multispectral pixel sizeb/m
Panchromatic
pixel sizeb/m

Radiometric
resolution/bit

Revisit time/d

SPOT 5 2002c 4d 10 2.5 8 2–3

RapidEye 2008 5e 6.5 N/A 12 1–5.5

SPOT 6 2012 4 6 1.5 12 1

SPOT 7 2014 4 6 1.5 12 1

Sentinel-2A 2015 13f 10 N/A 12 5

Sentinel-2B 2017 13f 10 N/A 12 5

Note: a All sensors except the ones with a superscript have four standard spectral bands (blue, green, red and near-infrared); b at nadir; c retired in 2015; d three standard
spectral bands (green, red and near-infrared) at 10 m and one shortwave infrared band at 20 m; e four standard spectral bands and one red edge band; f four standard
spectral bands at 10 m, six bands at 20 m and three bands at 60 m.
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provide continuity of high resolution, wide swath data up
to 2024. SPOT 6 and 7 cover wider areas with 1.5-m
resolution, while Pléiades-1A and -1B are focused on more
targeted zones with a greater level of detail (0.5 m).

2.2.2 RapidEye

RapidEye, launched on August 29, 2008, is the constella-
tion of five satellites currently owned and operated by
Planet Laboratories. Each of RapidEye’s five satellites
contains identical sensors and travel on the same orbital
plane at an altitude of 630 km. The five satellites together
are capable of collecting multispectral imagery in five
spectral bands: blue (440–510 nm), green (520–590 nm),
red (630–690 nm), red edge (690–730 nm) and NIR (760–
880 nm). The nominal resolution on the ground is 6.5 m,
but the imagery is resampled to 5 m. The swath width is
77 km and revisit time is from daily off-nadir to 5.5 days at
nadir. RapidEye’s satellites are the first commercial
satellites to include the red edge band, which is sensitive
to changes in chlorophyll content.

2.2.3 Sentinel-2A and -2B

The Sentinel-2 mission comprises two polar-orbiting
satellites in the same orbit, phased at 180° to each other.
The twin satellites, Sentinel-2A and -2B, were launched on
June 23, 2015 and March 7, 2017, respectively. They are
the first two optical Earth observation satellites in the
European Copernicus program that were developed and
built under the industrial leadership of Airbus Defense and
Space for the European Space Agency. Sentinel-2A and
-2B each offer 13 spectral bands in the 443–2190 nm range
with four standard bands (i.e., blue, green, red and NIR) at
a spatial resolution of 10 m, four red edge bands and two
SWIR bands at 20 m, and three atmospheric correction
bands at 60 m. The orbital swath width is 290 km. Revisit
time is 5 days at the equator and 2–3 days at mid-latitudes
with the twin satellites.

2.2.4 Other satellite sensors

Several other Chinese satellite sensors provide 10-m
multispectral imagery. TH-01, launched on August 24,
2010, collects 5-m triplet stereo images, 2-m panchromatic
images and 10-m multispectral (i.e., blue, green, red and
NIR) images. Launched on December 22, 2011, ZY-1 02C
is equipped with a 5-m panchromatic and 10-m multi-
spectral (i.e., green, red and NIR) scanner and a 2.36-m
high resolution panchromatic scanner. SJ-9A, launched on
October 14, 2012, is equipped with a 2.5-m panchromatic
and 10-m multispectral scanner (i.e., blue, green, red and
NIR). China-Brazil Earth Resources Satellite 4, launched
on December 7, 2014, provides 5-m panchromatic and
10-m multispectral data and other coarser resolution image

data.
ALOS (Advanced Land Observing Satellite) was

launched by Japan Aerospace Exploration Agency on
January 24, 2006. It is also known as Daichi, the Japanese
name for Earth. ALOS was decommissioned on May 12,
2011. It provided 2.5-m panchromatic data and 10-m
multispectral data in the four standard bands. Following
the launch of Resourcesat-1 and -2 by the Indian Space
Research Organization on October 17, 2003 and April 20,
2011, respectively, Resourcesat-2A was launched on
December 7, 2016. All three satellites provide 5.8-m
multispectral data in green, red and NIR bands.
The above satellite imaging sensors constitute most of

the current arena of high resolution satellite remote
sensing. More and more satellite imaging sensors will be
launched in the coming years. This is a very dynamic area
that changes all the time. Imagery from most of the satellite
sensors listed in Tables 1–2 can be ordered from various
online sources. A tasking order can be made by defining a
custom polygon on Earth to be imaged by the next
available high resolution satellite. The area of interest
(AOI) can be specified by WGS-84 latitude/longitude or
UTM grid coordinates with zone number. The customer
can upload the AOI in one of several file formats (txt, pdf,
kmz/kml or ESRI shapefile). Some websites allow the
drawing of the AOI online. The time to collect the AOI is
controlled by local weather conditions and competition
from surrounding tasking orders. An archive order can also
be made from a historic database of high resolution
satellite images with specific dates.

3 Applications of high resolution satellite
sensors in precision agriculture

IKONOS and QuickBird were the first high resolution
satellite sensors that have been evaluated for diverse
precision agricultural applications. Johnson et al.[31]

evaluated IKONOS multispectral imagery for mapping
leaf area index for vineyard canopy management.
Dobermann and Ping[32] integrated IKONOS imagery
with yield monitor data for improving the accuracy of yield
maps. Sullivan et al.[33] used IKONOS imagery to estimate
surface soil property variability in two physiographic
regions of Alabama. Ping et al.[34] created soil organic
matter maps using regression kriging that incorporated
elevation, surface electrical conductivity and bare soil
reflectance derived from IKONOS satellite images.
Yang et al.[35] compared QuickBird imagery and

airborne imagery for mapping grain sorghum yield
patterns. Yang et al. evaluated QuickBird imagery for
mapping cotton yield[36] and for crop type identifica-
tion[37]. Franke and Menz[38] evaluated QuickBird imagery
for multi-temporal wheat disease detection. Shou et al.[39]

found that reflectance values from the individual visible
spectral bands in QuickBird satellite images were highly
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correlated with winter wheat total N concentration and
aboveground biomass. Bausch et al.[40] determined
correlations between QuickBird satellite data and agro-
nomic parameters of irrigated maize grown in small plots.
Song et al.[41] delineated agricultural management zones
with high resolution QuickBird imagery. Bausch and
Khosla[42] compared QuickBird images with ground-based
multispectral data for estimating nitrogen status of irrigated
maize. Santoso et al.[43] used QuickBird images to map and
identify basal stem rot disease in oil palms. De Castro
et al.[44] evaluated QuickBird images for broad-scale
cruciferous weed patch classification in winter wheat for
in-season site-specific control.
SPOT-5 imagery with a coarser spatial resolution was

available shortly after QuickBird was launched. Yang et al.
evaluated SPOT 5 images for estimating crop yield[45] and
for crop type identification[46]. Söderström et al.[47]

predicted protein content in malting barley using proximal
sensing and SPOT 5 images. Ghobadifar et al.[48]

developed an early warning system for brown planthopper
(Nilaparvata lugens) in rice farming using SPOT 5 images.
The 10-m SPOT 5 sensor was decommissioned in 2015,
but the 6-m SPOT 6 and 7 sensors continue to provide
images. Yuan et al.[49] used SPOT 6 high resolution
satellite images for mapping powdery mildew at a regional
scale.
Other satellite sensors have also been used for various

precision agriculture applications. Wagner and Hank[50]

evaluated the suitability of aerial and RapidEye satellite
data for calculation of site-specific nitrogen fertilization
compared to ground-based sensor data. Magney et al.[51]

mapped wheat nitrogen uptake from vegetation indices
derived from RapidEye imagery. Bu et al.[52] compared
RapidEye satellite imagery and ground-based active
optical sensors as yield predictors in sugar beet, spring
wheat, corn, and sunflower. Gomez-Candon et al.[53]

assessed the errors in input prescription maps based on
high spatial resolution GeoEye-1 images. Caturegli
et al.[54] compared GeoEye-1 satellite and ground-based
multispectral data for estimating nitrogen status of
turfgrasses. Li et al.[55] studied the feasibility of Huan-
glongbing (citrus greening) detection based on World-
View-2 satellite images.

3.1 Example 1: SPOT 5 imagery for crop type identification

To illustrate how high resolution satellite images can be
used for crop type identification, the work conducted by
Yang et al.[46] is used as an example. A SPOT 5
multispectral image scene covering a 60 km � 60 km
area in the Rio Grande Valley of south Texas was acquired
on May 19, 2006. The imaging date was selected based on
the crop calendar and the satellite availability for the area.
The spatial resolution was 10 m for the green, red and NIR
bands and 20 m for the SWIR band, which was resampled
to 10-m pixel size prior to delivery.
Two intensively-cropped areas covering a variety of

crops with different growth stages were selected within the
satellite image as the study sites. For this article, the results
from the study site near Alamo, TX, USA are presented.
The site covered an 11.2 km � 8.5 km area with center
coordinates of (98°03′26″ W, 26°06′34″ N). Five super-
vised classification techniques, including minimum dis-
tance, Mahalanobis distance, maximum likelihood,
spectral angle mapper (SAM) and support vector machine
(SVM), were used.
Figure 1 shows the color-infrared (CIR) composite

image and a five-class classification map from the four-
band image based on maximum likelihood for the study
site. The CIR composite reveals distinct differences
between the crops and other cover types in the study
area. On the CIR images, crops and other vegetation

Fig. 1 SPOT 5 satellite color-infrared image (a) and five-class classification map (b) generated from the four-band SPOT 5 image based
on maximum likelihood classification for an intensively-cropped area near Alamo, TX, USA
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generally have a reddish color, bare soil has a grayish and
cyanish tone, and water has a dark or bluish color. At the
time the image was acquired, corn was at milk to dough
growth stages and grain sorghum was at boot to half-bloom
stages. Cotton had reached the bloom stage and sugarcane
was progressing through mid-season vegetative growth.
All normal planted fields had reached 80%–100% canopy
cover, though late planted fields for each crop had smaller
plants and large soil exposure.
Visual comparison of the classification map and the CIR

image indicates that the classification map provided good
separations between the crop and non-crop classes. Most
of the fields on the classification map had only one
dominant class, but all fields contained small inclusions of
other classes due to the within-field variability and the
spectral similarities among some of the classes. Accuracy
assessment showed that overall accuracy ranged from
72.2% for SAM to 91.0% for maximum likelihood for the
site, indicating that 72%–91% of the pixels were correctly
identified in the classification map using the five
classification methods. Overall kappa varied from 0.622
to 0.875 among the five classifiers, indicating that the
classification results agreed well with the reference data
with one being a perfect agreement.
Kappa analysis showed that maximum likelihood and

SVM were significantly better than the other three
classifiers, but there was no significant difference between
the two classifiers. Mahalanobis distance was significantly
better than minimum distance and SAM, but there was no
statistical difference between the two classifiers. As overall
accuracy indicates the overall performance of a whole
classification map, producer’s accuracy and user’s accu-
racy are more meaningful for the individual classes. The
producer’s and user’s accuracies ranged from 71% to 98%
among the five classes for the maximum likelihood-based
classification map.
To simulate coarser resolution satellite imagery and

examine the effect of pixel size on classification results, the
10-m image was aggregated to generate two degraded
images with pixel sizes of 20 and 30 m. The increase in
pixel size from 10 to 20 or 30 m did not significantly affect
the classification accuracy for the five classifiers. However,
the inclusion of the SWIR band significantly improved the
classification accuracy compared with the use of the three
VNIR bands only. For the maximum classification, the
overall accuracy values without the SWIR band were
82.0%, 84.0% and 84.4% for the 10-, 20- and 30-m
images, respectively, compared with the overall accuracy
values of 91.0%, 90.6% and 89.6% for the respective
images with the SWIR bands. Sharma et al.[56] found that
the inclusion of the mid-infrared bands (bands 5 and 7) in
Landsat TM data led to improvement in crop classification.
This study was one of the first evaluations of SPOT 5

satellite imagery for crop identification. Considering the
image cost and weather constraints, it is more effective to
use single-date SPOT 5 images for crop identification if the

majority of the crops can be covered on a single-date image
in a region; otherwise multi-date images may be necessary.
The approaches and methods presented in this study can be
useful for different crops in other regions. More research is
needed to evaluate this type of imagery and compare it
with other types of remote sensing data for crop
identification and other applications.

3.2 Example 2: QuickBird imagery for crop yield estima-
tion

Yang et al.[35,36] compared QuickBird satellite imagery
with airborne multispectral imagery for mapping plant
growth and yield patterns within grain sorghum and cotton
fields. Yang et al.[45] also evaluated SPOT 5 satellite
imagery to estimate crop yield. In this example, the work
on the comparison of QuickBird and airborne imagery for
mapping grain sorghum yield is presented. A QuickBird
image scene covering a cropping area in south Texas was
acquired in the 2003 growing season. The spatial
resolution of the image was 2.8 m and the radiometric
resolution was 11 bits. Airborne CIR images were
collected using a three-camera imaging system. The
airborne system consisted of three digital charge coupled
device cameras that were equipped with a green
(555–565 nm) filter, a red (625–635 nm) filter and a NIR
(845–857 nm) filter, respectively. The three bands were
combined to produce 8-bit CIR images with 1280 � 1024
pixel resolution. Grain yield data were collected using a
PF3000 yield monitor (Ag Leader Technology, Ames, IA,
USA).
Figure 2 shows the QuickBird CIR composite image and

the airborne CIR image for a 20-hm2 field in the imaging
area. The pixel size for the airborne image was 0.92 m,
about a third of the QuickBird pixel size. Both the
QuickBird and airborne images revealed distinct plant
growth patterns within the field. The QuickBird image was
taken at the bloom stage of the plant development (May
15), shortly after the peak growth for grain sorghum. The
airborne image was taken 15 days later when the plants
were primarily at the soft-dough stage. Despite the
difference in plant growth stages and pixel size (2.8 vs.
0.92 m), both images look fairly similar.
Correlation analysis between yield and vegetation

indices (band ratios and normalized differences) at
different pixel sizes showed that the band ratio NIR/
green provided best r-values for both types of imagery and
that r-values tended to increase with pixel size. For the
airborne imagery, the best r-values was 0.78 at the original
pixel size (0.92 m), 0.81 at 2.8 m (QuickBird pixel size),
and 0.85 at 8.4 m (close to harvest swath). For the
QuickBird image, the best r-values was 0.83 at 2.8 m and
0.88 at 8.4 m. Figure 3 shows the scatter plots and linear
regression lines between grain sorghum yield and the band
ratio NIR/green derived from the QuickBird image and the
airborne image. Grain yield was significantly positively
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related to the band ratio.
Based on stepwise regression analysis at the 8.4-m

resolution, the airborne image explained 77% of the
variability in yield with all three bands, while the
QuickBird image explained 80% of the variability with
the green, red and NIR bands and 81% of the variability
with all four bands. Although the QuickBird image had
slightly higher R2 values than the airborne image, both
types of imagery accounted for essentially the same
amount of yield variability, indicating that the QuickBird
imagery is as effective as the airborne imagery for yield
estimation.

3.3 Example 3: GeoEye-1 imagery for crop disease
detection

To illustrate how high resolution satellite imagery can be
used for site-specific crop management, the work on cotton
root rot is used as an example. Cotton root rot, caused by

the soilborne fungus Phymatotrichopsis omnivora, is a
destructive disease that has affected the cotton industry for
over a century. Not until 2015 was the commercial
Topguard Terra fungicide registered to control the disease.
Historical airborne images taken from infected cotton
fields have demonstrated that cotton root rot tends to occur
in the same general areas within fields over recurring
years[21]. The spatial nature of cotton root rot, its highly
visible damage, and its annual reoccurrence in the same
areas make it an excellent candidate for site-specific
management. The infestation patterns within fields can
generally be predicted based on historical remote sensing
imagery.
Yang et al.[57] demonstrated how site-specific fungicide

application could be implemented based on historical
airborne and satellite images and variable rate technology
for site-specific management of cotton root rot. Figure 4
shows a GeoEye-1 CIR image acquired on July 27, 2009
for a 98-hm2 cotton field infested with cotton root rot, a

Fig. 2 QuickBird satellite color-infrared image (May 15, 2003) (a) and airborne color-infrared image (May 30, 2003) (b) for a 20-hm2

grain sorghum field in south Texas, USA in 2003

Fig. 3 Scatter plots and linear regression lines between grain sorghum yield and band ratio (NIR/green) derived from QuickBird satellite
image (a) and airborne image (b) for a 20-hm2 grain sorghum field in south Texas, USA in 2003
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corresponding two-zone image classification map and a
two-zone prescription map. On the CIR image, infested
areas are dark green, while the non-infested areas are red.
A field boundary or AOI was defined for the field and a
normalized difference vegetation index image was created
within the AOI. This vegetation index image was then
classified into infested and non-infested zones using
unsupervised classification.
Approximately 8% of the field was infested based on the

classification map. To accommodate the potential expan-
sion and temporal variation of the disease, buffer zones
around the infested areas should be added as part of the
treatment areas. With a 5-m buffer added to the infested
areas, about 23% of the field (green areas) needs to be
treated. The prescription map can be loaded into a variable
rate control system mounted on a tractor for site-specific
application of Topguard Terra fungicide. Considering that
the cost of the fungicide is about 124 USD$hm–2 at full
application rate and, if only 23% of the field is treated, the
savings from reduced fungicide use would be 77% or about
9357 USD (124 USD$hm–2 � 98 hm2 � 77%) per year.
Therefore, site-specific management of this disease holds
significant promise to increase efficiency and reduce cost.

4 Challenges and future directions

Remote sensing applications in precision agriculture have
been steadily increasing in the last two decades due to
improvements in spatial, spectral and temporal resolutions
of airborne and satellite remote sensors. More recently,
unmanned aircraft systems (UAS) have become a popular
remote sensing platform to fill the gap between manned
and ground-based platforms due to their low cost, low-
flying altitude for high spatial resolution imagery, and ease
of operation. Although tremendous progress has been
made in the development of high resolution satellite
sensors since 1999, some challenges remain for the
selection and processing of high resolution satellite
imagery for precision agriculture applications. Growers
are generally aware of the availability of satellite imagery

in addition to airborne imagery, but most of them do not
keep up with the various types of satellite sensors in this
fast-changing market. They are not clear which type of
imagery to select and how to order new or archived images
for their particular applications. Therefore, image provi-
ders and vendors need to develop better instructions for
growers and customers to enable them to select and order
image products.
Another challenge is timely acquisition and delivery of

task-ordered images. Although many satellite sensors have
a revisit time of 1–5 days, the actual image acquisition time
can vary greatly, depending on the local weather condi-
tions and the competition with other customers in the
similar geographic area. As more satellite sensors become
available, customers are able to order from more than one
satellite sensor owned by a company. This will increase the
chances of obtaining timely images. Meanwhile, numerous
companies are providing airborne imaging services, which
have the advantage of taking higher resolution imagery
anytime weather permits. However, unlike satellite
imagery that is typically available anywhere on the earth,
airborne imagery can only be acquired in areas where
airborne imaging services are provided. Although UAS-
based remote sensing is growing quickly for precision
agriculture, their relative small ground coverage and safety
concerns may restrict their use for some applications.
Other challenges are related to the processing and

conversion of images into useful maps or information.
Although numerous publications on image processing are
available in the literature, there are currently no standar-
dized procedures and software available for converting
images to classification maps, vegetation index maps, and
prescription maps especially for precision agriculture.
Software used for image processing and analysis comes in
different capabilities, complexities, and prices, and
growers may have difficulty selecting appropriate software
for image processing. Furthermore, delivered images are
usually georeferenced, but their positional accuracy varies.
For most applications, the delivered images can be directly
used for processing and analysis. For applications that
require time series image data, however, radiometric

Fig. 4 GeoEye-1 satellite image (a), corresponding two-zone classification map (b), and prescription map (c) with a 5-m buffer for a
98-hm2 cotton field infested with cotton root rot near Edroy, TX, USA
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calibration is important, but standard, accepted procedures
for retrieving reflectance and temperature data from
various types of images are still lacking.
Therefore, it is necessary for researchers and extension

specialists to develop practical guides for growers and
other end-users so that they will be able to use available
techniques and software to convert imagery to proper maps
for precision agriculture applications. Users experienced
with GIS and image processing should be able to use
appropriate software to perform image analysis with the
help of software documentation and tutorials. Users new to
GIS and image analysis, but with good computer skills and
experiences, may be able to learn to use the software to
perform basic image analysis. After all, image processing
is a specialized field and requires more advanced computer
skills and a basic understanding of the techniques
involved. If this is not practical for some growers, they
can always use a commercial image processing service to
process their images and create relevant maps. Some
agricultural dealerships are providing precision agriculture
services for image acquisition, prescription map creation
and variable rate application.
Although all types of remote sensing platforms and

imaging systems are available, various factors have to be
considered in order to decide which is most appropriate for
a particular application, including the size of the area to be
mapped, complexity of associated crop types, and time and
cost constraints. Airborne imaging systems offer some
advantages, including the immediate availability for real-
time assessment and the flexibility to change filters for
desired wavelengths and bandwidths. High resolution
satellite systems can cover large areas with relatively fine
spatial resolution. Satellite imagery can be cost-effective
for large geographic areas, but it may not be available
when it is needed for time-sensitive applications due to
weather conditions, satellite orbits, competition for images
at the same time with other customers. UAS have the
potential as a versatile remote sensing platform, but there
are still many restrictions on the use of UAS for
commercial applications. Imagery acquired from different
platforms (i.e., ground-based, UAS, manned aircraft and
satellites) should also be evaluated for their suitability and
effectiveness for different precision agriculture applica-
tions.
Multispectral imagery with four standard spectral bands

(i.e., blue, green, red and NIR) is sufficient for most
precision agriculture applications, but additional bands in
red edge, SWIR, thermal wavelengths may be useful for
monitoring vegetation health, water stress and canopy
temperature. Hyperspectral imaging sensors can be used to
detect or distinguish spectrally similar plant species or
symptoms. Other sensor technologies such as fluorescence
and lidar need to be further investigated. As a cost-
effective alternative, imaging systems based on consumer-
grade cameras have a great potential, but more accurate
camera modification methods are needed to improve the

spectral fidelity of the modified bands.
Many precision agriculture activities have already

benefited from applications of remote sensing technology.
As growers gain more experience and confidence in this
technology, they will incorporate it in their crop production
practices. Precision agriculture involves the integration of
data acquisition, data analysis, decision making and
variable rate application. Remote sensing is just an integral
part of the process. Future efforts should be focused on the
development of education and technology sharing net-
works among image providers, researchers, extension
specialists, agricultural dealerships and growers by
including all clients in the process. With the advances in
imaging sensor technology, remote sensing imagery will
be available at higher resolution, shorter revisit time, and
lower prices than ever before. This will present growers
with great opportunities to integrate this information into
their production systems for increased efficiency and
profitability.
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