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Abstract Dividing fields into a few relatively homo-
geneous management zones (MZs) is a practical and cost-
effective approach to precision agriculture. There are three
basic approaches to MZ delineation using soil and/or
landscape properties, yield information, and both sources
of information. The objective of this study is to propose an
integrated approach to delineating site-specific MZ using
relative elevation, organic matter, slope, electrical con-
ductivity, yield spatial trend map, and yield temporal
stability map (ROSE-YSTTS) and evaluate it against two
other approaches using only soil and landscape informa-
tion (ROSE) or clustering multiple year yield maps
(CMYYM). The study was carried out on two no-till
corn-soybean rotation fields in eastern Illinois, USA. Two
years of nitrogen (N) rate experiments were conducted in
Field B to evaluate the delineated MZs for site-specific N
management. It was found that in general the ROSE
approach was least effective in accounting for crop yield
variability (8.0%–9.8%), while the CMYYM approach
was least effective in accounting for soil and landscape
(8.9%–38.1%), and soil nutrient and pH variability (9.4%–
14.5%). The integrated ROSE-YSTTS approach was
reasonably effective in accounting for the three sources
of variability (38.6%–48.9%, 16.1%–17.3% and 13.2%–
18.7% for soil and landscape, nutrient and pH, and yield
variability, respectively), being either the best or second
best approach. It was also found that the ROSE-YSTTS
approach was effective in defining zones with high,
medium and low economically optimum N rates. It is
concluded that the integrated ROSE-YSTTS approach
combining soil, landscape and yield spatial-temporal
variability information can overcome the weaknesses of
approaches using only soil, landscape or yield information,
and is more robust for MZ delineation. It also has the
potential for site-specific N management for improved
economic returns. More studies are needed to further
evaluate their appropriateness for precision N and crop

management.
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1 Introduction

World agriculture is facing a great challenge to ensure food
security for a population to exceed 9 billion using
shrinking crop land and limited resources while protecting
the environment[1–3]. Precision agriculture is a promising
approach for food security and sustainable develop-
ment[4–6]. However, the adoption of precision agriculture
has been slower than initially expected, due to significant
socioeconomic, agronomic and technological chal-
lenges[7]. A practical approach that may promote the
adoption of precision agriculture is to divide the field into
several management zones (MZs). These are subregions of
a field that have unique yet relatively homogeneous soil or
landscape conditions, and a combination of yield limiting
factors that can be managed uniformly with a single rate of
crop input or single set of management practices[8,9]. After
the MZs are successfully defined, they can be used for zone
sampling to save cost and time, and managed for fertility
(e.g., fertilizer), soil (e.g., tillage), water (e.g., irrigation)
and crop (e.g., planting density) factors[10–12]. MZs may
also facilitate the application of crop growth modeling in
precision farming[13–15].
Three basic approaches have been developed for site-

specific MZ delineation. The first is based on soil and/or
landscape information, including soil survey maps[16],
invasive soil sampling[17,18], noninvasive soil sampling
using electrical conductivity (EC)[19], soil organic matter
(OM) or organic carbon estimated using remote sensing
images[20], landscape properties[16] and both soil and
landscape factors[21–23].

The second approach is based on crop yield maps.
Blackmore[24] proposed an empirical procedure to classify
yield maps into three classes of management map based on
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spatial yield trend map (averaged normalized yield map)
and temporal stability map [coefficient of variation (CV)
map]: high yielding and stable zone, low yielding and
stable zone, and unstable zone. An alternative approach to
analyzing multi-year yield maps is to use pattern recogni-
tion techniques to divide a field into distinctive yield zones,
mainly using (fuzzy) cluster analysis[25,26]. It was
recommended that cluster analysis of relative average
yield over at least five years should be used for yield zone
delineation in irrigated fields[27].
The third approach is an integrated one, utilizing both

soil or landscape and crop yield information. Taylor
et al.[28] used six years of yield maps, soil EC and elevation
data to create MZ. Hornung et al.[29] proposed an
integrated method of site-specific MZ delineation using
multispectral bare soil image, soil OM, soil cation
exchange capacity (CEC), soil texture (sand, silt and clay
content) and previous year crop yield map.
It is hypothesized that the integrated MZ delineation

approach will be more stable and robust in accounting for
soil, landscape and yield variability than approaches using
a single source of information. However, studies that
explicitly evaluate these different MZ delineation
approaches are still limited. Therefore, the objective of
this study is to propose an integrated approach to define
MZs using relative elevation, soil OM, slope, EC, yield
spatial trend map, and yield temporal stability map (ROSE-
YSTTS) and evaluate it against two other approaches to
MZ delineation: using relative elevation, OM, slope and
EC (ROSE), and fuzzy clustering multiple year yield maps
(CMYYM).

2 Materials and methods

2.1 Study site

This study was conducted on two production fields in
Paris, Illinois, USA. Both fields have been in a corn-
soybean rotation for many years and under no-till

management since 1991. Field A is about 32.8 hm2 with
a 4.57 m difference in relative elevation. It is composed of
two principal soil mapping units: Flanagan silt loam (fine,
smectitic, mesic Aquertic Argiudolls) in the west half of
the field, and Drummer silty clay loam (fine-silty, mixed,
mesic Typic Endoaquolls) in the east half. A fence in the
middle of the field (Fig. 1a) previously divided it into east
and west halves and they were managed separately as two
fields. This fence was removed in the 1980s. The east half
of the field was also divided by another fence into south
and north halves and farmed as such until 1980. It was
removed in the 1960s. Field B is 12.5 hm2, and has a
relative elevation difference of 1.97 m. There are three
dominant soils in this field; Drummer silty clay loam,
Brenton silt loam (fine-silty, mixed, mesic, Aquic
Argiudolls), and Raub silt loam (fine-silty, mixed, mesic,
Aquic Argiudolls). Manure from a hog house pit was
applied to this field every other year between 1978 and
1996. This field used to be separated by a fence in the
middle and managed as such until the 1970s. The north-
west corner of the field was part of a pasture area before
1950 (Fig. 1b). Subsurface tile drainage has been installed
in both fields (Fig. 1).

2.2 Data collection and analysis

Grain yield has been measured since 1995 using a combine
equipped with a differential global position systems
(DGPS) receiver and an AgLeader yield monitor (AgLea-
der Technology, Ames, IA, USA). After harvest in the year
2000, one soil sample was per 0.3 hm2 in Field A and per
0.4 hm2 in Field B, and analyzed for soil OM, CEC, soil
test P (Bray-P), K, S, Zn and pH by A & L Great Lakes
Laboratory (Fort Wayne, IN, USA). During soil sampling,
elevation and EC data were collected from these two fields
using high accuracy DGPS and a Geonics EM-38
instrument (Geonics Ltd, Mississauga, ON, Canada). The
data were collected at about 6 m intervals separated by
20 m. The EM 38 instrument was set to the vertical dipole
mode with an effective measurement depth of about 0.9 m.

Fig. 1 Order 1 soil survey maps (1:8000) conducted by the United States Department of Agriculture-Natural Resource Conservation
Service (USDA-NRCS) in Illinois and field history information of Fields A (a) and B (b).
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Soil test data were all interpolated to a 5 m grid using
kriging, inverse distance weighting (IDW) or radial basis
function interpolation methods, depending on the spatial
structures and cross-validation results. The elevation data
were used to create a 5-m digital elevation model using the
TOPOGRID command in Arc/Info workstation (ESRI,
Redlands, CA, USA). Slope was calculated from the model
using the CURVATURE command.
Raw crop yield data were cleaned based on standard

deviation, field position, and flow rate to remove problem
data. Then the data were interpolated to a 5-m grid using
kriging or IDW, depending on spatial structures and cross-
validation results. The yield maps were normalized by
dividing the yield value in each grid cell by the average
yield for the entire field for a given year and multiplying by
100%. In 2000, two hybrids (33G26 and 33Y18) were
planted side-by-side using a split-planter comparison
technique in Field A, so two separate normalized yield
maps were created for that year. The normalization
procedure was performed to eliminate yield variability
due to crop (corn vs. soybean) and hybrid (33Y18 and
33G26) differences. Then the normalized yield maps were
used to produce a yield spatial trend map (average yield
across 6 years) and a yield temporal stability map (CV
map) following Blackmore[24].

2.3 Management zone delineation

The fuzzy cluster analysis algorithm available in Manage-
ment Zone Analyst[30] was used to classify soil, landscape
and/or yield data into two to eight management zones. The
appropriate number of MZ was determined according to
the results of a fuzziness performance index and normal-
ized classification entropy. Subjective judgment was also
used so that the same number of MZs (five and four for
Field A and B, respectively) could be selected for different
approaches to facilitate comparison.
Based on some previous analyses[31], three approaches

to MZ delineation were evaluated. Approach one used
ROSE. Approach two used six normalized yield maps; this
method involved CMYYM. Approach three was an
integrated one termed ROSE-YSTTS. A combination of
three grid generalization techniques (majority filtering,
noise removal and edge smoothing) was used to smooth
the created MZs.
Relative variance (RV) was used in this study to evaluate

the accuracy of different approaches for delineating
management zones, and RV is given by:

RV ¼ 1 – S2w=S
2
T (1)

where S 2
w is the total within-zone variance of soil and

landscape properties, soil nutrients, or crop yield. S 2
T is

total field variance of the corresponding property.
RV reflects the amount of variability explained by the

MZ delineation, and can be interpreted similar to the R2

value of regression[27], i.e., the higher the RV value, the
greater the amount of variability that is explained by the
MZ delineation. The approach that accounts for the most
soil, landscape or yield variability is the best approach.

2.4 Management zone evaluation for site-specific nitrogen
management

On-farm N experiments were conducted in 2001 and 2003
in Field B. Four replications of five side-dressed N rate
treatments (as anhydrous NH3) were established in early
June in a split-plot design. The main plot consisted of five
N rates: 0, 112, 168, 224 and 337 kg$hm–2 N. Each N rate
was randomly assigned to 18.24-m wide strips running
across the length of the whole field. The subplot treatments
were two corn hybrids; Pioneer 33G26 [relative maturity
(RM) 112 d] and 33J24 (RM 112 d). The hybrids were
planted side-by-side using the split-planter comparison
technique (systematic rather than random arrangement).
The planting rates were about 76600 seed per hm2.
Scouting was conducted on a regular basis during the
growing seasons and no major pests were found to be a
serious problem. P and K fertilizers were applied using
variable rate technology to compensate for any P and K
deficiencies in the study fields based on 0.4-hm2 grid point
sampling results and fertilizer application was performed
by local fertilizer dealers.
Before harvest, five transects across all N x hybrid

treatments were superimposed over the experimental site
to determine sampling locations. The average spacing
between transects was about 50 m. At each sampling point,
five consecutive corn ears (8–10 ears for control strips)
were hand collected. A total of 190 samples were collected
(samples were collected only on four transects in the fourth
replication or block due to field dimension limitation) each
year for corn quality determination (data not used for the
MZ analysis). Corn yield was measured using a combine
equipped with a calibrated AgLeader yield monitor
(AgLeader Technology, Ames, IA, USA). Yield data
were cleaned by removing yield points that were near the
start or end of harvest passes, and removing yield values or
grain flow rates that exceeded three standard deviations;
however, yield values exceeding three standard deviations
in check strips (with no N application) were not removed.
The two closest yield points were averaged to represent the
yield at each corn quality sampling location. Corn yield N
response curves at selected within-field locations were
generated using the NLIN procedure in SAS (SAS Inst.,
1998). Four different N response models were evaluated;
linear, linear with plateau, quadratic, and quadratic with
plateau. The criteria for model selection were mainly based
on the smallest residual sum of squares, but the fitted
response curves were also examined to make sure the
selected statistical model was reasonable. The economic-
ally optimum nitrogen rate (EONR) was calculated
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assuming the price of corn and N fertilizer to be
98.33 USD$Mg–1 and 0.46 USD$kg–1 that was representa-
tive for the study period, respectively. These data were
used to evaluate the potential of using the defined MZs for
site-specific N management. More detailed information on
this analysis can be found in a separate publication[32].

3 Results

Figures 2–3 illustrate the final MZs delineated by different
approaches for each field. They took different forms,
demonstrating the need to evaluate the appropriateness of
different approaches.

3.1 Soil and landscape variability

The CV values for different soil and landscape properties,
and RVs of different MZ delineation approaches are given
in Table 1. Relative elevation and slope in both fields were
more variable (CV = 44.0%–56.1%) than CEC, EC and
OM (CV = 10.7%–30.8%). The three approaches to MZ
delineation differed in their ability to account for soil and
landscape variability. On average, the ROSE approach
explained 53.4% of soil and landscape variability in Field

A, followed by the ROSE-YSTTS approach (49.9%). In
Field B, the ROSE-YSTTS approach explained the
greatest soil and landscape variability (38.5%), followed
by the ROSE approach (35.7%). The CMYYM approach
explained the least amount of soil and landscape variability
in both Field A (38.1%) and Field B (8.9%), as expected.

3.2 Soil nutrient and pH variability

Both fields were high in soil test P and K. The field average
soil test P was 35.8 and 48.4 mg$kg–1 in Fields A and B,
respectively, which were above the critical level of
22.5 mg$kg–1[33]. Average soil test K was 148.9 and
171.9 mg$kg–1 in Fields A and B, respectively, which was
close to or above the critical level of 150 mg$kg–1. Average
soil test S was 9.1 and 9.5 mg$kg–1 in Fields A and B,
respectively, which was slightly lower than the critical
level of 11 mg$kg–1. Average soil test Zn was lower in
Field A (1.9 mg$kg–1) than in Field B (3.3 mg$kg–1), and
was less than the critical level of 3.5 mg$kg–1[33]. Soil pH
was similar in both fields (6.3 and 6.0). In Field A, soil test
P was the most variable nutrient (CV = 50.7%), followed
by soil test K (CV = 31.4%). CVs of soil S and Zn were
9.1% and 9.9%, respectively. In Field B, soil Zn was the
most variable nutrient (CV = 39.1%), followed by soil test

Fig. 2 Management zones delineated with different approaches [ROSE (a); CMYYM (b); ROSE-YSTTS (c)] in Field A

Fig. 3 Management zones delineated with different approaches [ROSE (a); CMYYM (b); ROSE-YSTTS (c)] in Field B
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P (CV = 33.4%). Soil pH had the lowest variability in both
fields (CV = 5.4% and 3.0%) (Table 2).
In general, none of the three approaches explained more

than 30% of the variability in soil nutrients (4.4%–26.1%).
For pH, the ROSE-YSTTS and CMYYM approaches
accounted for more variability in Field A (22.3% and
20.2%, respectively) than the ROSE approach (15.8%). In
Field B, the ROSE-YSTTS and ROSE approaches
accounted for more variability (52.3% and 39.0%,
respectively) than the CMYYM approach (14.2%). On
average, the ROSE and ROSE-YSTTS approaches
explained a comparable amount of variability in soil
nutrients and pH in both fields (15.6% and 16.1% in Field
A, 19.7% and 17.3% in Field B, respectively). The
CMYYM approach explained less variability in soil
nutrients and pH than the other two approaches in both
fields, especially in Field B (9.4%), where manure was
applied in the past (Table 2).
It should be noted that in Field A, the CMYYM

approach (17.1%) accounted for more soil test P variability
than the other two approaches (7.9%–8.8%), indicating
that yield was more influenced by soil test P in this field
than in Field B, where the CMYYM approach (4.4%)
accounted for less soil test P variability compared with the
other two approaches (5.8%–10.2%). In contrast, soil test
K may have influenced crop yield more in Field B than in
Field A (Table 2).

3.3 Crop yield variability

Crop yield variability was smaller than soil and landscape
variability in the two study fields, with CVs varying from
4.7% to 15.7% in Field A and from 5.3% to 11.7% in Field
B (Table 3). Averaged across years, the CMYYM approach
accounted for the highest amount of yield variability in
both fields (21.8% and 31.2% for Fields A and B,
respectively), followed by the ROSE-YSTTS approach
(13.2% and 18.7% for Fields A and B, respectively). The
ROSE approach accounted for the lowest yield variability
in both fields. In some years, the ROSE and ROSE-YSTTS
approaches explained similar amounts of yield variability
(Table 3).

3.4 Potential for zone-specific nitrogen management

The average EONRs in each MZ in Field B defined using
the three delineation approaches are shown in Table 4.
Averaged across hybrids and fields, the EONRs were
similar in 2001 (174 kg$hm–2) and 2003 (176 kg$hm–2),
which were close to the farm practice (168 kg$hm–2).
However, EONR varied with different approaches, MZs,
hybrids and years. Averaged across the field, the EONR of
33G26 in 2001 (139.7 kg$hm–2) was about 68 kg$hm–2 less
than that of 33J24, while in 2003, the EONRs of these two
hybrids were similar. Averaged across years and hybrids,

Table 1 Soil and landscape variation from CV and RV as explained by different MZ approaches in Fields A and B (%)

Field Variability MZ approach R-Ele. Slope CEC EC OM Average

A CV 44.0 52.0 23.6 12.6 30.8

RV ROSE 65.2 31.3 62.3 53.7 54.7 53.4

ROSE-YSTTS 64.9 8.4 55.0 52.0 69.1 49.9

CMYYM 42.0 6.5 52.8 31.6 57.8 38.1

B CV 56.1 53.2 19.4 10.7 22.8

RV ROSE 65.7 25.2 20.6 53.5 13.9 35.8

ROSE-YSTTS 65.9 7.8 38.9 32.2 47.9 38.6

CMYYM 5.0 21.7 6.3 3.3 8.2 8.9

Note: R-Ele., relative elevation.

Table 2 Soil nutrients and pH variation from CVand RVas explained by different MZ approaches in Fields A and B (%)

Field Variability MZ approach P K S Zn pH Average

A CV 50.7 31.4 9.1 9.9 5.4

RV ROSE 7.9 16.9 11.2 26.1 15.8 15.6

ROSE-YSTTS 8.8 12.4 16.4 20.7 22.3 16.1

CMYYM 17.1 6.1 11.1 18.1 20.2 14.5

B CV 33.4 15.4 7.8 39.1 3.0

RV ROSE 10.2 7.1 24.5 17.9 39.0 19.7

ROSE-YSTTS 5.8 7.0 13.7 7.5 52.3 17.3

CMYYM 4.4 12.0 15.1 1.5 14.2 9.4
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the general EONR trend for the ROSE and ROSE-YSTTS
approaches followed the same order; MZ1>MZ4>
MZ3>MZ2 (Fig. 4). The difference in average EONR
between the highest and lowest EONR MZs was larger for
the ROSE-YSTTS approach (65 kg$hm–2) compared to the
other two approaches (about 55 and 33 kg$hm–2).
Since the ROSE-YSTTS approach was overall more

consistent in accounting for the variability in soil,
landscape and yield than the other two delineation
approaches, it was selected for further evaluation.
Compared with uniform N management at 168 kg$hm–2,
applying hybrid-, year- and zone-specific N rates deli-
neated using the ROSE-YSTTS approach would increase
the economic return from 1.08 to 98.10 USD$hm–2

(Fig. 5). In general, MZ1 and MZ4 produced more benefits
with hybrid-, year- and MZ-specific N application, while

Table 3 Normalized crop yield variation indicated by CV for different years and RVas explained by different MZ approaches in Fields A and B (%)

Field MZ†
95 97 98 99 00(a)§ 00(b) 01

Average
SB SB C SB C C SB

A CV 15.3 15.7 12.3 11.5 4.7 4.8 7.8

RV 10.3 10.9 12.0 6.0

Y 14.2 17.8 20.0 11.4 10.5 1.8 16.7 13.2

Z 29.7 33.1 24.3 20.2 5.2 16.5 23.7 21.8

Field MZ
95 96 97 98 99 00

Average
C SB C SB C SB

B CV 10.4 11.7 5.3 8.6 7.4 10.2

RV X 23.0 12.3 1.5 9.8 5.6 6.7 9.8

Y 30.0 25.6 18.3 8.1 22.9 7.3 18.7

Z 60.0 44.0 25.6 9.7 36.6 11.0 31.2

Note: †MZ delineation approaches X (ROSE), Y (ROSE-YSTTS), and Z (CMYYM); SB, Soybean; C, Corn; § Two hybrids were planted in 2000 in Field A, a (33G26)
and b (33Y18).

Table 4 Economically optimum nitrogen rates in MZ for two hybrids defined by different approaches in 2001 and 2003, Field B (kg$hm–2)

MZ Approach MZ
2001 2003 Average

33G26 33J24 33G26 33J24 2001 2003

ROSE

1 133.3 219.7 178.0 220.9 176.5 199.5

2 113.4 165.1 159.8 162.0 139.3 160.9

3 166.8 229.4 149.6 172.7 198.1 161.2

4 137.0 238.6 254.4 190.5 187.8 222.5

ROSE-YSTTS 1 127.8 231.2 212.5 255.6 179.5 234.1

2 116.1 152.4 145.0 155.3 134.3 150.2

3 174.2 224.5 133.0 158.7 199.4 145.9

4 129.5 229.6 213.5 173.4 179.6 193.5

CMYYM

1 165.3 216.5 182.3 223.6 190.9 203.0

2 145.7 233.7 141.3 162.4 189.7 151.9

3 119.3 183.5 183.5 169.1 151.4 176.3

Field Average 139.7 208.0 169.8 181.3 173.9 175.6

Note: MZ4 not sampled for CMYYM.

Fig. 4 Average economically optimum nitrogen rates (EONR)
across years and hybrids for field B in different management zones
defined by ROSE, ROSE-YSTTS and CMYYM approaches.
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uniform N application rate would have been acceptable in
MZ2 and MZ3, based on two years of data. Averaged
across hybrids and years, the economic profit would be
55.21, 14.27, 18.99, and 25.72 USD$hm–2 higher than with
uniform Nmanagement in zones 1, 2, 3 and 4, respectively.

4 Discussion

4.1 Integrated approach to site-specific management zone
delineation

When a farmer wants to adopt precision agriculture, the
first step is probably to divide a field into a few relatively
uniform MZs. This is a practical and cost-effective, site-
specific management approach with current technology
and price relationships, although zone management may
not be the best choice in the long run with development of
crop and soil sensors and availability of other high spatial
density data. Different MZ delineation approaches have
been proposed, and it is natural to ask which approach
should a farmer adopt and how to evaluate different MZ
delineation approaches or the delineated MZs. At least
three different criteria have been used to assess site-specific
nutrient management zones: (1) soil nutrient variability
minimization, (2) yield variability minimization, and (3)
fertilizer recommendation error minimization[29]. The
defined MZs should have relatively uniform inherent soil
fertility (soil OM and CEC), landscape properties that
affect soil water variability, hydrological conditions and
crop yield potential, and yield variability[34,35]. To be
useful in precision N management, each zone should have
similar N requirement or EONR, and different MZs should
have different optimum N rates.
One of the objectives of most crop management systems

is to optimize crop yield, therefore crop yield is the most
important property that should be included in MZ
delineation. Temporal crop yield variability is affected
primarily by weather and genetics (cultivar change), while

spatial variability is affected primarily by soil and land-
scape properties, management practices (e.g., planting
densities and date, and fertilizer rate and timing), stresses,
pests and their dynamic interactions. As a result, MZs
defined only with soil and landscape information may not
be able to account for much of the temporal variability in
yield, especially when a field had been historically
managed as more than one field, as in this study. Similarly,
MZs defined only with yield information may not account
for much of the spatial variability in soil or landscape
properties. Many years of yield maps may be needed to
fully characterize the spatial and temporal patterns in crop
yield. It was suggested that five to ten years of yield maps
are required[27,36]. These yield maps should be normalized
and spatial yield pattern maps and temporal stability maps
should be created and used in the MZ delineation
procedure[24].
The results of this study indicated that the integrated

ROSE-YSTTS strategy combining both soil and landscape
properties and spatiotemporal yield variability information
could overcome the weaknesses of approaches using either
source of information alone. It may not be the best
approach in explaining either soil and landscape properties
or yield variability but it is the overall best approach in
explaining both sources of variability and should be more
stable across different environments. More studies are
needed to further evaluate this integrated approach in more
fields to determine whether this approach can be
effectively applied to other fields.
A challenge to using the integrated ROSE-YSTTS

approach proposed in this study is that many farmers will
not have multi-year yield maps, especially in developing
countries. In this case, multiple remote sensing images
taken during the growing season over the past several years
may be used to estimate the spatial and temporal patterns in
yield, which can then be used for MZ delineation as
demonstrated for cotton[37] and rice[38].The approach
combining high resolution satellite remote sensing images
and crop growth model simulations for creating yield maps
without the need for any ground measured yield data are
especially promising for fields without yield monitoring
data[39–41].
Another challenge is to obtain a soil OM map. This can

be estimated using remote sensing images[20,42], on-the-go
soil sensors[43] or active crop sensors[44]. Considering the
relationships between soil OM with soil EC or terrain
attributes[43,45], soil OM information may not be needed,
which should be further evaluated. The suitable combina-
tion of factors for MZ delineation may be field-specific,
depending on the field variability situation.
Since EC is not only related to stable soil properties like

OM, cation exchange capacity, soil texture, depth of
topsoil above clay-pans, but also to dynamic properties
like soil moisture and soil ionic concentration[46], its
temporal stability needs to be considered. It has been
reported that when salt concentration and buildup are low,

Fig. 5 Profitability of applying hybrid-specific, year-specific,
and zone-specific economically optimum nitrogen rates in
comparison to a uniform N application rate of 168 kg$hm–2 in
each zone in 2001 and 2003, Field B.
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single EC mapping should be fine for MZ delineation in
irrigated sandy fields[47]. However, another study indicated
that the temporal stability of soil EC differed with soil
types, with greater temporal stability in Acrisol and
Cambisol soils distributed in upper slope areas, but low
temporal stability in Gleysol and Nitosol soils distributed
in areas of low elevation, thick soil solum and fluctuated
water table[48]. More studies are needed to further evaluate
the temporal stability of EC and implications for site-
specific MZ delineation.
The results of this study indicated that none of the MZ

approaches performed well in accounting for soil nutrient
variability, with the average RVs being less than 20%.
Perhaps this was because soil nutrient variability was not
that important in producing spatial and temporal variability
in crop yield for these fields during the study period and
other factors, such as soil moisture, may be more
important. In addition to the influence of soil and landscape
factors, spatial soil nutrient patterns can be strongly
affected by fertility management, including manure
application or other organic fertilizer application, rotation,
fertilizer application (what, when, how, where and
frequency). As a result, their spatial patterns may or may
not be related to spatial patterns of soil and landscape
properties, or yield.

4.2 Strategies for zone-specific nitrogen management

After the MZs are successfully defined, the greatest
challenge facing the producer is how to manage them to
optimize profit and/or reduce environmental contamina-
tion. The potential limiting factors in each zone need to be
diagnosed and corrective measures taken to manage them
accordingly. In this study, MZ1 and MZ2 defined by the
ROSE-YSTTS approach in Field B were found to have
higher and lower average EONR than other zones, and
MZ-, hybrid- and year-specific N management could
increase an average of 14.27–55.21 USD$hm–2 profits
compared with uniform application of 168 kg$hm–2 N
fertilizers. This only represented the potential of precision
N management. The challenge is how to determine the
MZ-, hybrid- and year-specific EONRs in advance. The
uncertainty of weather conditions in the next growing
season poses the same challenge to site-specific manage-
ment as to uniform management on a whole field basis.
The EONRs may not be consistent in other years,
particularly if weather, hybrid or management practices
change.
Process-oriented crop growth models can simulate crop

growth, development and yield based on the interactions of
genetics, weather, soil conditions and management and
have been used to identify yield limiting factors and
corresponding yield losses, evaluate management pre-
scriptions and forecast spatial yield patterns[49]. Using crop
growth models to determine optimum N rates in each MZ
may be a viable and practical option for site-specific N

management[15]. A modified version of the CERES-Maize
model was used to estimate optimal N rates for different
MZs in Field B using 15 years of weather data and the
results indicated that MZ-, hybrid- and year-specific N
management had the potential to increase net return by an
average of about 50 USD$hm–2 compared with uniform N
application of 170 kg$hm–2[15]. However, if the average
MZ- and hybrid-specific RONRs were applied across
years, no consistent improvement in economic returns over
uniform N application was found[15]. This result indicated
that year-to-year weather variability needs to be considered
in MZ-specific N management. A more promising
approach is probably to use crop growth models to
determine MZ- and cultivar-specific N rates based on long-
term simulation, and then apply a moderate amount at or
before planting. During the growing season, active canopy
sensors[50–52], unmanned aerial vehicle remote sensing[53]

or satellite remote sensing[12,54] can be used to nondestruc-
tively diagnosis crop N status and fine-tune in-season top-
or side-dressing N application rates. Such strategies need
to be evaluated to improve and facilitate MZ-based
precision nutrient management.

5 Conclusions

This study evaluated three approaches to defining site-
specific management zones on two no-till corn-soybean
rotation fields. The results indicated that in general, the
ROSE approach using only soil and landscape information
was least effective in accounting for crop yield variability,
while the CMYYM approach using only multi-year yield
maps was least effective in accounting for soil and
landscape, and soil nutrient variability. The integrated
ROSE-YSTTS approach combining soil, landscape and
yield spatial trend and temporal stability information was
reasonably effective and more consistent in accounting for
these three sources of variability. It was also found that in
Field B where two years of N rate experiment data were
available, the ROSE-YSTTS approach was effective in
separating zones into high (MZ1), medium (MZ3 and
MZ4) and low (MZ2) economically optimum N rate zones.
Averaged across hybrids and years, applying hybrid-, year-
and zone-specific economically optimum N rates had the
potential to increase economic return by 55.21, 14.27,
18.99 and 25.72 USD$hm–2 over a uniform N application
rate of 168 kg$hm–2 in zones 1, 2, 3 and 4, respectively. It is
concluded that the ROSE-YSTTS approach combining
soil, landscape and yield spatiotemporal variability
information can overcome the weaknesses of approaches
using only soil, landscape or yield information, and is more
robust. It also has the potential for site-specific N
management for improved economic returns. More studies
are needed to further evaluate their appropriateness for
precision N and crop management.
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