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Abstract Developments in soil biology and in methods
to characterize soil organic carbon can potentially deliver
novel soil quality indicators that can help identify
management practices able to sustain soil productivity
and environmental resilience. This work aimed at
synthesizing results regarding the suitability of a range of
soil biological and biochemical properties as novel soil
quality indicators for agricultural management. The soil
properties, selected through a published literature review,
comprised different labile organic carbon fractions [hydro-
philic dissolved organic carbon, dissolved organic carbon,
permanganate oxidizable carbon (POXC), hot water
extractable carbon and particulate organic matter carbon],
soil disease suppressiveness measured using a Pythium-
Lepidium bioassay, nematode communities characterized
by amplicon sequencing and qPCR, and microbial
community level physiological profiling measured with
MicroRespTM. Prior studies tested the sensitivity of each of
the novel indicators to tillage and organic matter addition
in ten European long-term field experiments (LTEs) and
assessed their relationships with pre-existing soil quality
indicators of soil functioning. Here, the results of these
previous studies are brought together and interpreted
relative to each other and to the broader body of literature
on soil quality assessment. Reduced tillage increased
carbon availability, disease suppressiveness, nematode
richness and diversity, the stability and maturity of the
food web, and microbial activity and functional diversity.
Organic matter addition played a weaker role in enhancing
soil quality, possibly due to the range of composition of the
organic matter inputs used in the LTEs. POXC was the
indicator that discriminated best between soil management
practices, followed by nematode indices based on func-
tional characteristics. Structural equation modeling shows
that POXC has a central role in nutrient retention/supply,
carbon sequestration, biodiversity conservation, erosion

control and disease regulation/suppression. The novel
indicators proposed here have great potential to improve
existing soil quality assessment schemes. Their feasibility
of application is discussed and needs for future research are
outlined.
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1 Introduction

Agricultural soils have traditionally been managed mainly
for productivity because they underpin our existence
through food, feed, fiber and timber production. However,
they have the potential to sustain a wide range of functions
(or processes, a term used synonymously here) related to
environmental resilience[1–3]. Soil quality is defined as the
capacity of the soil to perform multiple functions[4]. Soil
quality comprises two aspects, inherent soil quality as
determined by nominally fixed factors, i.e., climate,
organisms, topography, parent material and time[5]; and
dynamic soil quality which refers to those aspects of soil
quality that change as a result of land use and soil
management[6].
Intensive agricultural management has been highly

successful in increasing production but often with detri-
mental effects on dynamic soil properties. These impacts
can in turn disrupt soil processes, soil multifunctionality,
and soil-based ecosystem services[7–10] defined as the
benefits for humankind derived from ecosystems[11].
Ultimately, these negative impacts can render soils less
reliant on self-regulating processes[12]. In this context, the
assessment and the monitoring of soil quality as affected
by agricultural management is a pre-requisite of the
fundamental redesign of agricultural systems[8,13,14] that
aim to maintain or increase both agricultural productivity
and environmental resilience through the adoption of
alternative soil management practices.
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Soil quality can be assessed by measuring the status or
the (rate of) change induced by perturbations of soil
chemical, physical and biological properties that together
determine the capacity of the soil to perform pro-
cesses[12,15]. Mainly chemical and physical soil properties
were taken into account in early soil quality assess-
ments[16]. Bünemann et al.[15] showed that soil chemical
and physical indicators are still the most measured
properties in soil quality assessments up to now. Biological
properties are under-represented, although the soil biota
have a primary role in many soil processes that determine
soil quality because they are closely linked with physical
and chemical properties[17,18]. This under-representation is
likely due to the fact that soil biology is a complex and
recently developed discipline, lacking, in many cases,
standardization for sampling and laboratory protocols. In
addition, soil biological measurements can vary consider-
ably depending on season, weather and other factors,
hampering proper establishment of reference values and
the interpretation of these changes in terms of soil
functioning[17]. Establishing a direct link between biolo-
gical indicators and functions is therefore challenging, also
because of the difficulties related with the determination of
the active part of populations and communities of
organisms[19].
It is widely recognized, however, that despite these

challenges, the composite use of chemical, physical and
biological properties is crucial to effectively assess soil
quality in its entirety[18,20,21]. Fortunately, rapid technolo-
gical and knowledge developments in the field of soil
biology and organic matter have the potential to deliver
novel soil quality indicators that can help farmers and other
land managers to most effectively assess the effects of soil
management on soil functioning, especially because
biological properties are more easily and quickly influ-
enced than most chemical or physical properties[14,22,23].
Novel biological soil quality indicators can overcome the
limitations of the currently-used indicators by being faster

to assess, more sensitive to management, and/or delivering
more information about soil processes[19]. This can
ultimately lead to the evaluation and the adoption of
alternative agricultural practices that effectively sustain
both agricultural production and environmental
resilience[24–26].
The main objective of previous studies[27–29] was to

investigate the suitability of a range of soil biological and
biochemical properties as novel soil quality indicators for
agricultural management. In this selection of indicators,
based on a thorough review of the literature[15], different
but complementary dimensions of the biological and
biochemical soil characteristics linked with multiple soil
functions were accounted for (Fig. 1), namely soil labile
organic carbon[27], soil disease suppressiveness[28], soil
free-living nematode community characteristics[29] and
soil microbial functionality[30]. These properties were
considered novel because they are not extensively used
in soil quality assessment schemes (in particular in
Europe), in contrast to currently measured soil quality
indicators which are regularly included in assessment
schemes as reported in Bünemann et al.[15].
Each previous study addressed the main objective by

assessing (1) the sensitivity of the pertinent novel
indicators to soil management comprising tillage (reduced
vs. conventional) and organic matter addition (low vs.
high), and (2) their linkages with traditionally measured
soil quality indicators [e.g., total organic carbon (TOC),
pH, water stable aggregates and microbial biomass]. The
novel indicators were screened in ten long-term field
experiments (LTEs) across Europe to maximize their
potential to be added to, or replace, indicators measured in
current soil quality assessment schemes. Here, the main
findings from Bongiorno et al.[27–30] and are analyzed
together in a unique way compared to the previous single
studies, summarized, contextualized and discussed, in
respect of the research objective outlined above. Based on
the results of previous studies it was hypothesized that the

Fig. 1 Linkages between novel soil quality indicators (in orange), processes and ecosystem services (ES). Adapted from Bünemann et al.[15].
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labile carbon fractions were the novel soil quality most
sensitive to tillage and organic matter addition among the
novel indicators measured. In addition, labile carbon was
expected to have a multifunctional role in soil, being
positively linked with various soil properties used as
proxies for soil-based ecosystem processes and services.
Recommendations for future research are subsequently
presented, pointing out where scientific research can help
the development of soil quality assessments to the benefit
of farmers and other land managers.

2 Materials and methods

2.1 Experimental sites and management

Ten European LTEs with a management history between
three and 19 years were chosen to investigate the effects of
tillage and organic matter addition on a selection of novel
soil quality indicators. The ten LTEs were located in
different pedoclimatic zones covering six different soil
types and consisted of arable (eight LTEs) and permanent
(two LTEs) crops (Table S1)[27–29]. The main treatment
factors were classified as tillage: CT, conventional tillage
with plowing to 20–35 cm depth (deep soil inversion
cultivation) vs. RT, reduced tillage to 10–15 cm depth
(very shallow or non-inversion cultivation); and organic
matter addition: LOW, no mineral fertilizer and organic
matter addition or mineral fertilizer only vs. HIGH, organic
matter addition only or organic matter addition with
mineral fertilizer[27–29]. The LTEs had either a complete
randomized block design or a split plot design with three or
four replicate plots per treatment (Table S1).

2.2 Sampling

Sampling was done in spring 2016 before any major soil
management was applied to the fields. Each sample
consisted of 20 soil cores randomly collected in the central

area of the plots to avoid border effects. Soil in
experiments with tillage included as a management factor
(CH1, CH2, NL1, NL2, SL1, HU4 and ES4) were sampled
from depths 0–10 and 10–20 cm, except for NL1 which
was sampled from depths 0–15 and 15–30 cm (Table S1).
Soil in experiments with organic matter addition as the
only management factor (CH3, HU1 and PT1) were
sampled from depth 0–20 cm. After collection, subsamples
were air-dried (40°C) and the remainder stored moist at
3°C. Moist field samples were transported in insulated
boxes to Wageningen University and Research (Wagenin-
gen, The Netherlands), the Research Institute of Organic
Agriculture (FiBL, Frick, Switzerland), the University
Miguel Hernandez (Alicante, Spain) and the University of
Trier (Trier, Germany), and air-dried samples were sent to
the University of Ljubljana (Ljubljana, Slovenia) shortly
after collection. Soil samples were sieved at£5 mm at the
sampling location or immediately after reaching the
laboratory of destination and, if the soil was moist, stored
at 3°C until further processing.

2.3 Standard chemical, physical and biological soil quality
indicators

Various standard chemical, physical and biological
soil quality indicators were determined in previous
studies[27–30]. All the indicators are shown in Table S2.
Here, only soil respiration, water stable aggregates, yield,
microbial biomass, and carbon stock were used for
statistical analysis (Table 1). These indicators were
selected because of their tight link with the following
ecosystem services: nutrient retention/supply (soil respira-
tion), erosion control (water stable aggregates), biomass
production (yield), biodiversity conservation (microbial
biomass) and carbon storage and climate regulation
(carbon stock). This selection of standard indicators was
used to test and visualize the relationship between labile
organic carbon and soil ecosystem services that was
initially hypothesized in an a priori model (Fig. S1).

Table 1 Overview of methods used to determine chemical, physical, and biological soil quality indicators as measured in the framework of the

European project “Interactive Soil Quality Assessment in Europe and China for agricultural Productivity and Environmental Resilience” (iSQAPER)

and used for the current study. Adapted from Bongiorno et al.[28]

Properties Methodology Units Analytical laboratory

Chemical properties

Total organic carbon SIST ISO 10694: Soil quality - Determination of organic and
total carbon after dry combustion (elementary analysis)

% University of Ljubljana

Physical properties

Water stable aggregates Wet sieving method modified as in Öhlinger &Kandeler[31] mg$kg–1 soil FiBL

Biological properties

Microbial biomass carbon Fumigation-extraction method[32] mg$kg–1 soil University of Trier

Soil respiration Incubation of soil at 25°C for 72 h in thermostatic bath mg$h–1$g –1 soil University Miguel Hernandez

Yield Harvesting total biomass and product in 2016 Mg$ha–1 dry matter Field assessment
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Carbon stock was calculated taking into account the
different soil depths in the study as follows.

C  stock  ðt⋅ha�1Þ ¼ ½BD  ðg⋅cm�3Þ � Soil  depth  ðcmÞ

� TOC  ðg⋅kg�1Þ� � 100

where BD is bulk density and soil depth is the soil depth
sampled. In the case of the LTEs in which depths 0–10 and
10–20 cm were sampled separately, C stocks in each soil
depth sampled were summed to obtain the carbon stock
at depth 0–20 cm. In the PT1 experiment fresh yield in
Mg$ha–1 was used because dry yield was not available, and
the models used took into account the LTE as a random
factor.

2.4 Novel soil quality indicators

The following novel soil quality indicators have been
selected and measured in previous studies for their
linkages with various soil processes (Fig. 1): (1) labile
carbon fractions[27], (2) soil suppressiveness[28], (3) free-
living soil nematodes[29], and (4) soil microbial catabolic
profiles[30]. Detailed information on the methodology for
assessing the novel soil quality indicators can be found in
the references cited above. Brief descriptions of the
methodologies with the main principles of the methods
are given below.

2.4.1 Labile organic carbon fractions

Various labile carbon fractions were measured as
detailed in Bongiorno et al.[27]. Briefly, the dissolved
organic carbon (DOC) was extracted by shaking the soil
samples for 1 h with ultrapure water and filtering through
a 0.45 µm filter[33]. Then the hydrophilic part of the DOC
(Hy-DOC) was fractionated with a simplified fractionation
scheme adapted from van Zomeren and Comans[34] that
used a polymeric adsorbent resin to remove the hydro-
phobic component of the DOC. The total carbon
concentration of DOC and Hy-DOC was determined in a
TOC analyzer. DOC and Hy-DOC fractions were further
analyzed for specific ultraviolet absorbance (254 nm) to
assess their aromaticity[35]. Hot water extractable carbon
(HWEC) was extracted, filtered (0.45 µm) and assayed
according to Ghani et al.[36]. Permanganate oxidizable
carbon (POXC) was extracted in KMnO4 and assayed
following Weil et al.[37]. Particulate organic matter (POM)
was characterized with a physical fractionation protocol
(wet sieved, 53 µm) as reported by Wyngaard et al.[38] as
modified from Salas et al.[39]. The particulate organic
matter carbon (POMC) was calculated by dividing POM
by 1.724, assuming that the percentage of organic carbon
in POM was 58%. All soil samples from depths 0–10,
10–20, and 0–20 cm were used for the labile carbon
fraction analysis.

2.4.2 Soil suppressiveness

General soil suppressiveness was measured with the
establishedmodel pathosystem Pythium ultimum–Lepidium
sativum (cress)[40,41] as detailed in Bongiorno et al.[28].
Briefly, the capacity of the soil to suppress pathogens was
measured by comparing cress fresh weight in soil where
P. ultimum was added with cress fresh weight in soil where
the pathogen was not added.
Soil suppressiveness was calculated as follows.

SSni ð%Þ ¼ 100� ðWni�Wn – 1Þ
where Wni is shoot weight of cress in pots with natural soil
inoculated with P. ultimum, and Wn is mean shoot weight
in natural soil not inoculated with P. ultimum. Soil samples
from depths 0–10 (0–15 for NL1) and 0–20 cm only were
used for this analysis.

2.4.3 Free-living soil nematodes

Free-living soil nematodes were extracted from moist
field soils with an Oosterbrink elutriator and cotton wool
extraction and subsequently processed following
Bongiorno et al.[29]. Briefly, DNA was extracted from the
nematodes according to Vervoort et al.[42] and used as
templates in qPCR to assess total nematode densities[42,43].
For brevity, qPCR-based quantification of nematode
densities is referred to as total nematode abundance. The
DNAwas also used for 18S rRNA gene amplification and
sequencing on the IlluminaMiSeq platform[44] and the data
were analyzed by the Genetic Diversity Centre, ETH
Zurich. From the sequencing data, indices of richness [sum
of operational taxonomic units (OTUs) or genera],
diversity (Shannon diversity index), evenness (Sheldon
evenness index), percentages and absolute abundances of
trophic groups (bacterivorous, fungivorous, herbivorous,
predacious and omnivorous nematodes), colonizer-
persister (c-p) groups, maturity index (MI), enrichment
index (EI), structure index (SI), and channel index (CI)
were calculated. In addition, a general beta diversity
analysis was conducted on the nematode communities of
all the sites. All soil samples from depths 0–10, 10–20, and
0–20 cm were used for the analysis.

2.4.4 Microbial catabolic profile

The MicroRespTM system was used to measure the
community level physiological profiling (catabolic profile)
of the soil microbial community according to the
methodology described in Campbell et al.[45] and Creamer
et al.[46]. Briefly, the colorimetric gel detection plates were
prepared by mixing 150 mL of noble agar and a pH
indicator solution containing 12.4 ppm, wt/wt cresol red,
150 mmol$L–1 KCL and 2.5 mmol$L–1 NaHCO3. Soil
sieved at 2 mm was added to the MicroRespTM deep-well
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plates using the MicroRespTM filling device and the plates
were stored in an incubator for 6 h at 25°C. After
incubation, 25 mL of carbon substrate (prepared to deliver
30 mg$g–1 of C to the soil) was dispensed into each well of
the deep well plate containing the soil and the plates
were left open for 30 min. Seven substrates were added
to the soil and subsequently used to produce respiration
rates, namely deionized water as control, glucose, alanine,
gamma-amino butyric acid, n-acetyl-glucosamine, alpha-
ketoglutaric acid and lignin. The initial colorimetric values
of the detection plates were read at 570 nm to obtain initial
absorbance values (T0) before the detection plates were
sealed and incubated at 25°C for 6 h. Following the
incubation, the colorimetric values of the detection plates
were read again (T1) and these final absorbance values
were normalized using the T0 absorbance values. Absor-
bance data were converted to CO2 concentration using the
calibration curve: CO2 (%) = 0.02�A570

–3.11 (R2 = 0.93),
where CO2 (%) is the concentration in the headspace after
incubation and A570 is the normalized absorbance[47].
The CO2 (%) concentrations were then converted to
respiration rates (µg CO2-C g–1 dry soil h–1) using the
formula provided in the MicroRespTM procedure. Absolute
(µg CO2-C g–1 dry soil h–1) and relative respiration rates
(%) were obtained after correcting for the average
respiration rate for soil to which deionized water was
added. Subsequently, the multiple substrate induced
respiration (MSIR; calculated as the sum of the absolute
respiration rates of all the substrates per sample) and the
Shannon diversity index (H'), used as a measure of
microbial functional diversity, were calculated. Only soil
samples from depths 0–10 (0–15 for NL1) and 0–20 cm
were used for this analysis.

2.5 Statistical analysis

All statistical analyses were conducted using R version
3.6.0[48]. If tillage was one of the treatments investigated,
0–10 cm depth soil samples were used and, if the
only treatment investigated was organic matter addition,
0–20 cm depth samples were used. In total, 101 samples
were used. Only these soil depths (not 10–20 cm) were
used because all the novel indicators were measured in soil
samples coming from these depths. Furthermore, all soil
samples from depth 0–20 cm were exposed to conven-
tional tillage and therefore large differences between
depths 0–10 and 10–20 cm depths at these sites were not
expected because of the mixing of the soil by plowing[27–
29].
Random forest classification[49] was done to test the

importance of the novel soil quality indicators in
classifying the different combinations of soil management
practices (i.e., CT-Low, CT-High, RT-Low, and RT-High).
Random forest classification uses the classification results
from many classification trees, where for each tree a single

classification result for each observation is obtained. Each
tree is grown with a subset of samples (on average two-
thirds of the samples) from the entire data set (bagging or
bootstrapped aggregation), and at each node of the tree a
random subset of variables (m) of the p independent
variables is selected to classify those samples. The class of
a sample is determined by the majority of the votes of all
the trees in the forest to check the quality of the trees and to
assess the importance of the variables in classifying the
samples. For the random forest model, the function
randomForest from the package randomForest was
used[50], using 2000 trees and the default value of m
=

ffiffiffi

p
p

(m represents the subset of variables, and p is the total
number of variables used for the random forest). In this
case, m = 4. A large number of trees is needed to obtain a
stable estimation of the importance of a variable[51]. The
variable importance measure reported here is the mean
decrease in model accuracy (%) on the out-of-bag (OOB)
samples (samples that were not part of bootstrapped
samples used to create the trees of the forest) when the
values of the respective feature are randomly permuted.
The OOB estimate of error rate is reported as a measure of
the accuracy of the model.
Redundancy analysis (RDA) was used to visualize the

profiles of the novel soil quality indicators in soil with
either heavy (clay+ fine silt< 50%) or light (clay+ fine
silt> 50%) texture. LTEs CH1, CH2, CH3, SL1 and ES4
were characterized as heavy soils (n = 42) and LTEs NL1,
NL2, PT1, HU1 and HU4 were characterized as light soils
(n = 59). The function rda in the vegan package was used
for the RDA[52] with the novel indicators as dependent
variables, the soil management as a constraining variable,
and the LTEs as conditional variable. Statistical signifi-
cance of the RDA was assessed using the anova function.
The scores of the substrates on the first two axes of the
RDA were used to assess the importance of the substrates
in differentiating between soil management practices. The
soil quality properties were then correlated with the first
two RDA axes to check their association with the
agricultural management. In the RDA graph the dependent
variables with a highly significant correlation£0.001 with
either one of the two RDA axes are reported.
Piecewise structural equation modeling (SEM) was used

to evaluate the direct and indirect effects of POXC on
various ecosystem services taking into account the
dependent structure of the data derived from the same
LTE[53]. An a priori model of the relationships between
labile carbon and ecosystem processes and services was
established, where the hypothesized relationships acted as
a framework for the optimization of the piecewise SEM
(Fig. S1). The data matrix was fitted using the log-
transformed variables but soil suppressiveness was logit-
transformed, nematode abundance was square-root trans-
formed, and microbial functional diversity was elevated to
the power of two. The evaluation of the AIC was used to
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estimate the robustness of the models and to select the
appropriate final model[54]. The Fisher chi-square test (c2;
the model has a good fit when 0£c2/d.f.£2 and p≥0.05)
was used to test the overall goodness of fit of the model[53].
The total standardized effects (reported as path coeffi-
cients) of the predictors were calculated and reported on
the side of the arrows in the final SEM model representa-
tion. Rm

2 (marginal coefficient of determination) and Rc
2

(conditional coefficient of determination) are reported for
the response variables, indicating the proportion of the
variation explained by the fixed predictor variables and the
proportion of the variation explained by the fixed and
random predictor variables, respectively. The lavaan and
piecewiseSEM packages were used for the structural
equation model[55,56] and the results were considered
statistically significant at p£0.05. This SEM model used
microbial functional diversity (Shannon diversity index),
soil respiration and MSIR as measures of nutrient cycling,
water stable aggregates as a measure of erosion control, C
stock as a measure of carbon storage and climate
regulation, soil suppressiveness as a measure of disease
regulation/suppression, microbial biomass carbon, nema-
tode abundance and nematode richness as measures of
biodiversity conservation, and yield as a measure of
biomass production. This set of properties was selected as
necessary properties to create the a priori SEM model
because of their direct relationship with the abovemen-
tioned ecosystem services (Fig. S1). POXC was used as
labile organic carbon fraction in the model because it was
the most sensitive of the labile fractions and correlated best
with various soil quality properties[27–30]. In addition,
while comparing SEM models conducted with the other
labile carbon fractions, the model with POXC was the best
fitting, although the results of the modeling were similar
for all the other labile carbon fractions.

3 Results and discussion

3.1 Sensitivity of novel soil quality indicators to tillage and
organic matter addition

Reduced tillage and addition of organic matter are
widespread agricultural practices used to reduce the impact
of soil management on soil properties and processes such
as carbon cycling and soil structure formation and
maintenance[8], counteracting multiple soil threats such
as soil organic matter depletion, soil erosion and compac-
tion[57]. Across the ten European LTEs studied, the novel
soil quality indicators were sensitive to changes brought
about by these agricultural practices despite the large site
effects of the LTEs. In particular, compared to the other
indicators, POXC, HWEC, and POMC[27] were sensitive
to both tillage and organic matter addition, while soil
suppressiveness, free-living soil nematode communities
and microbial catabolic profiles were more affected by

tillage than by organic matter addition[28–30]. Random
forest analysis was used to test which of the novel
indicators were the most important in discriminating
between the different combinations of soil management
practices (i.e., CT-Low, CT-High, RT-Low, RT-High). As
hypothesized, the labile carbon fractions were the most
sensitive according to the mean percentage decrease in
accuracy (Fig. 2, OOB estimate of error rate = 52.5%). In
particular, POXC was the most important variable in
discriminating between the soil management practices.
Previous studies also highlight labile organic carbon,

determined by various methodologies, as a highly sensitive
fraction of the total soil organic carbon[36,58–60]. This is
likely due to the dependency of labile organic carbon on
soil aggregation, aggregate turnover, microbial biomass
and residue input[61]. Soil labile carbon concentrations,
therefore, tend to decrease upon agricultural disturbances
that lead to aggregate disruption and turnover, release of
nutrients from dying microbial cells, and lower residue
input. In addition, previous studies found POXC to be one
of the most sensitive of a wide range of indicators
determined[58,62–64]. After the labile organic carbon
fractions, the soil nematodes, in particular the indices
based on functional characteristic of the nematode
communities (i.e., SI and EI), were the most sensitive
novel soil quality properties in distinguishing the different
soil management practices (Fig. 2). This suggests a higher
utility of functional information derived from the soil biota
compared to taxonomic information in soil quality
evaluations.
Tillage exerted a stronger effect on the novel soil

indicators than organic matter addition in previous works
and this was particularly evident for soil suppressiveness,
nematode communities, and microbial catabolic pro-
files[28–30]. Conventional tillage destroys soil aggregates,
making available resources that boost microbial activity in
the short-term[65]. In addition, conventional tillage entails
destruction of the soil as a habitat for organisms where
these can be directly killed and exposed to predators by the
mechanical action of the plow[1,66]. In these same studies,
reduced tillage practices had a positive effect on various
soil processes, increasing the quantity of available carbon
for microbial activity[27] and creating a stable environment
which sustained soil suppressiveness[28], nematode diver-
sity and richness[29], and microbial decomposition capacity
and functional diversity[30]. Previous studies also show the
beneficial effect of reduced tillage on chemical, physical
and biological aspects of soil quality compared to
conventional tillage[67–71]. In addition, reduced tillage
increased the relative and absolute abundance of
herbivorous nematodes[29] as shown previously by Treonis
et al.[72,73]. This result highlights the possible tradeoffs in
ecosystem services (i.e., biomass production and biodi-
versity conservation) with reduced tillage systems. The
effect of tillage was more evident in the upper than in the
lower soil depths, confirming the results of previous
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studies[61,74,75]. In addition, reduced tillage often causes
stratification of various soil properties, and soil compaction
deeper in the soil[74,76]. These results underline the
importance of studying the effect of tillage on soil quality
at different soil depths[77]. The plow layer of the reference
system may serve as a minimum sampling depth, but
further distinction of depths within the plow layer may
increase our understanding of reduced tillage effects.
The weaker effect of organic matter additions than

reduced tillage on the novel soil quality indicators may be
due to higher variation induced by the heterogeneous
nature of the organic matter added in the different LTEs,
including biochar, compost, biowaste and farmyard manure
(Table S1). The quantity and the composition of the added
organic matter and the soil organic matter already present
have been shown to be important factors affecting the
composition of soil microbial communities, the abundance
of components of the communities, and the soil processes
they perform such as nutrient cycling, humification,
decomposition, and soil suppressiveness[78–84]. Organic
matter addition will preferentially increase microbial
biomass and activity if it adds labile and available C and
N components to the soil[81,85].

Based on the results of my group and other studies it
may be concluded that farmers and land managers can
generally benefit from the adoption of reduced tillage and
increased organic matter addition for multiple soil
processes such as humification, biological population
regulation, nutrient cycling decomposition and habitat
provision for biodiversity. However, the implementation of
these management measures must be accompanied by
awareness of their limitations and with careful evaluation
of the site-specific conditions for site-specific management
and vice versa[25,86] in order to optimize the benefits
obtained.

3.2 Soil texture

Soil texture can affect the way tillage and organic matter
addition impact on soils[87]. In Bongiorno et al.[27–30], soil
texture was not taken into account because the main aim
was to assess the general suitability of novel soil quality
indicators across a large number of LTEs. However, soil
texture was indirectly considered by including the LTEs as
a random factor in the analyses. Here, the effects of tillage
and organic matter addition on the novel soil quality
indicators were investigated separately in samples of heavy
(clay+ fine silt > 50%) and light (clay+ fine silt < 50%)
soils using RDA (Fig. 3).
The treatments of both soil texture classes are located in

the same position in Fig. 3(a) and 3(b), with the exception
of RT-Low and RT-High, which are swapped in the two
figures. In both cases, the most intensive soil management,
i.e., CT-Low, was separated from the other management
treatments on the first RDA axis, similarly to the RDA of
all samples analyzed together in Bongiorno et al.[30]. This
highlights the strong negative effect of the most intensive
agricultural practice on soil quality. In the heavy soils
(Fig. 3(a)), CT-Low and RT-High resulted in different
positions while the two intermediate treatments, i.e., RT-
Low and CT-High, clustered closely to each other on RDA
axis 1. The labile carbon fractions and the nematode
abundance were the ones that discriminated most between
the different treatments on RDA axis 1 (Table 2). In the
light textured soils (Fig. 3(b)) organic matter addition
discriminated between the novel indicators more strongly
on RDA axis 2 than in the heavy textured soils. Tillage had
a stronger effect when low organic matter was applied, but
similarly to heavy soils the discrimination was mainly on
RDA axis 1. Light soils are less structured than heavy soils
and have limited capacity to protect soil organic matter,
and their potential for enhancing soil quality might
therefore be higher with direct additions of organic matter
than with application of reduced tillage which is more
focused on enhancing physical properties[76,88,89]. How-
ever, reduced tillage might be particularly effective when
organic matter addition to the soil is low because of a
higher potential for improvement. In addition, in the light
soils the nematode indicators (MI, EI, OTU richness and

Fig. 2 Importance of novel soil quality indicators in discriminat-
ing between different soil management practices (i.e., CT-Low
OM, CT-High OM, RT-Low OM and RT-High OM), expressed as
variable importance metric (mean percentage decrease in accu-
racy) from random forest classification analysis. CT, conventional
tillage; RT, reduced tillage; OM, organic matter; POXC,
permanganate oxidizable carbon; HWEC, hot water oxidizable
carbon; POMC, particulate organic matter carbon; DOC, dissolved
organic carbon; SI, structure index; Hy-DOC, hydrophilic
dissolved organic carbon; EI, enrichment index; MSIR multiple
substrate induced respiration; MI, maturity index; OTU, opera-
tional taxonomic unit; and CLPP, community level physiological
profiling.
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diversity) were more important in discriminating between
the treatments than in the heavy soils, especially on RDA
axis 1 (Table 2). Even so, the labile carbon fractions

remained of prime importance, similarly to the heavy soils.
It is concluded that soil management had a similar effect on
soil quality indicators in heavy and light soils, and that

Fig. 3 Influence of soil texture on the novel soil quality indicators, expressed by redundancy analysis (RDA), of novel soil quality
indicators assessed in samples with (a) heavy soil texture (clay+ fine silt > 50%; n = 42) and (b) light soil texture (clay+ fine silt < 50%;
n = 59). The soil quality indicators that had a significant correlation at p£0.001 with either RDA axis are reported in red with their vectors.
CT-Low, conventional tillage and low organic matter input; CT-High, conventional tillage and high organic matter input; RT-Low, reduced
tillage and low organic matter input; RT-High, reduced tillage and high organic matter input; OTU, operational taxonomic unit;
POMC, particulate organic matter carbon; HWEC, hot water extractable carbon; POXC, permanganate oxidizable carbon; Hy-DOC,
hydrophilic dissolved organic carbon; DOC, dissolved organic carbon; MI, nematode maturity index; and EI, nematode enrichment index.

Table 2 RDA scores, Pearson correlation coefficients (r) and related p-values of the novel soil quality indicators on the first two RDA axes for heavy

textured and light textured soils

Indicators

Heavy soils
(clay+ fine silt > 50%)

Light soils
(clay+ fine silt < 50%)

RDA1 RDA2 RDA1 RDA2

Score r p Score r p Score r p Score r p

POXC 0.60 0.61 *** 0.03 0.03 0.55 0.43 ** -0.10 -0.08

HWEC 0.49 0.51 ** 0.03 -0.02 0.34 0.27 * -0.02 0.01

Hy-DOC 0.54 0.61 *** -0.18 -0.11 0.44 0.39 * -0.17 -0.21

DOC 0.37 0.44 * -0.01 -0.02 0.51 0.43 ** -0.11 -0.01

POMC 0.53 0.55 ** 0.05 -0.02 0.42 0.33 * 0.05 -0.09

Soil suppressiveness 0.12 0.25 0.08 0.02 0.02 0.006 0.18 0.03

Nematode OTU diversity -0.02 -0.007 0.27 0.68 *** 0.23 0.37 * 0.25 0.57 ***

Nematode OTU richness 0.17 0.22 0.11 0.39 * 0.60 0.58 *** 0.04 0.26 *

Nematode abundance 0.49 0.62 *** -0.02 -0.38 * 0.18 0.15 -0.13 -0.33 *

MI 0.03 -0.05 0.24 0.55 ** 0.13 0.26 * 0.45 0.76 ***

SI 0.04 0.002 0.12 0.36 * 0.12 0.16 0.33 0.39 *

EI -0.12 -0.10 -0.14 -0.35 * 0.09 0.17 -0.41 -0.54 ***

MSIR 0.43 0.40 * 0.10 0.02 0.20 0.14 0.009 0.01

CLPP Shannon index 0.28 0.49 ** -0.15 -0.38 * 0.21 0.24 0.06 0.08

Note: POXC, permanganate oxidizable carbon; HWEC, hot water oxidizable carbon; Hy-DOC, hydrophilic dissolved organic carbon; DOC, dissolved organic carbon;
POMC, particulate organic matter carbon; OTU, operational taxonomic unit; MI, maturity index; SI, structure index; EI, enrichment index; MSIR, multiple substrate
induced respiration; and CLPP, community level physiological profiling. *p£0.05, **p£0.001, and ***p£0.0001.
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taking into account soil texture does not fundamentally
alter the interpretation of the results presented in
Bongiorno et al.[27–30]. Nevertheless, soil texture seemed
to affect some of the nematode indicators, corroborating
the results of Quist et al.[90]. This supports the view that soil
texture might influence the impact of soil management on
soil quality and warrants more attention in future studies.

3.3 Key role of labile organic carbon

In Bongiorno et al.[27], labile carbon, in particular POXC,
was correlated with various traditionally measured soil
quality indicators related to nutrient cycling (total nitrogen,
cation exchange capacity, availabe P and K, Mg and soil
respiration), soil structure (water stable aggregates, water
holding capacity and bulk density), carbon sequestration
(TOC) and habitat provision (microbial biomass carbon,
soil respiration). In addition, labile carbon was tightly
linked to the other novel indicators assessed, showing its
potential as an overarching indicator linking different
quality aspects of agricultural soils[28–30]. Labile organic
carbon is also tightly linked to TOC and it constitutes the
primary energy source for soil organisms, being the fuel for
their activities and processes such as humification and
nutrient cycling[59]. Various studies have found labile
carbon to be linked with soil quality properties, and POXC
and HWEC were found to be particularly linked with
biological properties[36,91,92]. In addition, POXC has been
proposed as an indicator of carbon sequestration in
previous studies[58,93]. Labile organic carbon and its
aromaticity have been linked with changes in taxonomic
microbial community composition[78], which are likely to
correspond with changes in soil functionality. Therefore,
not only TOC, but also the nature of the organic
compounds that it comprises can have a strong impact on
soil processes, especially in terms of microbe-related
processes such as nutrient cycling, decomposition, humi-
fication and biological population regulation[81,84,94].
However, at the moment there is evidence that POXC is
not only quantifying the labile part of carbon, but also
more processed[58] and recalcitrant compounds such as
lignin[95,96]. Hence, it is important to stress that in the case
of the labile carbon fractions, and in particular POXC, a
better understanding of the nature of the compounds will
facilitate interpretation and acceptance by farmers and
other land managers.
The other novel indicators were generally enhanced by

reduced tillage and addition of organic matter and were
positively correlated with various traditional soil quality
indicators, such as TOC, total nitrogen, microbial biomass
and activity[27–30]. Nevertheless, the novel indicators have
the potential to revealed different and unique character-
istics of soil quality that might not be derived from
traditionally measured indicators (i.e., soil suppressive-
ness, food-web information and biodiversity, and micro-
bial functional capacity). Therefore, these could be used in

a complementary way in soil quality assessments to gain
more information about soil functionality.

3.4 Linking soil quality indicators with ecosystem
processes and services

For novel indicators to be adopted in practice, their links
with functions and ecosystem services have to be
established[16,97]. For this reason, SEM was used in search
for confirmation of hypothesized mechanistic relationships
between indicators[98]. The SEM models in Bongiorno
et al.[28,30] support the hypothesized primary role of labile
organic carbon in sustaining soil disease suppressiveness
and microbial functional diversity. Here, in addition to
these individual models, the hypothesized key role of
POXC (the other labile carbon fractions have also been
tested; data not shown) in sustaining various soil
ecosystem services was tested and visualized in a
comprehensive SEM model (Fig. 4).
In agreement with the results presented in previous

studies and with the hypothesis specified in the current
work[27–30], POXC was found to have a multifunctional
role in agricultural soils. POXC (but also the other labile
carbon fractions; results not shown) had positive links with
carbon sequestration, nutrient retention/supply, biodiver-
sity conservation and erosion control, the latter partly
through the positive effect on microbial biomass carbon, an
association that confirms previous studies[22,99]. In parti-
cular, fungal biomass has been positively associated with
micro-aggregate stability[100–102]. Labile organic carbon
also had an indirect positive effect on biodiversity
conservation through its stimulation of the active part of
the microbial community (i.e., soil respiration), and on
disease regulation/suppression through its stimulation of
the competitive ability of the microbial community (viz.,
microbial biomass carbon and MSIR) against the patho-
gen. This latter finding is consistent with Dignam et al.[103]

who found that higher carbon availability selected for a
richer and more competitive and suppressive community
controlling Rhizoctonia solani. Likewise, Bastida et al.[104]

demonstrated the key position of labile carbon measured as
DOC in the multifunctionality of soil microbial commu-
nities. The negative relationship between C stock and soil
disease suppressiveness may be explained by the enhance-
ment or inhibition of soil suppressiveness by organic
amendment depending on the quality of the organic carbon
added to the soil[83,84]. The quality of the organic carbon
additions was variable in the different LTEs studied (e.g.,
compost, biochar and biowaste), and the net effect resulted
in a negative relationship between C stock and soil
suppressiveness. An earlier work indicates that the more
labile part of the TOC sustains the capacity of the microbial
community to suppress soil pathogens through general
disease suppressiveness mechanisms[28].
Most of the links between labile organic carbon

and ecosystem services were positive, underlining the
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synergies between soil processes. However, even though
weak, POXC had an indirect negative effect on biomass
production through soil respiration. This result is at odds
with those from previous studies where positive relation-
ships between POXC and yield were found[37,64,93,105].
This opposite result is nevertheless important because it
suggests tradeoffs between different ecosystem services
that have to be accounted for when managing soils.
Agricultural practices considered to be sustainable such as
organic matter additions, reduced tillage, and cover
cropping often coincide with increased values of soil
quality indicators that are linked to environmental
functions at the expense of productivity[25,74,106–111]. In
particular, this is often the case when soil management
aims to sustain multiple functions related to productivity
but also to environmental resilience[112].

4 Feasibility of the application of the novel
soil quality indicators

The advantages and disadvantages of each of the novel soil

quality indicators are presented in Table 3.
In addition, why the use of the novel indicators in soil

quality assessment may be challenging was examined.
These considerations apply to the novel indicators, but also
to more traditionally used soil biological, phsical and
chemical indicators. The latter, however, have a longer
history of consensus building and standardization.
Firstly, standardization of the methodologies including

sampling time (i.e., season relative to crop developmental
stage and time of soil management application) should be
addressed to facilitate comparisons in space and
time[99,113,114] and to reach consensus between different
laboratories[115]. However, it must be recognized that
standardization is not always possible and that sometimes
methods tailored for specific conditions are more
effective[116].
Secondly, data interpretation depends on data collection

and availability. These are necessary for making informa-
tion about the state and the changes in soils more precise
while developing thresholds, scoring curves, reference
values, and benchmarks[12,117,118]. The interpretation of the
values obtained can also be challenging due to seasonal

Fig. 4 Structural equation model (SEM) showing the central role of POXC as a predictor of various ecosystem services, which are
placed in colored boxes outside the SEM frame. White boxes within the SEM frame represent measured variables and arrows represent the
unidirectional relationship between the properties. The color of the border of the boxes specifies the ecosystem service they indicate.
White and black arrows indicate positive and negative relationships, respectively. Numbers on the side of the arrows indicate standardized
effect size whose strength is proportional to the width of the arrow. Numbers close to the boxes of the response variables are Rm

2 (marginal
coefficient of determination) and Rc

2 (conditional coefficient of determination). Akaike information criterion (AIC), corrected Akaike
information criterion (AICC), Fisher chi-square (Fisher c2), p-value (P) of the test, degrees of freedom (df), and the number of
observations (N) are indicated. POXC, permanganate oxidizable carbon; C stock, carbon stock; and OTU, operational taxonomic unit.
Op£0.1, *p£0.05, **p£0.01 and ***p£0.001.
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and spatial variation. This is particularly true for biological
indicators, which can respond to a plethora of environ-
mental conditions and whose dynamics can, therefore, be
high[119]. Data collection should consider local variation in
biological functioning as affected by factors such as
pedoclimatic zone and land use[88]. Also, data availability
might contribute to improved predictive power of models
that simulate soil processes[120] and facilitate the link
between soil properties and soil functions such as habitat
provision, soil structure formation and maintenance, and
nutrient cycling[121].
Finally, whereas the indicators used in visual soil quality

assessment have the benefit of being easily understandable,
translation of analytical soil quality indicators values to
meaning for farmers and other land managers often has to
be mediated by scientists, extension service advisors and/
or computer algorithms. It is essential that these measure-

ments have the potential to be translated into suggestions
for the implementation of sustainable agricultural prac-
tices[122,123]. The novel indicators studied here seem to
have this potential.

5 General remarks and suggestions for
future research

The approach used for the identification and measurement
of novel soil quality indicators in Bongiorno et al.[27–30]

required simplification of the management practices in the
ten LTEs in broad categories (tillage and organic matter
addition). This type of generalization can be important for
the development of soil conservation policies[124]. How-
ever, site specificity is important in the assessment of
supply and demand of soil functions because these depend

Table 3 Advantages and disadvantages of the novel soil quality indicators

Novel indicator Advantages Disadvantages

Labile carbon fractions Sensitive
Multifunctional indicators
Unified protocols are available

Individual laboratory protocols vary, hampering general
standardization and comparability

Pre-treatment conditions (sieving and storing) affect all the
fractions; also quantity of soil and soil organic carbon
affects POXC determination

Not clear which part of the total carbon is quantified,
complicating the interpretation of the results (POXC
might not quantify only the labile part of TOC)

Soil suppressiveness Highly reproducible, fast and easy assay
Close to in situ conditions
Sensitive

Other factors, not quantified in our study, affect soil
suppressiveness

Assessment of potential, which does not take into account
the specificity of a particular host-pathogen interaction
in the field

Bioassays with different pathogen can give different results
Bioassay should be combined with in situ characterization
of disease severity and/or with a bioassay using the crop
and the pathogen that are present in the area and cause
disease

Free-living soil nematode
communities

Sensitive
Molecular techniques gave results in accordance to more
established microscopic techniques. Data obtained with
molecular methods can be interpreted using knowledge
on nematode community composition (i.e., trophic and
life strategy groups)

Molecular characterization will become ever faster,
cheaper and with higher throughput than
morphological identification

Information on taxonomic as well as functional and
ecological aspects based on food preferences and
life-history is available

Variable efficiency of the extraction of nematodes and DNA
from soil, and high variability in the methodology
between laboratories

Optimization and standardization of the method is needed:
primer selection, database completeness and bioinformatic
analysis workflow

Number of copies of targeted genes varies with species
and life stage, complicating the assessment of relative
abundances, and standardization of the sequencing
results

Assessment of relic DNA

Microbial catabolic profile
(MicroRespTM)

Easy and practical functional characterization of the soil
microbial community which combines functional
diversity and degradation rates

Sensitive

The method selects only species adapted to rapid growth
on simple substrates

The choice of the substrates is critical and the current set
of substrates has low discriminating capacity

The same amount of carbon source is added to the soil,
not the same amount of carbon

Final values are highly dependent on a laboratory-specific
calibration line, making comparison between laboratory
results problematic
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on soil type, land use and specific management[6,65,86,125].
There is, in fact, a need for more regional and
management-specific soil quality assessments[126] that
can eventually generate context-specific solutions in
agriculture[127,128].
In addition, it should be stressed that the technological

and knowledge advancement that is creating the possibility
to develop novel soil quality indicators should not be
blindly followed. Thoughtful evaluation of the relative
merits of the potential indicators is needed as in the case of
molecular methods[129,130].
Nevertheless, the novel soil quality indicators presented

offer the potential to be added to, or partly replace,
indicators measured in existing soil quality assessment
schemes because of their sensitivity to management, and
linkages with soil processes such as nutrient and carbon
cycling, habitat for biodiversity and soil suppressiveness.
In-depth time and cost analysis is needed to evaluate
whether these aspects make them appropriate elements of
soil quality assessment schemes. At present, the addition of
POXC as a soil quality indicator seems the most feasible
possibility if the challenges outlined above (Section 4) are
taken into account, in particular regarding standardization
and interpretation.
In this respect, the following research opportunities

should be explored.
� Studies focusing on (1) elucidating which part of

the TOC is measured as labile carbon (i.e., POXC
might not only measure the labile fraction of the TOC),
(2) developing a rapid and easy way to assess organic
carbon quality, and (3) elucidating the relationship between
labile carbon, different organic carbon compounds and
functions are needed. Spectroscopic methods seem very
promising in this respect, e.g., mid-infrared photoacoustic
spectroscopy[131] and diffuse reflectance Fourier trans-
formed mid-infrared spectroscopy; they could also be used
to assess microbiological characteristics of the soil
community such as microbial biomass carbon[84].
� Elucidation of which methodologies may help with the

assessment of effectiveness indicators of soil disease
suppressiveness is needed. In this regard, sequencing,
transcriptomics, quantitative PCR, metabolomics, and
proteomics techniques are promising[132]. However, the
link between potential antagonistic activity of the micro-
bial community assessed by molecular methods (e.g.,
presence of genes coding for antagonistic properties) and
the actual soil suppressiveness measured with bioassays as
well as the predictive value for field conditions need to be
established.
� Validation of the results of food-web indices of

free-living nematode communities, calculated with
sequencing results, is needed, together with the optimiza-
tion of databases, pipelines for the method (primer
selection, bioinformatics analysis), and standardization of
the sequencing results to obtain corrected relative
abundances[133].

� Better interpretation and validation of theMicroRespTM

results are needed to ensure that results will be under-
standable and easily translated to management recommen-
dations.
� There is a need to strengthen the link between

taxonomic and functional diversity and soil processes, to
make more effective use of soil biota information in soil
quality assessment.
� Further studies are also needed for other management

practices such as crop rotations, intercropping, cover crops,
and more specific organic matter input practices (e.g.,
farmyard manure, slurry and biochar). In addition, the
effects of soil texture should be further considered to give
more specific management recommendations.
� There is a need to investigate when and to what extent

involvement of different stakeholders (e.g., farmers and
other land managers) in the development, validation and
use of novel soil quality indicators might help to render
research activities in the field of soil quality indicators
more effective.

6 Conclusions

Assessing biological soil quality indicators is essential to
monitor the status and the changes in soil processes as
affected by anthropogenic pressure. In this work the
potential of different soil properties, i.e., labile organic
carbon, soil disease suppressiveness, free-living nematode
community characteristics and microbial catabolic profiles,
as novel soil quality indicators in agricultural systems is
summarized and discussed. Reduced tillage in particular,
and organic matter addition to a lesser extent, affected
these different dimensions of soil quality. POXC, and to a
lesser degree the other carbon fractions of organic matter,
were found to be particularly suitable indicators, as is
apparent from the quantitative analysis of their sensitivity
to soil management and their direct and indirect contribu-
tions in sustaining multiple soil ecosystem services
(nutrient retention/supply, erosion control, carbon storage,
disease suppression, biodiversity conservation, and bio-
mass production). Although a better understanding of their
mechanistic relationships with soil functions, and of which
part of the organic matter is quantified by the labile carbon
fractions is needed, the novel indicators assessed were
linked to functionality. The novel indicators may therefore
play a valuable role in translating soil quality assessment
into agricultural management options. The functional
characterization of soil nematodes was shown to be more
sensitive to management than a mere taxonomic character-
ization, which could point out the important role of
information based on biota functioning in soil quality
assessment. In addition to being sensitive indicators for
long-term agricultural management effects, it is speculated
that the novel indicators can serve as sensitive indicators
of short-term agricultural management effects also. This
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study together with our previous studies can contribute to
the further development of soil quality assessment by
adding information about the suitability of novel indicators
to assess soil quality. Future work should focus on the
validation of the indicators studied and to optimize their
use in combination with, or substituting for, existing soil
quality indicators.

Supplementary materials The online version of this article at https://doi.
org/10.15302/J-FASE-2020323 contains supplementary materials (Tables S1
and S2; Fig. S1).
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