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GRAPHICAL ABSTRACT

ABSTRACT

About 80% of plant viruses are transmitted by specific insect vectors, especially
hemipterans with piercing-sucking mouthparts. Many virus-transmitting insects

are also important crop pests that cause considerable losses in crop production.

This review summarizes the latest research findings on the interactions between

plant viruses and insect vectors and analyzes the key factors affecting insect

transmission of plant viruses from the perspectives of insect immunity, insect

feeding, and insect symbiotic microorganisms. Additionally, by referring to the

latest applications for blocking the transmission of animal viruses, potential

control strategies to prevent the transmission of insect-vectored plant viruses

using RNAi technology, gene editing technology, and CRISPR/Cas9 + gene-driven

technology are discussed.

© The Author(s) 2021. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)



1 CHALLENGE OF INSECT-VECTORED
PLANT VIRUSES

Plant viruses are an important factor that decreases the yield and
quality of grain, vegetables, flowers, fruits, and other crop
products. Due to the lack of effective control strategies, plant
viruses cause an estimated economic impact of > 30 billion USD
annually[1]. Insects are important vectors of plant viruses.
Among the 1100 known plant viruses, about 80% can be
transmitted by vector insects including aphids, planthoppers,
whiteflies, leafhoppers and thrips[2]. In addition to growing
virus-resistant plants, the integrated management of vector
insects is also critical in the control of plant virus diseases[3]. At
present, pest control relies mostly on pesticide application,
which is often incompatible with the natural enemies and so can
result in pest resurgence. Additionally, the excessive use of
pesticides leads to environmental pollution and is inconsistent
with the sustainable development of agriculture[4]. Therefore, it
is important to achieve the comprehensive control of plant
viruses based on knowledge of the interactions between insects
and plant viruses, searching for the key factors that influence
virus transmission, and circumvention of the transmission
routes.

2 CHARACTERISTICS OF PLANT-VIRUS
TRANSMISSION BY HEMIPTERANS

Based on transmission mode, plant viruses can be classified as
nonpersistent, semipersistent and persistent[5]. In nonpersistent
transmission, viruses are retained in the distal parts of stylets
from a few minutes to several hours, and in semipersistent
transmission, viruses primarily bind to the anterior of the
digestive tract. Generally, nonpersistent and semipersistent
viruses lose transmissibility when the vector molts and viruses
cannot replicate within the vector insects. The period of
acquiring and transmitting semipersistent viruses is longer
than that of nonpersistent viruses. Persistent viruses can be
further divided into proliferative and nonproliferative types. In
persistent nonpropagative transmission, viruses do not lose
transmissibility when the vector molts and this mode of
transmission is found mainly in Luteoviridae[3] (Table 1). In
persistent propagative transmission, most plant viruses multiply
and circulate inside the vector insects following the route:
midgut-hemolymph-salivary gland, which is associated with
multiple interaction among viruses, insects and plants[2,6].

The binding sites of nonpersistent and semipersistent viruses are
located at the tip of the stylet or in the anterior of digestive tracts,

where viruses specifically interact with insect receptors through
coat proteins and helper proteins. The cauliflower mosaic virus
(CaMV) transmitted by Brevicoryne brassicae has been exten-
sively investigated. In this system the transmission of CaMV
requires the viral protein 2 (P2) and viral protein 3 (P3). P2 is a
helper protein with its N terminus binding to the aphid stylet
and C terminus binding to the P3 on the surface of the virus,
thereby building a bridge between the virus particle and the
insect receptor[7–9]. In CaMV-infected plants, P2, P3 and virus
particles aggregate to form transmission bodies. When the
insects probe infected plant tissues the action of feeding triggers
a rapid and massive influx of tubulin into the transmission body,
leading to transmission activation[7,10]. CaMV P2 binds to insect
receptors at the tip of the stylet. However, the identification of
this receptor is challenging as the stylet tip consists of highly
cross-linked chitin fibers and cuticular proteins[11–13]. In 2018,
Webster et al. were the first to identify two receptor proteins
(Stylin-01 and -02) for CaMV and demonstrated the potential
target for controlling noncirculative plant viruses[14].

Interactions between vector insects and persistent transmitted
viruses are more complex. The viruses circulate within the
insects from the gut lumen into the hemolymph or other tissues
and finally invade the salivary glands from which the viruses are
released into new hosts during insect feeding. Also, some
persistent viruses can break through the ovarian barrier for
vertical transmission[2]. In the case of rice viruses transmitted by
planthoppers or leafhoppers (Table 1), there are four barriers in
horizontal transmission comprising the membrane invasion
barrier of the midgut lumen, the basal lamina release barrier of
the midgut, and the invasion barrier and release barrier of
salivary glands. Qin et al. found that the rice stripe virus (RSV)
uses the Laodelphax striatellus sugar transporter 6 to infect the
insect midgut, but the rice grassy stunt virus does not, which is
partially associated with their capacity for binding to this
receptor[15]. RSV infection also requires the involvement of the
virus-encoded glycoprotein NSvc2. This protein acts by helping
the virus to successfully enter the midgut epithelial cells, with its
N terminus binding to intestinal surface receptors and its C
terminus inducing host cell membrane fusion[16]. Additionally,
the passage of RSV through midgut and salivary glands needs the
assistance of L. striatellusα-tubulin, leading to the dissemination
of the virus to other organs in the insect vector[17]. The southern
rice black-streaked dwarf virus (SRBSDV) and rice dwarf virus
(RDV) form tubular structures when they pass through the basal
lamina release barrier of the midgut[18,19]. The tubular structure
of SRBSDV is formed by the interaction between the viral
nonstructural protein P7-1 and the insect actin. The inhibition
of P7-1 synthesis significantly reduces SRBSDV infection[19].
Rice gall dwarf virus (RGDV) also forms tubular structures when
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Table 1 Plant viruses addressed in this review

Virus Family/Genus Plant host Hemipteran vector Transmission mode

Barley yellow dwarf virus (BYDV) Luteoviridae,
Luteovirus,
(+)ssRNA

Barley, oats, wheat, etc. > 25 aphid species Persistent-nonpropagative

Cauliflower mosaic virus (CaMV) Caulimoviridae,
Caulimovirus,

dsDNA

Radish, cauliflower, cabbage, etc. Brevicoryne brassicae Nonpersistent

Cucumber mosaic virus (CMV) Bromoviridae,
Cucumovirus,
(+)ssRNA

Cucumber, spinach, pepper, etc. > 60 aphid species Nonpersistent

Maize mosaic rhabdovirus (MMV) Rhabdoviridae,
Nucleorhabdo-

virus, ( – )ssRNA

Maize, teosinte, itchgrass, etc. Peregrinus maidis Persistent-propagative

Potato leafroll virus (PLRV) Luteoviridae,
Polerovirus,
(+)ssRNA

Potato Aphis fabae,

Aphis gossypii,

Aulacorthumsolani,

Macrosiphum euphor-

biae,

Myzus persicae

Persistent-nonpropagative

Rice black-streaked dwarf virus (RBSDV) Reoviridae,
Fijivirus,
dsRNA

Rice, wheat, maize, etc. Laodelphax striatellus,

Unkanodes sapporona,

Unkanodoes albifascia,

Persistent-propagative

Rice dwarf virus (RDV) Reoviridae,
Phytoreovirus,

dsRNA

Rice Nephotettix cincticeps,

Recilia dorsalis,

Nephotettix virescens,

Nephotettix nigropictus

Persistent-propagative

Rice gall dwarf virus (RGDV) Reoviridae,
Phytoreovirus,

dsRNA

Rice Nephotettix nigropictus,

Nephotettix cincticeps,

Recilia dorsalis

Persistent-propagative

Rice ragged stunt virus (RRSV) Reoviridae,
Oryzavirus,
dsRNA

Rice Nilaparvata lugens, Persistent-propagative

Rice stripe virus (RSV) Phenuiviridae,
Tenuivirus,
( – )ssRNA

Rice, wheat, maize Laodelphax striatellus,

Unkanodes sapporona,

Unkanodoes albifascia,

Terthron albovittatum

Persistent-propagative,

Southern rice black-streaked dwarf virus
(SRBSDV)

Reoviridae,
Fijivirus,
dsRNA

Rice, maize, Chinese sorghum, etc. Sogatella furcifera Persistent-propagative,

Tomato yellow leaf curl China virus
(TYLCCNV)

Geminiviridae,
Begomovirus,

ssDNA

Tomato, tobacco, petunias, etc. Bemisia tabaci Persistent-propagative

Tomato yellow leaf curl virus (TYLCV) Geminiviridae,
Begomovirus,

ssDNA

Tomato, eggplants, potatoes, etc. Bemisia tabaci Persistent-propagative

Turnip mosaic virus (TuMV) Potyviridae,
Potyvirus,
(+)ssRNA

Turnip, lettuce, watercress, etc. > 89 aphid species Nonpersistent

100 Front. Agr. Sci. Eng. 2022, 9(1): 98–109



it gets through the midgut barrier. However, it forms virus-
induced filaments to perform an exocytosis-like process that
enables the virus passage through the salivary gland barrier[20].
To achieve vertical transmission, RSV invades female ovaries by
interacting with insect vitellogenin[21,22], whereas RGDV can
bind to heparan sulfate proteoglycan on the surface of sperm and
be transmitted by sperm[23]. Additionally, the rice ragged stunt
virus (RRSV), RDV, RGDV and SRBSDV form viroplasms
during infection[6]. Huang et al. reported that RRSV Pns10,
which is an important component of viroplasms, interacts with
insect mitochondrial membranes to help the virus make better
use of host energy in the process of proliferation[24].

3 KEY FACTORS IN INSECT
TRANSMISSION OF PLANT VIRUSES

3.1 Insect immunity
A persistently transmitted virus that circulates within a vector
insect is also an invader from the perspective of insects.
Therefore, the proliferation and spread of plant viruses will
inevitably activate the immune system of the host (Fig. 1). Insects
do not have acquired immunity. Immune responses to viruses
depend mainly on pathways such as RNAi, Toll, Imd, JAK/STAT
and autophagy[25] (Fig. 2). For example, infection with the rice
black-streaked dwarf virus (RBSDV), maize mosaic rhabdovirus,
RSV, RGDV, and SRBSDV activates the siRNA antiviral

pathway of the host[26–28]. L. striatellus cannot transmit SRBSDV
under natural conditions. However, inhibition of the siRNA
pathway significantly increases virus accumulation and pro-
motes SRBSDV transmission by L. striatellus[29]. It is universal
that the insect RNAi pathway inhibits the spread of plant viruses.
When the key gene in the siRNA pathway (dicer-2) is silenced,
the increased virus accumulation leads to abnormality of the
intestine caused by excessive amounts of virus[30]. Therefore, the
siRNA pathway may be key to balancing the amount of virus in
insects without causing pathological damage. In addition to the
siRNA pathway, activation of the Toll pathway has also been
reported in L. striatellus infected with RSV[31]. Induction of the
Toll pathway was initiated by interaction between a Toll receptor
and RSV nucleocapsid protein, and knockdown of Toll increased
the proliferation of RSV in vector insects[31]. Additionally, the
prophenoloxidase cascade is one of the major innate immune
pathways that can restrict virus infection. Chen et al. reported
that RSV attenuates the prophenoloxidase response of the host
to ensure virus stability in the hemolymph of vector insects[32].
Some animal viruses employ the mitogen-activated protein
kinases of the host to establish successful infection. Wang et al.
found that RSV activates Jun N-terminal kinase (JNK) during
infection. Inhibition of the JNK signal significantly restricts virus
proliferation, indicating that different types of virus use similar
strategies to regulate host immunity[33].

Autophagy is a basic metabolic activity that maintains cell
homeostasis. When insects cope with an invading virus,
autophagy may either have an antiviral role or be exploited by

Fig. 1 Key factors affecting insect transmission of plant viruses. Influences of insect immunity, insect feeding behavior, insect salivary effectors

and insect symbiotic microorganisms on viral transmission are discussed in this review.
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the virus. In Bemisia tabaci, infection with the tomato yellow leaf
curl virus (TYLCV) activated the autophagy pathway, with
autophagosomes formed to degrade the virus coat proteins and
genomic DNA[34]. Inhibition of autophagy increased virus
accumulation and enhanced the virulence of B. tabaci, whereas
activation of autophagy significantly reduced the transmission
efficiency of TYLCV[34]. Chen et al. reported RGDV- and RDV-
induced autophagy in leafhoppers. However, the autophagy was
exploited by viruses to promote their spread in this system,
implicating the complex roles of autophagy in virus infection[35].
Virus infection is often accompanied by cell apoptosis, which is
generally regulated by the intracellular cysteine protease[36].
Available evidence has demonstrated that some plant viruses

may use apoptosis to promote virus transmission. InNilaparvata
lugens, RRSV-induced apoptosis was observed in salivary
glands[37]. Inhibition of cell apoptosis by silencing caspase
genes did not affect the proliferation of RRSV but significantly
reduced the virus transmission efficiency from insects to rice
plants. It was hypothesized that RRSV-induced cell apoptosis
might contribute to the release of the virus[37]. A similar
phenomenon was observed in Recilia dorsalis infected with
RGDV, with improved virus transmission being observed after
apoptosis induction[38]. Additionally, recent studies have
demonstrated that apoptotic neurodegeneration induced by
TYLCV caused sensory defects in infected B. tabaci, which
removed the steady preference of the insect for virus-infected

Fig. 2 Schematic representation of antiviral response pathway in vector insects. Five pathways, comprising siRNA, autophagy, JAK-STAT, Toll and

IMD, are illustrated. (1) siRNA pathway: viral dsRNA is recognized by Dicer-2, and processed into siRNAs. The siRNAs are loaded onto the RNA

interference silencing complex (RISC) that contains argonaute 2 (Ago2), then recognize and cleave target viral RNA. (2) Autophagy pathway: the

transmembrane receptor Toll-7 recognizes the viral components and induces autophagy. It might be negatively regulated by the

phosphatidylinositol 3-kinase (PI3K)-Akt kinase pathway. (3) JAK-STAT pathway: activation of the JAK-STAT pathway upon virus infection is

likely mediated by binding of a cytokine of the unpaired (Upd) to their receptor, dome. Then, the JAK-tyrosine kinase hopscotch mediates the

recruitment of Stat92E. After Jak-mediated phosphorylation, Stat92E proteins dimerize and translocate to the nucleus and regulate corresponding

genes. (4) Toll pathway: recognition of Gram-positive bacteria, fungi and viruses by pattern recognition receptors resulted in proteolytic

maturation of Spätzle (Spz). The cleaved Spz binds to Toll, which further recruits three death domain-containing adapter proteins MyD88, Tube

and Pelle. Then, Cactus is phosphorylated, and induces the translocation of the Rel transcriptional factors, Dif and Dorsal, to the nucleus. (5) IMD

pathway: recognition of Gram-negative bacteria and viruses by transmembrane receptors PGRP-LCs resulted in signal transduction to the IMD,

which is localized in the cytoplasm. IMD activation recruits dFADD that recruits a caspase, DREDD. Activation of DREDD resulted in

polyubiquitination of IMD. Then, TAK1 binds to the polyubiquitin chain and is responsible for the assembly and activation of the IKK complex

(IKK-β and IKK-γ). Phosphorylation of Relish is mediated by IKK complex, which is further cleaved by DREDD. The N-terminal DNA binding domain

of Relish translocates to the nucleus and regulates transcription of corresponding genes.
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plants, thereby enhancing the probability of virus transmission
to uninfected plants[39]. Compared with animal viruses, our
understanding of the role of autophagy and apoptosis in insect
transmission of plant viruses is limited and the relationship
between insect immunity and plant viruses needs further
investigation.

3.2 Insect feeding behaviors
Plant viruses closely interact with plant hosts and vector insects
in long-term coevolution. Most vector insects are attracted to
plants infected with viruses and this may be associated with
changes in plant hormones, plant metabolism and plant physical
structures[40,41] (Fig. 1) . As an example, in tomato yellow leaf
curl China virus the βC1 protein encoded by the virus interferes
with the polymerization of MYC2, a key transcription factor in
the JA pathway, thereby inhibiting the synthesis of two volatile
terpene compounds, finally attracting whitefly feeding and
increasing their fitness for infected plants[42]. Additionally, the
βC1 protein hijacks WRKY20, a key immune regulatory factor,
to prevent nonvectors (e.g., Helicoverpa armigera) from feeding,
finally achieving the goals of promoting vector performance and
inhibiting nonvector herbivores[42–45]. Reciprocity between plant
viruses and vector insects occurs in the turnip mosaic virus
(TuMV), tomato spotted wilt virus, barley yellow dwarf virus
(BYDV), and potato leafroll virus[46–50]. However, there are
some exceptions. The cucumber mosaic virus is a nonpersistent
virus transmitted by aphids. Although infected plants are
attractive to vector insects they are not suitable for aphid
reproduction, which leads the aphids to transfer the virus to
healthy plants after brief probing, thereby accelerating the spread
of the virus[51].

Based on the influences of plant viruses on vector insects, Mauck
et al. proposed a model for insect vector behavior in relation to
virus transmission[52]. Both persistent and nonpersistent viruses
tend to enhance the attractiveness of infected plants to vector
insects but they have contrasting effects on vector settling and
feeding behavior. Specifically, persistent viruses tend to improve
the plant quality and extend the vector feeding time whereas
nonpersistent viruses tend to decrease plant quality and promote
rapid dispersal. This model, to a certain extent, explains insect-
virus-plant interactions, but there are still some limitations. For
example, virus-free Sogatella furcifera is attracted to feed on
SRBSDV-infected rice plants, but they are then attracted to feed
on healthy rice plants after acquiring SRBSDV[53]. TuMV is a
nonpersistent virus but it promotes vector insects feeding on
infected plants[54]. These exceptions indicate that viruses have
other strategies by which to influence insect-plant interactions in
addition to manipulating plants.

3.3 Insect salivary effectors
Saliva mediates the interactions between insects and plants. In
vector insects, when the virus is secreted along with saliva the
interaction between the saliva and plants not only regulates the
plant defense but also affects the virus spread[55]. In L. striatellus,
RSV and RBSDV infection stimulate the insect to secrete more
salivary proteins[56]. As an example of salivary mucin, which is
an important component of the salivary sheath that accounts for
continual insect feeding[57–59], RSV infection significantly
induces the expression of mucin, which might promote insect
performance and virus transmission[56,60]. The regulation of
salivary secretion by viruses was also reported in TYLCV-
infected B. tabaci[61]. In addition, salivary effectors such as
Bt56, Te84 and HARP1 affect the accumulation of plant
hormones[62–64]. These hormones are extensively involved in
plant-virus interactions[41]. Whether plant viruses alter the saliva
secretion of vector insects to modulate plant antivirus defense
remains to be further investigated. Currently, the study of the
influence of saliva on virus transmission focuses primarily on
several blood-feeding insects such as mosquitoes, ticks and sand
flies[65–67]. With the successful identification of the salivary
components of aphids, planthoppers, leafhoppers, whiteflies and
other vector insects, it will be possible to manipulate insect-
virus-plant interactions using a saliva approach.

3.4 Insect symbiotic microorganisms
In addition to host plants and vector insects, the infection cycle
of plant viruses also involves symbiotic microorganisms (Fig. 1),
with symbiotic bacteria being most extensively studied. van den
Heuvel et al. were the first to find that the potato leafroll virus
(PLRV) can bind to the GroEL protein produced by symbiotic
bacteria in insect hemolymph. Antibiotic treatment reduced
PLRV transmission by more than 70%, indicating that symbiotic
bacteria are beneficial in PLRV transmission[68]. GroEL also
contributes in the transmission of TYLCV by B. tabaci and the
transmission of BYDV by Acyrthosiphon pisum[69,70]. Inhibiting
GroEL with antibodies reduced the TYLCV transmission by
more than 80%[70]. Gottlieb et al. demonstrated that GroEL,
which had a protective effect on TYLCV, was secreted by
symbiotic bacteria Hamiltonella, rather than by the symbiotic
bacteria Rickettsia or Portiera. By binding to the coat protein of
TYLCV, Hamiltonella GroEL protected TYLCV in the hemo-
lymph and promoted viral entry into the salivary glands[71].
Although Rickettsia GroEL could not bind to TYLCV, the
symbiotic bacteria prolonged the virulence period of B. tabaci
and nearly doubled the virus transmission efficiency, indicating
that the symbiotic bacteria promote the virus transmission
independently of GroEL[72]. In recent years, increased attention
has been given to the role of symbiotic bacteria in the vertical
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transmission of viruses. It has been reported that RDV is carried
by both Sulcia and Nasuia to ensure their simultaneous
transovarial transmission, enabling the virus to exploit an
ancient oocyte entry path of symbiotic bacteria in Nephotettix
cincticeps[73,74]. RGDV is carried with the sperm of leafhoppers
for paternal transmission, which scarcely affects the fitness of
adult males or their offspring but facilitates long-term virus
persistence[23]. In the case of mosquito-vectored animal viruses,
different symbiotic bacteria exert different effects on virus
transmission. For example, Wolbachia inhibits or blocks insect
infection by a variety of arboviruses[75], whereas Serratia
marcescens enhances the ability of the virus to infect intestinal
cells[76]. Recently, Gong et al. introduced Wolbachia into an
insect vector of plant viruses and found thatWolbachia inhibited
infection with and transmission of rice viruses, facilitating the
development of symbiotic bacteria-based strategies against
agricultural pests and their transmitted pathogens[77].

Insects also harbor a large number of insect-specific viruses
(ISFs), which replicate only in their insect hosts[78]. Although
ISFs cannot replicate or proliferate in plants, some are closely
related to plant viruses[79]. It remains unclear whether there is a
superinfection exclusion effect among them. The functions of
ISFs in mosquito-vectored arboviruses have been thoroughly
investigated. ISFs such as the cell-fusing agent virus, Nhumirim
virus and palm creek virus, have been reported to have inhibitory
effects in vertebrate virus transmission[80–82]. In contrast,
knowledge of ISFs affecting insect transmission of plant viruses
is limited. Li et al. found that the symbiotic Himetobi P virus
promotes RSV accumulation, indicating that ISFs also contribute
to transmission of plant viruses[83]. Many insect symbiotic
microorganisms reside within vector insects[79,84]. Understand-
ing their relationship with insect-vectored plant viruses will help
make better use of these natural resources.

4 POTENTIAL STRATEGIES FOR
VECTOR CONTROL

There are many similarities between the animal viruses
transmitted by dipteran insects (represented by mosquitoes)
and plant viruses transmitted by hemipteran insects (repre-
sented by planthoppers, leafhoppers and whiteflies). For
example, vector insects acquire a virus by feeding on infected
animal/plant hosts and transmit the virus to healthy animal/
plant hosts upon refeeding. In biological transmission of animal
viruses or propagative transmission of plant viruses, the viruses
initially entered the intestinal epithelium from where they spread
into the hemolymph and salivary glands, then the viruses
escaped the salivary glands and secreted into a new host along

with saliva. The intestinal tract, salivary glands and other tissues
of vector insects are important barriers to the circulation of
animal/plant viruses. Also, the feeding behavior, immunity and
symbiotic microorganisms of vector insects were reported to
affect the transmission of animal/plant viruses[85]. Therefore,
approaches to controlling animal viruses can provide a good
reference and guidance for the integrative management of plant
viruses, and vice versa.

Due to the advantages of environmental protection, high
efficiency, and low cost, the biological control of mosquito-
vectored viruses based on symbiotic bacteria has attracted
increased attention. Wolbachia are intracellular bacteria that
infect about 40% of arthropod species. Apart from regulating
host reproduction through cytoplasmic compatibility, Wolba-
chia reduces the infection of mosquitoes with the dengue virus,
Chikungunya virus, West Nile virus, yellow fever virus and zika
virus[75,86,87]. An innovative control strategy involving the
release of mosquitoes infected with the intracellular bacterium
Wolbachia is currently being developed[88]. The latest field
experiment shows that a mosquito population carrying Wolba-
chia strain wAlbB could be stably maintained in the urban
environment, and the release of antiviral mosquitoes could
reduce the incidence of dengue fever[89]. By referencing the
control strategy of animal viruses, Wolbachia was recently
employed to control agricultural pests[77]. Stable artificial
Wolbachia infection helped modified N. lugens rapidly invade
wild-type populations, and inhibited both the infection and
transmission of RRSV[77]. In addition to Wolbachia, modifica-
tion with other microorganisms can help in the prevention and
control of mosquito-vectored diseases[90]. For example, Serratia,
which is stably colonized in mosquito populations, was
genetically engineered to secrete effectors against plasmodium
parasites, thereby achieving the purpose of blocking malaria
transmission[91]. Asaia was engineered to conditionally express
the antiplasmodial protein only when a blood meal was present,
allowing antiplasmodial bacterial strains to survive and be
transmitted through mosquito populations[92].

The development of gene editing technology has provided the
possibility of efficiently controlling vector insects. Application
of RNAi technology to insects, including planthoppers,
leafhoppers, whiteflies, and aphids, has been extensively
reported[33,35,39]. It is workable to control vector insects by
directly targeting genes that are essential for survival[57]. Also,
silencing virus proteins in infected insects or knocking down
insect proteins that interact with virus proteins are promising
fields of pest control research in future[18,24,33]. In recent years, a
gene-driven system based on CRISPR/Cas9 has made it possible
to directly modify vector insects. In this system, with the help of
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DNA homology-directed repair, a small number of modified
insects can be introduced to spread the mutation to the whole
population, and finally the pest population can be continuously
suppressed or even replaced[93]. Gantz et al. successfully
integrated antimalarial effector genes and autonomous gene-
drive components into the mosquito genome and realized
population replacement[94]. Currently, CRISPR/Cas9 technology
has been used for gene editing in planthoppers, whiteflies and
aphids[95–97]. In the future, gene editing technology, RNAi
technology and CRISPR/Cas9 + gene-drive technology are
expected to be used to prevent the transmission of important
arboviruses to realize the prevention and treatment of plant virus
diseases.

5 PROSPECTS

Plant virus transmission is a complex process involving a series
of complex interactions between host plants, viruses, vector
insects and even symbiotic microorganisms. These interactions
give rise to a distinct specificity between the virus and the

transmitting insect, that is, a virus can only be transmitted by
specific insects. Knowing how to use plant-insect-virus-
symbiotic microorganism interactions to interfere in the vector
transmission of virus will be key to virus control. Nonpersistent
viruses and semipersistent viruses bind to the insect stylet or
foregut. The elucidation of the binding and releasing mechan-
isms between viruses and receptors in these two tissues may
lead to the development of methods to prevent virus
transmission. Persistent viruses multiply and circulate inside
the vector insects, acting as an invader of the insect. During
infection, persistent viruses need to cope with the insect
immune system to maintain homeostasis as well as overcome
the barriers in the intestine, salivary glands, and ovaries.
Therefore, in-depth investigation of the interaction between
viruses and vector insects will help in developing methods to
block or inhibit virus infection. Research on the mechanisms of
insect immunity, insect feeding and insect symbiotic micro-
organisms in virus transmission, as well as the application of
new gene editing technology, RNAi technology and CRISPR/
Cas9 + gene-driven technology, will provide new strategies for
controlling important plant viruses.
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