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Abstract Managing plant health is a great challenge for
modern food production and is further complicated by the
lack of common ground between the many disciplines
involved in disease control. Here we present the concept of
rhizosphere immunity, in which plant health is considered
as an ecosystem level property emerging from networks of
interactions between plants, microbiota and the surround-
ing soil matrix. These interactions can potentially extend
the innate plant immune system to a point where the
rhizosphere immunity can fulfil all four core functions of a
full immune system: pathogen prevention, recognition,
response and homeostasis. We suggest that considering
plant health from a meta-organism perspective will help in
developing multidisciplinary pathogen management stra-
tegies that focus on steering the whole plant-microbe-soil
networks instead of individual components. This might be
achieved by bringing together the latest discoveries in
phytopathology, microbiome research, soil science and
agronomy to pave the way toward more sustainable and
productive agriculture.
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1 Introduction

Plant pathogens can destroy up to 30% of global
agricultural outputs[1] and hence there is an urgent need
to develop disease-resistant cropping systems. Plants have

evolved several physiological adaptations that can provide
immunity to some of these threats[2]. Plant defense
mechanisms against diseases have long been considered
in the context of plant immunity in an analogous fashion to
human medicine[3]. However, this comparison is only valid
to a certain extent and can be misleading because plants
lack several characteristics associated with a fully adaptive
immune system[4]. One of the limitations of plant defenses
is the absence of an acquired immunity that can prevent
reinfection by pathogens[5]. As a result, improving disease
management by focusing on plant immunity offers limited
prospects as innate resistance genes must be tediously built
into the genome via breeding, while pathogens can easily
overcome the resistance due to their relatively rapid rate of
evolution. Alternative approaches to complement the
missing plant immune functions via genetic engineering[6]

or by using large amounts of pesticides are problematic due
to restrictive legal framework, limited public acceptance
and in the case of pesticides adverse effects on the
environment[7,8]. Furthermore, current high-yielding agri-
cultural strategies are inherently unstable in the long-term,
as they are highly dependent on heavy external agrochem-
icals inputs and require a strict control of unpredictable
environmental parameters[9,10]. One solution to improve
plant disease management is to shift away from the
reductionist view in which plant health is studied by
focusing on individual components in isolation, to a more
holistic framework in which plant immunity is considered
to emerge as a result of interactions with plant-associated
microorganisms and environmental conditions[11].
Plant immunity is typically viewed as a plant-centered

process in which traits encoded by the plant genome
determine resistance to pathogens. This concept has to
some extent been softened by the disease triangle concept
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in which the environment is also considered to modulate
plant susceptibility to diseases. The plant-centered view
has been further challenged by growing evidence for the
key role of microbes in plant health and disease resistance.
Because plants are never sterile, their physiology, devel-
opment and immunity are deeply intertwined with
associated microorganisms up to the point where they
might become dysfunctional without appropriate microbial
partners[12]. Plants thus actively engineer their local
environment, creating specific niches in their roots that
are distinct from the surrounding soil matrix and often
attractive for microbial growth.
Here, we pay special attention to the rhizosphere, the

underground part of the plant consisting of the endorhizo-
sphere, rhizoplane and ectorhizosphere[13], as the key
target for an integrative management of plant immunity.
The rhizosphere is one of the key interfaces between
plants and their environment, thanks to its large area,
biological activity and interplay with the surrounding
environment[14–16]. We collect evidence from different
disciplines to support this concept which is analogous to
mucosal immunity in animals[17]. We highlight the
components that form the rhizosphere, how they can be
combined into a single integrated concept of rhizosphere
immunity and give examples of how microbial interactions
can extend innate plant immunity to cover all properties of
full adaptive immunity. Finally, we pinpoint the usefulness
of this concept for plant health at the practical level via the
promotion of interdisciplinary collaboration and integra-
tion of different technologies into an innovative, multiple-
target plant protection strategy.

2 Rhizosphere immunity: plant health at
the interface between plant, soil and
microbiome

Hidden belowground, the rhizosphere can be seen as the
powerhouse of the plant immune system where plants,

microorganisms and soil together form a tightly connected
network that has an essential role in preventing pathogen
attack (Fig. 1(a)). The rhizosphere has long served as a
target for interventions by highly active yet often disjointed
research fields including phytopathology, soil science and
microbiology. As a result, intervention strategies have
typically been employed independently, which may partly
explain their limited impact. We propose that instead of
focusing on individual components of the rhizosphere,
intervention strategies should target the whole network
formed by the plant, microbiota and the soil they inhabit.
The rhizosphere contains a vast pool of functional
characteristics that are involved in pathogen control, with
each compartment showing some analogy with the
mammalian immune system. We have divided these into
three key components, namely plant-encoded, microbe-
encoded and soil-determined traits, and next characterize
and consider their interactions in the context of rhizosphere
immunity.

2.1 Single component-encoded traits

2.1.1 Plant-encoded traits

The plant genome encodes several traits that together form
an intricate innate immune system allowing plants to detect
and fight against pathogens[18–20] (Fig. 1(b)). Plant-
encoded immune functions are based on the recognition
of conserved microbe-associated molecular patterns
(MAMPs) that detect pathogens by binding to specific
receptors[21,22]. These receptors activate defense responses
on recognition of MAMPs that limit or prevent the
proliferation of pathogens on or within the plant[21,22].
Pathogens, in turn, have evolved to produce and secrete
effector proteins that interfere with either the recognition of
MAMPs or the subsequent MAMP-triggered immune
responses, leading to a coevolutionary arms race with their
plant host[23,24]. Plant resistance genes can confer
quantitative or complete resistance to diseases[25] which

Fig. 1 Overview of the components of the rhizosphere immunity. (a) The rhizosphere can be considered to be a meta-organism
encompassing interactions between the plant, microbiome, pathogen and the surrounding soil matrix. Each of these components can exert
independent (b) and interactive effects on plant health (c), making rhizosphere immunity an emerging property of the whole agricultural
ecosystem.

318 Front. Agr. Sci. Eng. 2020, 7(3): 317–328



also depends on the virulence of the pathogen. As a result,
the genetic compatibility between the plant and the
pathogen together determines whether a disease will
develop. Although it has been shown that certain microbial
pathogens can increase their infectivity during a single
lifecycle by horizontal gene transfer[26], plants are less
flexible and their resistance is more limited by the genetic
material that they have inherited. Moreover, while plants
can respond to infections by systemically enhancing their
immune defense, they do not have immunological memory
that would help their immune system to specifically
recognize of previously encountered pathogens. Unlike
most animals[27], archaea and bacteria[28], acquiring
immunity to a new pathogen for plants requires a mutation
and selection process that stretches over many generations.
Resistance genes can be combined and introduced to new
varieties through plant breeding but this is a relatively slow
and tedious process and ultimately can be overcome by
rapidly evolving pathogens.

2.1.2 Microbiome-encoded traits

Rhizosphere microorganisms form a dense biofilm around
plant roots[29] and can contribute to disease suppression in
multiple ways[30] (Fig. 1(b)). Thanks to its vast diversity,
the microbiome offers a substantial functional gene pool
that supersedes the number of genes present in the plant
genome by orders of magnitude. Furthermore, the micro-
biome shows a certain level of self-organization and
stability[31] that can directly benefit the host, for example
by promoting homeostasis[32]. Due to niche speciation,
microbial species can coexist together in the rhizosphere
by occupying subsets of root space and consuming distinct
sets of plant- and soil-derived resources. As a result, highly
diverse microbial communities likely leave only a few
niches unoccupied and available for potential invading
pathogens[33,34]. Moreover, as a side effect of the ongoing
chemical interactions associated with microbial competi-
tion, several species produce inhibitory compounds that
may restrict pathogen growth and virulence[35,36]. As a
consequence, root-associated microbes have the potential
to provide plants extended immunity by antagonizing
pathogens[33,36,37].

2.1.3 Soil-determined characteristics

Plant roots ‘bioengineer’ the soil matrix in their vicinity

into a very different environment from the surrounding
‘bulk’ soil to the point that this difference could, in our
opinion, be considered to form an individual component of
the rhizosphere immunity (Fig. 1(b)). Moreover, the
physicochemical properties of the soil can have deep
legacy effects on the rhizosphere properties affecting
pathogen suppression over multiple plant generations. For

example, soil structure can constrain the ability of a
pathogen to move toward its host plant and gain access to
available nutrients, while soil pH can constrain pathogen
growth, and soil particles adsorb and immobilize patho-
gens or their toxins[38–40]. Soil porosity and structure might
further affect local pools of biodiversity and water flow[41],
which could either constrain or promote the passive
movement of pathogens[42]. Altering soil physicochemical
properties by using different amendments is an established
strategy to manage soil fertility[43]. However, it is still often
a process of trial and error with considerable uncertainties
as to how to match the input with the expected and
predicted responses.

2.2 Interactions between different components

All the above components contribute to disease suppres-
sion on their own. However, all the individual components
are also intimately interlinked with each other and might
interactively provide more substantial effects on pathogen
suppression. Below we give an overview of some
representative interactions between these components
and their expected effects on rhizosphere immunity
(Fig. 1(c)).

2.2.1 Plant–microbiome interactions

Plants recruit microorganisms, for example by secreting
root exudates consisting of a blend of nutrients and
bioactive compounds[44–46] (Fig. 1(c)). These selected
microorganisms will, in turn, interact with plant physiol-
ogy and can modulate plant immune responses to
pathogens[47].

2.2.2 Plant–soil interactions

Soil nutrient availability plays an important role in
triggering plant defenses (Fig. 1(c)). The availability of
key elements such as phosphorus, iron or calcium can
therefore directly affect plant investment in pathogen
defenses[48–50]. In return, plants affect soil elemental
composition by taking up nutrients and adding carbon in
the form of exudates and dead plant material, further
shaping interactions between pathogen and microbiota[50].

2.2.3 Soil–microbiome interactions

Soil structure and nutrient content are two major
determinants of microbial community assembly[51–53]

(Fig. 1(c)), which determines the composition and
functioning of microbiomes, including their ability to
suppress pathogens[54,55]. The interactions between soil
and microorganisms are bidirectional, with microbial
communities further changing the soil structure and
nutrient content by degrading organic matter, producing
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molecules binding soil particles together[56,57] or chelating
available nutrients[58].

3 Rhizosphere immunity: an immunity
sensu stricto

A major limitation of plant immunity is the lack of
adaptive immunity. In contrast to animals or even bacteria,
plants do not have immunological memory that would
allow them to recognize and trigger a robust secondary
response against a previously encountered pathogen[5].
Resistance must thus be predetermined by their genome,
making their immunity inflexible. In contrast, the whole
rhizosphere can together form an extended immunity that
can be considered to have all the features of fully
developed, adaptive immunity. We describe below how
these characteristics match the four key medical character-
istics of an immunity sensu stricto: prevention, detection,
response and homeostasis[59] (Fig. 2).

3.1 Prevention

As the root system offers natural openings for plant
pathogen entry, one of the primary functions of the
rhizosphere immune system is to prevent pathogens from
getting inside the plant. The rhizosphere forms a
constitutive physical barrier against most pathogens
comparable to mammalian mucosa. This barrier function
is in part provided by the soil structure via various
physicochemical mechanisms discussed above[38–40]. Also
the plant itself forms a physical barrier against the
pathogen through the chemical reinforcement of the root
surface with suberin and lignin layers[60–62], while
microorganisms contribute to disease prevention by
competing for the physical space and nutrients on root
surfaces, which often triggers the production of toxic
compounds that can further repel the pathogen. Finally,

this microbial activity can be further stimulated by the
plant through the production and excretion of polysacchar-
ides that induce bacterial biofilm formation[63].

3.2 Detection

If a pathogen can overcome the physical and microbiome-
mediated competition and start multiplying in the rhizo-
sphere, it may be still be detected and suppressed.
Pathogen detection can occur at various levels. Plants
can recognize MAMPs such as surface molecules or
effectors[21,22], or respond to damage resulting from early
infections[64,65]. Alternatively, the microbiome can also
‘detect’ pathogens by responding to their presence. For
example, certain pathogen virulence traits such as fusaric
acid production in Fusarium spp. can affect interactions
with other microorganisms[66–68] while soil acidification
caused by Rhizoctonia solani triggers changes in micro-
biome composition and activity[69]. The presence of the
pathogen can also promote the reproduction of natural
enemies such as viruses[70], predatory bacteria[71], and
protists[72], potentially triggering cascades in microbial
trophic networks, which could feed back in the activation
of plant immune responses.

3.3 Response

Pathogen presence can trigger a range of responses that
will inhibit its further growth. Plant responses include
apoptosis[62,73] and the production of defense compounds
such as callose[74]. At the microbiome level, molecular
cues produced by the pathogen or changes in the
environmental conditions can lead to enhanced expression
of antagonistic traits such as increased production of
antibiotics[69]. The accumulation of other microbial
antagonists such as bacteriophages may also hamper
future pathogen growth. Together, the response will reduce
pathogen densities, or potentially impose selection that

Fig. 2 Mechanistic contributions of the rhizosphere components (plant, soil and microbiome) to the key functions associated with
immunity of the rhizosphere system. In reference to the medical definition of immunity, these traits are classified into pathogen prevention,
pathogen detection, response to pathogen presence and rhizosphere homeostasis.
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leads to evolutionary trade-offs where increased resistance
to antagonists comes with a cost of reduced virulence[75]. If
antagonists become dormant after pathogen eradication
(e.g., by forming spores) they may form a defensive
reservoir that can be rapidly reactivated upon reinfection
providing an acquired immunological memory to the
rhizosphere.

3.4 Homeostasis

In addition to pathogen detection and eradication, home-
ostasis in the face of abiotic and biotic stresses is an
essential function of plant health. The rhizosphere immune
system degrades senescent or dying biological cells (from
roots or microbes) and pollutants and agrochemical
residues that can have negative impacts on plants.
Accumulation of toxic compounds in the rhizosphere,
such as virulence factors released by pathogens during
infection, can also have harmful impacts on plant
physiology, alter microbial community structure and
functioning, or compromise the ability of the soil to retain
nutrients[76]. Each rhizosphere component contributes to
homeostasis. The plant supplies carbon to the microbiome
that can, due to its enzymatic arsenal, detoxify or degrade
phytotoxic compounds, mycotoxins and pollutants[77,78],
while plant compounds and cells form a protective barrier
that prevents the entry of toxins. Finally, the soil itself can
contribute to homeostasis through the inactivation and
adsorption of pollutants and phytotoxic compounds to
clays or humic acids[79,80].

4 Rhizosphere immunity in the context of
plant pathogen infections

We will next discuss how rhizosphere immunity is linked
with the emergence of plant diseases and discuss several
ways it could guide in the development of rhizosphere
management. We argue that when only the plant (Fig. 3(a),
see 2.1.1) or the soil matrix components are considered,
rhizosphere immunity is mainly constitutive and incapable
of changing dynamically in response to infections.
However, when microbiome component is included,
rhizosphere immunity can also be viewed as an adaptive
system in which immunological memory is provided by
pathogen-suppressive microbes than can constrain re-
infecting pathogens within and between plant generations.

4.1 Constitutive soil suppressiveness

Plant and soil microbiologists worldwide have reported
that some soils naturally protect plants from pathogens.
This effect may be attributed to two underlying mechan-
isms which we categorize here under the ‘constitutive soil
suppressiveness’ concept (Fig. 3(b)). First, some soils
might not simply offer a suitable physico-chemical

environment, e.g., the right pH or nutrients, for pathogen
survival. However, soil suppressiveness driven by extreme
abiotic conditions (low pH or poor nutrient availability)
will likely be bad also for plant growth either directly or by
suppressing plant growth-promoting microbes. As a result,
manipulations aiming to relieve stress caused by abiotic
growth conditions might also reduce soil suppressiveness.
Alternatively, soil suppressiveness could be due to the
properties of the microbial community that may prevent
the growth of pathogens (often classified as general soil
suppressiveness[81]). Although the exact nature of sup-
pressive microbiomes is still debated, suppressive soils
often have a high prevalence of antimicrobial genes[54] or
are overrepresented by microbes that can efficiently
compete with the pathogen for soil- and root-associated
niches[33]. Soil suppressiveness can occur naturally[54] or
be induced by cropping regime[82], soil organic amend-
ments[83] or microbial inoculants[36]. While microbiome-
mediated suppressiveness can become dynamic (see 4.2), it
is ephemeral and often quickly lost or disrupted due to
unfavorable soil physicochemical properties or by impro-
per agricultural management[84].

4.2 Acquired rhizosphere immunity

The established definition of plant immunity composed of
well-described salicylic acid-mediated systemic acquired
resistance[85] and the jasmonate-dependent induced sys-
temic resistance[86,87] can change considerably when
placed in a rhizosphere microbiome context. This extended
microbiome-mediated effect on innate plant immunity has
been described as a “cry for help”[86]. In addition to
directly repelling pathogens via the production of patho-
gen-suppressing compounds[86], some exudates can be
used to recruit and activate plant-beneficial microbes[88,89]

(Fig. 3(c)). For example, plants can secrete certain
compounds that increase the relative abundance of
antagonistic species, activate the expression of antimicro-
bial traits of existing microbiota, or favor microorganisms
capable of directly stimulating plant immunity[89]

(Fig. 3(c)). This accumulation of a protective microbiome
may occur within a few plant generations (also referred to
as specific suppressiveness) as illustrated by the take-all
decline in wheat[30,90]. In contrast, in the case of Fusarium
wilt of strawberry, several plant generations are needed for
the accumulation of an antagonistic microbiome that can
efficiently prevent further reinfections[91]. Moreover, in
addition to bacteria, other beneficial microbes such as
phages, protists or nematodes may also be responsible for
the active elimination of pathogens. Crucially, if these
consumers can persist in the soil microbial reservoir for a
prolonged time, they may provide immunological memory
(referred to as soil immune response, Fig. 3(d)) to suppress
re-infecting pathogens during current and future plant
generations[37,55,92].
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4.3 Multicomponent immunity

A major strength of rhizosphere immunity is that it allows
combining different components of disease resistance
under one unifying concept of immunity. One excellent
example of the interactive effects and feedbacks between
multiple components is the interplay between soil abiotic
properties, plant growth and microbiome recruitment. Soil
physico-chemical properties can impose selection on the
microbiome, potentially affecting its ability to suppress
pathogens by changing microbial gene expression or
community composition. Soil properties can also directly
affect plant growth, which can further cause feedback
loops on microbial community composition and function-
ing including the growth and abundance of the pathogen.
As a result, changing one component may have cascading
effects on the other two and vice versa. Predicting and
manipulating plant health thus requires a specific under-
standing of each component and the interactions between
them.

5 Rhizosphere immunity as a theoretical
framework for integrative plant disease
management

Rhizosphere immunity may potentially offer an interdisci-
plinary framework to understand and manage plant health
using an integrated and interdisciplinary approach combin-
ing plant biology, microbiology and soil sciences. Instead
of making the study of each individual component

redundant, the main aim of the rhizosphere immunity is
to better understand the interactions and interdependencies
between them viewing agricultural systems as ecological
communities. Below we discuss potential practices that fall
within the presented framework and describe how rhizo-
sphere immunity may help in developing integrated
pathogen management strategies (Fig. 4).

5.1 Pathogen-centered management

Pesticides are widely used to control pathogens to which
plants do not have resistance. While pesticides are
generally effective in suppressing pathogens in the short-
term they can select for resistant pathogens, potentially
leading to a downward spiral of increasing pesticide doses
and even more severe disease outbreaks. Crucially,
pesticides are often not pathogen-specific, causing sub-
stantial collateral damage to commensal and beneficial soil
microbiota[93] linked with declining nutrient cycling[94]

and removal of toxic compounds[95]. These microbiome
effects may also indirectly alter plant immunity, direct
pathogen suppression by the microbiota and rhizosphere
homeostasis. Considering the key importance of the
rhizosphere in plant health, it is crucial to develop a new
generation of agrochemicals that specifically target patho-
gens or stimulate specific plant immune responses (e.g.,
activation of jasmonic acid signaling[45,87]). Alternative
non-pesticide control agents such as highly specific
bacteriophages should also be considered[96] as a precision
tool to control pathogens without causing negative side
effects on the surrounding plant microbiome.

Fig. 3 Rhizosphere immunity can combine several reported mechanisms underlying plant resistance into a whole system approach.
(a) Breeding or engineering pathogen resistance into the plant genome can give plants the ability to directly suppress or defend against
pathogens; (b) soil suppressiveness, the natural ability of soils to constrain pathogen growth and prevent disease onset, has been
consistently linked to direct inhibition of pathogens by soil-dwelling microorganisms; (c) in the “cry for help” hypothesis, plants respond
to the presence of a pathogen by actively recruiting microorganisms that directly inhibit pathogens or have positive effects on the
activation of plant innate immunity; (d) in the soil immunity hypothesis, pathogen presence triggers changes in the soil structure that can
shift the composition of the microbiome toward a more suppressive configuration.
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5.2 Microbiome-centered management

Application of probiotic microbes as inoculants may
enhance pathogen suppression[33,36]. One long-standing
problem with microbial inoculants is the mismatch
between in vitro and in vitro efficacy and relatively low
establishment rates in field conditions due to varied
microclimatic conditions, physicochemical soil properties
and native locally adapted microbial populations. One way
to improve this would be to better match the inoculated
microbes with the prevailing environmental conditions
they will experience at the site of inoculation. Alterna-
tively, instead of introducing new bacteria into the soil,
bacteriophages could be used to selectively remove
pathogens (or other positively associated bacterial taxa)
from the soil[75]. For example, it has been shown that
bacteriophages can be used in combination with antibiotic-
producing bacteria[75] or with each other to increase the
efficacy of pathogen suppression[96]. Moreover, instead of
focusing solely on density dynamics of the pathogen,
bacteriophages have been shown to drive rapid pathogen
evolution where the increased level of bacteriophage

resistance is traded off with virulence and high growth
resulting in weakened pathogen populations[96].

5.3 Plant-centered management

Breeding plants with increased disease resistance has
played an important role in improved plant pathogen
control. However, breeding plants is a slow and expensive
process and is further complicated by difficulties in
identifying the right set of genes that, often in combination,
are responsible for the resistance. Moreover, expression of
resistance mechanisms usually comes with a cost of
reduced plant growth[24]. While genetic engineering is a
highly efficient and environmentally friendly technology,
especially when the resistance genes derived from the wild
relatives are stacked and recombined in the domestic
cultivars[97], the broader use of genetically modified (GM)
plants is still held back by regulatory restrictions. Instead
of focusing on resistance genes, a new promising approach
is to breed plants to promote the growth of specific
microbes as differences in microbiome composition
between cultivars can explain a large part of their

Fig. 4 Integration of rhizosphere immunity in plant disease management. In addition to researchers and scientists, it is important to bring
together industrial stakeholders, end-users, legal partners and policymakers. Efficient exchange of knowledge and new multidisciplinary
collaborations may be achieved through interdisciplinary conferences, workshops and funding calls and development of common
terminology and language. Issues related to intellectual property and legal framework also need to be considered to better understand the
practical limitations from the academic, industrial and end-user perspective at local and global levels.
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sensitivity to pathogens[98–101]. Such an approach might
restore the natural ability of plants to recruit beneficial
microbes, which could have got lost during the develop-
ment of modern cultivars.

5.4 Soil-centered management

Amendment of the soil with organic matter, bio-
organic fertilizer, green manure or lime to adjust
pH can improve plant immunity and microbiome
suppressiveness[83,102–104]. However, the processes
through which the incorporated amendments result in
reduced disease incidence remain largely unknown,
reducing the predictability and repeatability of the process.
Smart soil management combining prebiotics with bene-
ficial microbial inoculants may unlock new benefits by
concurrently shifting the soil nutritional balance in
combination with microbiome functioning[105]. We thus
propose that soil management should be a key component
of all integrated management approaches.

6 Conclusions

New integrated and sustainable pest management strate-
gies are of utmost importance in the context of rapidly
evolving pathogens, global warming and the demand for
low-input agricultural systems (Fig. 4). While considerable
effort has been made to develop environmentally friendly
ways to control plant diseases such as biological pesticides,
resistant plant cultivars, soil amendment practices and
microbial inoculants, these management strategies are still
mostly applied in isolation. As a result we lack a holistic
framework in which multiple management approaches are
employed simultaneously to improve plant health. In this
perspective we propose rhizosphere immunity as a
potential framework for understanding and manipulating
complex plant–soil agrisystems using community and
ecosystem approach. The key tenet of our approach is that
in order to predict and manage plant health it is important
to understand not only each component of rhizosphere
immunity in isolation, but crucially, also how these
components interact and are affected by each other. More
research is required to better understand the relative
importance of different components of rhizosphere immu-
nity and how they can be ranked and measured objectively
using standardized methods. To achieve these goals it is
vital to bring together industrial stakeholders, end-users
and researchers working in different scientific subdisci-
plines to allow efficient exchange of knowledge and to
foster multidisciplinary collaboration. While such interac-
tions can be promoted via conferences and joint funding
schemes, effort is also needed to find a common language
and terminology that allow efficient communication
between interacting parties. Moreover, issues related to

intellectual property and legal framework need to be
considered to better recognize the practical limitations
from the academic, industrial and end-user perspective at
both local and global levels. In practice, integrated
pathogen disease management strategies might include a
combination of new resistant plant cultivars (via breeding
or GM), more defined organic amendments that can
selectively change the nutrient balance of the soil, narrow-
range pesticides and herbicides with low collateral damage
to surrounding ecosystems and high precision, and multi-
functional microbial inoculants that can be engineered to
match the local environmental conditions at the site of
inoculation.
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