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The life-cycle assessment method, which originates from general products and services, has gradually
come to be applied to investigations of the life-cycle carbon emissions (LCCE) of buildings. A literature
review was conducted to clarify LCCE implications, calculations, and reductions in the context of build-
ings. A total of 826 global building carbon emission calculation cases were obtained from 161 studies
based on the framework of the building life-cycle stage division stipulated by ISO 21930 and the basic
principles of the emission factor (EF) approach. The carbon emission calculation methods and results
are discussed herein, based on the modules of production, construction, use, end-of-life, and supplemen-
tary benefits. According to the hotspot distribution of a building’s carbon emissions, carbon reduction
strategies are classified into six groups for technical content and benefits analysis, including reducing
the activity data pertaining to building materials and energy, reducing the carbon EFs of the building
materials and energy, and exploiting the advantages of supplementary benefits. The research gaps and
challenges in current building LCCE studies are summarized in terms of research goals and ideas, calcu-
lation methods, basic parameters, and carbon reduction strategies; development suggestions are also
proposed.

� 2024 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

As part of global efforts to address climate change, a consider-
able amount of research has investigated the carbon emissions of
buildings during construction and operation. After the industrial
revolution, mechanized production activities by humans increased
rapidly, resulting in a significant increase in greenhouse gas (GHG)
emissions and a gradual deterioration of the dynamic balance
between the emissions and natural absorption of GHGs. To address
this issue, the Kyoto Protocol, which was adopted in Japan in 1997,
formally obliges signatories to control their GHG emissions. In
November 2021, the United Nations (UN) Framework Convention
on Climate Change conducted the 26th UN Climate Change Confer-
ence of the Parties and completed the implementation rules of the
Paris Agreement, which stipulates ‘‘holding the increase in the glo-
bal average temperature to well below 2 �C above pre-industrial
levels and pursuing efforts to limit the temperature increase to
1.5 �C above pre-industrial levels” as a global mission [1]. In this
way, a global temperature target was legally enacted for the first
time [2]. According to a report from the UN’s Intergovernmental
Panel on Climate Change (IPCC) in 2018, achieving a 1.5 �C target
requires a reduction of 40%–50% in global carbon emissions as
compared with the levels in 2010, which must be achieved by
2030; additionally, carbon neutrality should be achieved by 2050
[3]. According to a report from the United Nations Environment
Programme (UNEP), the global construction sector constituted
37% of the total carbon dioxide (CO2) emissions in 2020, including
27% from building operations and 10% from the production of
building materials. Among the 27% from building operations, 9%
were direct emissions, whereas the remaining 18% were indirect
emissions from electricity and commercial heat consumption [4].

The IPCC classifies sources of carbon emissions into four
sectors: industry, electricity, construction, and transportation. To
ctions,
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provide statistics regarding carbon emissions at the macro level,
emissions from building operations, including direct and indirect
emissions, are classified as coming from the construction sector,
whereas emissions from the production of building materials are
generally classified as coming from the industrial sector. However,
a building’s life-cycle carbon emissions (LCCE) include both the
production of building materials and their consumption in the con-
struction sector. The production and transportation of building
materials are determined by the demand of the construction sec-
tor. Therefore, measures to reduce building LCCE should account
for the direct and indirect emissions generated by building opera-
tions, as well as the emissions generated by the production and
transportation of building materials.

Investigating building LCCE is an effective approach for identify-
ing carbon emission hotspots and formulating carbon reduction
plans. However, the methods currently used in various studies vary
significantly, and comparability between different cases is low. In
some cases, completely opposite conclusions can be inferred from
the same question, which hinders the formation of a consensus on
the carbon emission intensity of typical buildings and the formula-
tion of future carbon reduction goals. Therefore, this study was
conducted to obtain a general idea regarding the present research
progress pertaining to building LCCE (i.e., implications), the meth-
ods used to calculate building LCCE (i.e., calculation methodolo-
gies), and the methods used to realize low carbon emissions (i.e.,
carbon reduction strategies) via a literature review. In addition,
this study summarizes current research gaps and challenges and
proposes corresponding development suggestions (Fig. S1 in
Appendix A).

2. The reviewed studies

In this study, 161 published reports pertaining to studies on
buildings’ carbon emissions are reviewed, including 85 building
LCCE studies, 69 building embodied carbon emissions (ECE) stud-
ies, and seven building operational carbon emissions (OCE) studies.
The calculation of building life-cycle stages and the sub-items of
the cases are introduced in Section 3.1.2. The 161 studies involved
826 calculation cases. The geographical location, climate type,
building function, structure, number of floors, floor area, and
expected service life of the case studies are summarized in
Fig. S2 in Appendix A.

3. Implications of building LCCE

3.1. Building life-cycle assessment

3.1.1. Differences and correlations among life-cycle assessment, life-
cycle energy assessment and life-cycle carbon emission assessment

Concepts related to life-cycle carbon emission assessment
(LCCEA) include life-cycle assessment (LCA) and life-cycle energy
assessment (LCEA) [5]. LCA, which was the earliest proposed
method, has been applied to the construction industry and other
related industries [6]. In a building system, an LCA is performed
to evaluate all resource loads, including land, energy, water, and
materials, as well as environmental loads, including global warm-
ing, ozone depletion, acidification, eutrophication, and photochem-
ical smog. Both LCEA and LCCEA can be regarded as constituents of
the LCA. In particular, LCEA focuses primarily on energy consump-
tion at the input, including the total energy demand, primary
energy consumption, and renewable energy utilization [5],
whereas LCCEA focuses on the environmental effect at the output,
particularly GHG emissions that contribute to global warming
(Fig. 1).
2

3.1.2. Categorization of a building’s life-cycle stages
ISO 21930 was issued by the International Organization for

Standardization (ISO) in 2017 as a formal international rule for
building LCA [7]; it specifies the principles, codes, and require-
ments for formulating an environmental product declaration for
construction activities, establishes product category rules for con-
struction products and services, and proposes calculation rules for
life-cycle inventory analysis and life-cycle impact assessment in
environmental product declaration reports. ISO 21930 categorizes
the entire building life cycle into five modules or stages and 17
sub-stages: building material production (A1–A3), construction
(A4–A5), use (B1–B7), end-of-life (C1–C4), and supplementary
information beyond the system boundary (D). This provides a basis
for the classification of life-cycle stages and the definition of sys-
tem boundaries for calculating buildings’ LCCE (Fig. 2).

The D module involves the potential net benefits from reuse,
recycling, and/or energy recovery beyond the system boundary.
For ease of explanation, the following discussion considers only
the ‘‘recycling of building materials” as a representative. In terms
of building LCCE calculations, this module has important carbon
reduction benefits for buildings that use recyclable materials. The
recycling of building materials occurs between two building life
cycles: the end of the previous life cycle and the beginning of the
next one. This particular location creates the problem of allocating
the carbon reduction benefits between the two cycles involved.
This problem is mentioned to some degree in existing LCA-
related standards/guidelines, but a uniform method for allocating
the benefits is still lacking.

In essence, recycled building materials refer to recyclable waste
generated in the previous life cycle that can be used as the raw
material for the next cycle. The World Resources Institute and
the World Business Council for Sustainable Development proposed
a method that allocates all benefits to the previous cycle and
another method that allocates all benefits to the later cycle [8].
The European Commission proposed a method for the Product
Environmental Footprint that allows the environmental benefits
of material recycling to be divided equally in half for each of the
two life cycles [9]. Jiang et al. [10] proposed an improved method
that could distinguish between mixed recycling and independent
recycling routes, and demonstrated its feasibility in an LCA of steel
production. In this approach, the differences among various recy-
clable materials should be considered.

3.1.3. Integrity of building life-cycle stages in the reviewed studies
The statistical results showed that ISO 21930 was not strictly

implemented in the reviewed studies. In fact, adjustments were
performed based on factors such as calculation goals and data
availability for specific cases. Among the 85 LCCE studies, only
seven (8.2%) involved calculations that included ECE (A1–A3, A4–
A5, B1–B5, and C1–C4), OCE (B6–B7), and supplementary benefits
(D), whereas 23 (27.1%) involved calculations for all stages except
module D. Among the 69 ECE studies, three completely considered
the four stages of ECE, whereas only two considered module D in
addition to the aforementioned stages (Table 1 [11–173]).

3.2. Carbon emissions

3.2.1. GHG types and building emission sources
In general, carbon emissions include only emissions of CO2;

however, the current practice is to refer to GHG emissions. The
IPCC distinguishes dozens of GHGs and ensures that they are sup-
plemented and updated [174]. The Kyoto Protocol stipulates six
GHGs that exert significant effects: CO2, methane (CH4), nitrous
oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs),



Fig. 1. Relation among the LCA, LCEA, and LCCEA.

Fig. 2. Building life-cycle stages. Reproduced from Ref. [7] with permission of ISO, �2017.
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and sulfur hexafluoride (SF6). Among them, CO2 constitutes the lar-
gest proportion in the atmosphere; hence, it is given top priority
when addressing control and reduction. While other GHGs have
a lower concentration, their global warming potential (GWP)
exceeds that of CO2 by tens to tens of thousands of times.

Experts have reached an informal consensus regarding the GWP
values of all GHGs and building-related emission sources; how-
ever, there is still no consensus regarding their inclusion when
investigating the carbon emissions from buildings. All calculation
cases include the amount of CO2, which is generated in all life-
cycle stages of a building. In addition to CO2, two other GHGs,
CH4 and N2O, have attracted great attention. N2O is generated from
the burning of fossil fuels and biomass, such as for cooking. These
fossil fuels include coal, oil, and natural gas, whereas biomass
includes crop straw, bark, sawdust, and peanut shells. CH4 primar-
ily originates from kitchen waste, fresh garbage, domestic sewage,
biogas digesters, and landfills. According to the Hong Kong Envi-
ronmental Protection Department [175], CO2, CH4, and N2O consti-
3

tute more than 95% of all GHGs. Sim et al. [69] investigated the ECE
of a high-rise residential building in Republic of Korea and reported
the amounts of the abovementioned three GHGs; the results sug-
gested that concrete was the primary contributor of CO2, whereas
steel was the primary contributor of CH4 and N2O. A case study in
Hong Kong involved the abovementioned three GHGs and showed
that 65.6% of CH4 was from the use stage, whereas 33.8% was from
the production of building materials [56]. For wood-frame build-
ings, CH4 is one of the most important carbon emission sources
in the end-of-life stage, such as during landfill treatment
[152,176]. Dodoo et al. [128] reported that CO2 and CH4 accounted
for 50% of the calculated carbon emissions from wood landfill
treatment.

Fluorinated gases are another important type of non-CO2 GHGs,
which originate from building air conditioners, refrigerants, fire-
extinguishing systems, and some insulation-related aerosols and
foaming agents [174]. Jiang and Hu [177] reported that emissions
of HFCs and hydrochlorofluorocarbons from buildings in China
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due to refrigerant leakage amount to 100 million tonnes CO2 equiv-
alent (tCO2e). Owing to its extremely high GWP, the leakage of
fluorine-containing refrigerants can result in considerable CO2-
equivalent emissions; however, this issue is not discussed in the
reviewed studies (Table 2 [174,178–180]).

3.2.2. Modes of building carbon emissions
A building’s carbon emissions can be classified into three

modes: direct, indirect, and embodied emissions. Direct and indi-
rect carbon emissions are primarily generated by building opera-
tions. Direct carbon emissions are primarily caused by the
burning of fossil fuels, such as gas and loose coal, for heating, cook-
ing, and producing domestic hot water; they may also include GHG
emissions from the chemical reactions of carbonaceous building
materials. Indirect carbon emissions refer to carbon emissions that
are due to purchased electricity, heating, and cooling. ECE are pri-
marily generated by building materials and components; they are
emitted during raw material extraction; building material manu-
facturing, installation, use, maintenance, repair, replacement, and
refurbishment; building demolition; waste disposal, recycling,
and reuse; and transportation in all stages (Table 2).

3.3. Discussion regarding LCCE system boundaries

As suggested in previous publications, the study results from dif-
ferent sources vary significantly, owing to different definitions of the
system boundary. For example, Anand and Amor [181] determined
the development status and challenges of buildings’ LCA; the find-
ings revealed that different definitions and scopes of the building life
cycle were adopted in different studies and that different models
were developed for system boundaries. Similarly, Vilches et al.
[182] and Schwartz et al. [183] reported that differences in building
maintenance and renovation reported among study cases were
caused by inconsistent interpretations of the LCA system boundary.

In practice, not all studies are required to adopt the same tem-
poral dimension or GHG content, because the study objects are dif-
ferent. For example, the development of building materials by
manufacturers primarily involves the ‘‘cradle-to-gate” stage; for
landfills, it is necessary to consider CH4 emissions from wood but
not those from concrete or steel. However, the findings should
include relevant details so that the preconditions and application
scope can be determined. The authors clarified the system bound-
ary to investigate building LCCE and concluded that the following
three dimensions should be defined (Table 3 [38,44,51,56,58,97,
101,138,140,160,184–189]):

(1) The spatial boundary, that is, the study object or emitter of
carbon emissions, including the building materials, components,
systems, and surrounding environment.

(2) The temporal boundary, including the length and stage clas-
sification of the building’s life cycle. The former pertains primarily to
the service life of a building, whereas the latter involves five differ-
ent spans: ‘‘cradle to gate”, ‘‘cradle to site”, ‘‘cradle to operation”,
‘‘cradle to grave”, and ‘‘cradle to cradle”. Alternatively, these can
be categorized into three modules: before, during, and after use.

(3) The carbon emission boundary, including the GHG type, car-
bon emission source, and carbon emission mode, as described in
Section 3.2.2.
4. Calculation of building LCCE

4.1. Basic approaches to emissions measurement

The basic approaches to carbon emissions measurement include
the experimental, mass–balance, and emission factor (EF)
approaches, all of which are based on carbon flow analysis.



Table 2
Building-related GHGs.

Types of GHGs Atmospheric
lifetime (a)

GWP100 Main sources in building Emission mode Be
calculated?

direct indirect embodied

CO2 50–200 1 Energy production and consumption d d s yes
Material production and consumption s s d yes
Chemical reactions of carbonaceous materials d s s partial

CH4 12 25 Energy production and consumption d d s yes
Material production and consumption s s d yes
Chemical reactions of carbonaceous materials d s s partial

N2O 114 298 Energy production and consumption d d s yes
Material production and consumption s s d yes

HFCs �270 �14 800 Air conditioning, refrigerants, aerosols, foam-blowing agents for
insulation, fire extinguishing systems

d s s no

CFC-11 (CCl3F) 45 4750 Air conditioning, refrigerants, aerosol insulation, propellants, solvents d s s no
CFC-12 (CF2Cl2) 100 10 900
CFC-22 (CHClF2) 12 1810
SF6 3200 23 900 None / /

GWP100: GWP of the GHGs over 100 years; energy consumption includes primary energy, electricity, heat, and other forms. GHGs’ atmospheric lifetime, GWP100, and
sources are adapted from Refs. [174,178–180].

Table 3
System boundary of LCA for buildings’ carbon emissions.

Dimension Item Content Example references

Spatial boundary Geographic scope Building materials [44]
Building components (including building structure, building envelope) [51]
Whole building [140]
Building with site [184]

Temporal boundary Lifespan Commercial buildings: commonly used 50 (40–100) years [185]
Residential buildings: commonly used 50 (40–75) years [186]

Life-cycle stages ‘‘Cradle to the gate” from A1 to A3 [44]
‘‘Cradle to site” from A1 to A5 [160]
‘‘Cradle to operation” from A1 to B7 [101]
‘‘Cradle to grave” from A1 to C4 [187]
‘‘Cradle to cradle” from A1 to D, then returning to A, forming a closed loop [188]
‘‘Before use” from A1 to A5 [160]
‘‘Use” from B1 to B7 [58]
‘‘After use” from C1 to D [38]

Carbon emission boundary Emission sources Products (including building materials, equipment) [97]
Processes (including manufacturing, construction, demolition, etc.)
Building operation
Human emissions (including food waste, sewage, excretion, etc.) [189]

Emission mode ECE [138]
Direct carbon emissions
Indirect carbon emissions

Types of GHG Only CO2 Most cases
CO2, CH4, N2O [56]
According to the Kyoto Protocol: CO2, CH4, N2O, HFCs, PFCs, and SF6 Not found
According to the IPCC: numerous Not found
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(1) The experiment approach. This measurement-based carbon
emission method includes on- and off-site measurements.
The former directly calculates the GHG concentration and
flow–rate data obtained via a continuous emission-
monitoring system. The latter calculates carbon emissions
via sampling, testing, and quantitative analysis by
professionals.

(2) The mass–balance approach. This approach monitors the
carbon emitter to analyze the balance of the overall carbon
flow, where the internal reaction process is disregarded.
CO2 emissions can be calculated by multiplying the differ-
ence in carbon content between the input and output of a
system by the CO2/C mass conversion coefficient, 44/12.

(3) The EF approach. This approach is based on the principle of
‘‘activity data (AD) � carbon EF”. The EFs reflect the carbon
emission intensity of various activities. The AD refers to
the quantitative measure of a level of activity that directly
5

or indirectly result in carbon emissions, such as the con-
sumption of fossil fuels, electricity, heat, and building
materials.

In practice, the experimental approach can only yield direct
emission data and is thus limited to fields that generate direct
emissions, such as the initial stage of cement production when
limestone is calcined. In addition, capturing data for different
GHG concentrations is technically demanding. The mass–balance
approach is feasible for the production of a specific building mate-
rial; however, owing to the various material inputs and outputs of
the system and the unstable carbon content, this approach is
unsuitable for accurately calculating the carbon flow of building
systems. In contrast, the EF approach is more feasible for construc-
tion projects. Two key parameters, AD and EF, must be determined
for the calculation. In the absence of primary data, the parameters
of the relevant databases can be obtained from previous studies
(Fig. 3).



Fig. 3. Methods to determine the amount of carbon emissions. CEGHG: carbon emissions, kilogram CO2 equivalent (kgCO2e); EDi: emission data of the GHG i, kg; GWPi: GWP of
the GHG i, kilogram CO2 equivalent per kilogram gas (kgCO2e�kg�1). CECO2: CO2 emissions, kilogram CO2 (kgCO2); Minput.i/Moutput.i: mass of the input/output material i, kg;
Cinput.i/Coutput.i: carbon content per unit mass of the input material i/output material material j, %; 44/12: ratio of the molecular weights of CO2 and carbon. CEGHG: carbon
emissions, kgCO2e; ADi: activity data of the activity i, unit; EFi: carbon emission factor of the activity i, kilogram CO2 equivalent per unit (kgCO2e�unit�1).
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To determine AD, a process analysis (PA), input–output (IO)
information, and a hybrid LCA are required. PA and IO are basic
methods. Among the 161 reviewed studies, 180 methods were
mentioned, including 138 PA-based (76.7%) and 29 IO-based
(16.1%) methods. For a single building, the PA is particularly impor-
tant for identifying carbon emission sources and developing carbon
reduction plans. Moreover, 13 cases (7.2%) adopted a hybrid LCA,
which combines both PA and IO information. The IO approach is
applicable to investigating carbon emissions at the macro level.
However, the results obtained using the IO approach are unlikely
to provide detailed information. In a study on residential buildings,
Zhang et al. [25] showed that combining a PA with a hybrid
method captured 64% of the carbon reduction potential, which
was otherwise not achievable via the IO approach; therefore, the
IO approach alone was deemed inappropriate for the detailed
assessment of individual buildings. Based on an analysis of an edu-
cational building in China, Chang et al. [27] considered that the IO
approach could be used to estimate the overall situation of typical
construction projects, whereas the hybrid model based on PA could
reveal the project’s characteristics more effectively.

4.2. Selection of functional units

Various functional units (FUs) specific to the research objects
were used in the case studies. For building materials, the unit vol-
ume or weight is typically regarded as the FUs (e.g., the carbon
emission calculation of concrete, steel, and bamboo products by
Dong et al. [51], Gan et al. [44], and Xu et al. [190], respectively).
For building components, the unit building component is often
regarded as the FUs (e.g., the carbon emission calculation of pre-
fabricated concrete stair products, piles, earth walls, and straw–
bale walls by Li et al. [30], Liu et al. [32], and González [162]). Mul-
tiple FUs are used for building systems, although the primary ones
used are the ‘‘whole building”, ‘‘unit floor area”, and ‘‘unit floor
area per year”, which can be mutually converted using the floor
area and expected service life.
Table 4
ANOVA results for the carbon emission datasets.

Group ECE

No. of S No. of G F P

Structure 511 8 12.59 6.4
Function 479 2 1.636 0.2
Function (subcategories) 409 6 8.089 2.7
Country/region 548 5 8.536 1.1
Climate 497 4 9.563 3.7
Climate (subcategories) 480 8 8.297 1.4

No. of S: total number of datasets; No. of G: number of groups; F: variance ratio; P: P v

6

The FUs used can affect the understanding of the carbon emis-
sion calculation results. Filimonau et al. [137] investigated hotel
buildings and showed that the carbon emission intensity of large
hotels was 14% higher than that of small hotels, based on ‘‘unit
floor area” as the FUs; furthermore, this value increased to 67%
when ‘‘per guest � night” was used as the FUs. Bastos et al. [116]
compared three residential buildings in Portugal and found that
the carbon emission intensity of large-scale buildings was lower
when ‘‘per floor area � per year” was used as the FUs, whereas it
was higher when ‘‘per capita � per year” was used as the FUs. In
this study, ‘‘unit floor area” and ‘‘unit floor area per year” were
used as the FUs.

4.3. Activity data calculation methods, results, and effects

An analysis of variance (ANOVA) was carried out for the above
cases. The LCCE was divided into two components: ECE and OCE.
The cases were grouped according to the structure and function
related to the building itself, as well as the country and climate
related to the external conditions. The function and climate were
further divided into subcategories. The ANOVA results are shown
in Table 4, and the number of groups and the total number of data-
sets are shown in Table S2 in Appendix A. These ANOVA results
were adopted as the basis for the grouping analysis of the ECE
and OCE calculation results presented in Sections 4.3.1 and 4.3.2.

The ANOVA results showed that the ECE among the groups of
structure types, country/regions, and climate zones were signifi-
cantly different. The P value of the group of structure types was
only 6.43 � 10�15, and the groups of country/regions and climate
zones had P values of 1.10 � 10�06 and 3.79 � 10�06, respectively.
All the values indicated statistical significance. Conversely, the
P value of the building function group was 0.202, showing no
significant difference. In addition, the ANOVA results showed no
significant difference among the OCE in the structure type group.
Conversely, significant differences were observed in the groups of
building function, country/regions, and climate zones, all of which
OCE

No. of S No. of G F P

3 � 10�15 242 8 1.886 0.0727
02 327 2 108.0 < 2 � 10�16

5 � 10�07 257 6 19.55 < 2 � 10�16

0 � 10�06 354 5 32.27 < 2 � 10�16

9 � 10�06 308 4 38.65 < 2 � 10�16

5 � 10�09 298 7 37.07 < 2 � 10�16

alue.
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had P values < 2 � 10�16. The differences among the subcategories
of building function and the climate zones were also significant.

As described in Section 3.1.2, the LCCE was not completely cal-
culated in most of the 826 cases in the 161 studies. Based on the
data obtained from the cases, the calculation methods, results,
and effects on the AD at each stage are analyzed below. The statis-
tics reveal significantly different calculation results among the
cases. Therefore, in the following analysis, the calculation results
and effects are described based on quartiles, including the median,
first quartile, and third quartile (Figs. 4 and 5, Tables 5 and 6).

4.3.1. ECE of buildings
The total number of ECE datasets used in the reviewed studies

was 564. Of these, concrete, steel, timber, and mortar structures
were considered in 267, 63, 99, and 46 sets, respectively. The sta-
tistical results are shown in Fig. 6 and Table S3 in Appendix A.
The median values of ECE (ECEmed) for global cases with concrete,
steel, timber, and mortar structures were 436.0, 297.9, 182.1, and
338.8 kgCO2e�m�2, respectively, with timber structures having
the lowest values. In addition, the ECEmed of the six cases with
Bio (built using bio-based construction methods) structures in Eur-
ope was 101.0 kgCO2e�m�2; this type of structure seemed to be
more low-carbon than the other types of structures.

The ECE of buildings differs among countries/regions due to dif-
ferences in building design and differences between the carbon
emission intensities of the energy and building materials in each
country/region. Overall, the ECEmed (ECE25%–ECE75%) value for the
cases in China was 448.0 (366.6–566.4) kgCO2e�m�2. This value
was lower than that in Australia but obviously higher than those
of the cases in Europe, North America, and other Asian countries.

The ECE were affected by the type of structure because they are
closely related to activities associated with building materials,
such as production and construction. The ANOVA also showed
the lowest P value for the difference in the group of building struc-
Fig. 4. Carbon emission calculation results for each life-cycle stage in the case
studies.

Fig. 5. Carbon emission proportion of each life-cycle stage in the case studies.
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tures. Therefore, the concrete, steel, and timber structure groups
were selected to analyze the calculation methods, results, and
effects in each life-cycle stage related to the ECE.

(1) Building material production stage (A1–A3). ➀ Calculation
method. The carbon emissions from the building material
production stage (ECEA1–A3) include the emissions from the
extraction of raw materials, the transport of raw materials
to factories, and the manufacturing of building materials.
Among the 161 studies investigated, 149 included the calcu-
lation of ECEA1–A3, most of which (82.6%) regarded A1–A3 as
one and calculated ECEA1–A3 by multiplying the carbon EF by
the consumption of building materials. In the remaining 26
studies (17.4%), the three sub-stages were separated in order
to calculate and analyze the carbon emission intensity of
raw material extraction, transportation, and building mate-
rial production [44,76,190]. ➁ Calculation result and effect.
The reviewed case studies provided 234 sets of carbon emis-
sion calculation results for A1–A3. In general, ECEmed

(ECE25%–ECE75%) was 321.2 (155.2–476.3) kgCO2e�m�2,
which constituted 15.6% (9.7%–28.9%) of the LCCE (Figs. 4
and 5). For the cases involving concrete, steel, and timber
structures, the ECEmed values were 419.3, 182.2, and 130.8
kgCO2e�m�2, respectively (Fig. 7, Table S4 in Appendix A).

The calculation items should include the load-bearing struc-
tures, building envelopes, and technical equipment systems. How-
ever, among the 826 calculation cases, excluding 138 cases that did
not specify the calculation content, only 65 (9.4%) of the remaining
691 cases presented complete calculations of all three items
[97,101], while 554 (80.2%) cases presented calculations of the
main building materials, and the remaining 69 (10.0%) cases pre-
sented only calculations of material consumption for load-
bearing structures. As shown in Table 7, the ECEA1–A3 of the pri-
mary building materials contributes significantly to the total build-
ing ECE [14,16,104,121,194]. The load-bearing structure,
foundation, and building envelope are the main contributors to
carbon emissions. However, disregarding the technical equipment
systems will result in underestimated ECE values [41].

(2) Construction stage (A4–A5). ➀ Calculation method. Carbon
emissions in the construction stage (ECEA4–A5) were consid-
ered in 100 (62.1%) of the 161 studies, among which calcu-
lations were performed in 91 studies, and data from the
literature were used for the remaining nine studies. The cal-
culated carbon emissions from building material transporta-
tion (ECEA4) were relatively uniform because the carbon EFs
for various transportation activities were sufficient. The
other parameters for this calculation are the weight and
transportation distance of the building materials. The trans-
portation was assumed to be a certain distance, such as
50 km [88,110] or 300 km [195]. The calculation of carbon
emissions from onsite construction (ECEA5) is more complex,
as it includes the onsite energy consumption, emissions
from assembly and miscellaneous activities, indirect emis-
sions from construction equipment transportation, and
emissions from personnel activities related to offsite con-
struction [40,156]. In addition to performing calculations
for targeted buildings, the researchers used certain formulas
or data from previous studies [62,110,138,157]. ➁ Calcula-
tion result and effect. The reviewed case studies provided
172 sets of carbon emission calculation data for stages A4–
A5. In general, the ECEmed (ECE25%–ECE75%) was 32.2 (14.4–
56.7) kgCO2e�m�2, which constituted 1.6% (0.9%–2.4%) of
the LCCE (Figs. 4 and 5). For the cases involving concrete,
steel, and timber structures, the medians of ECEA1–A3 were
46.3, 15.7, and 31.5 kgCO2e�m�2, respectively (Fig. 8,
Table S5 in Appendix A).



Table 5
Carbon emission calculation results for each life-cycle stage in the case studies.

Life-cycle stage (kilogram CO2

equivalent per square meter (kgCO2e�m�2))
A1–A3 A4–A5 B1–B5 C1–C4 D B6–B7 LCCE

CEmed 321.2 32.2 114.9 20.9 �188.6 1515.0 1931.9
CE25% 155.2 14.4 38.3 5.0 �219.0 540.0 1225.5
CE75% 476.3 56.7 308.8 41.3 �115.5 2260.5 3392.5

CEmed, CE25%, CE75%: the median, first quartile, and third quartile of carbon emissions.

Table 6
Carbon emission proportion of each life-cycle stage in the case studies.

Life-cycle stage (%) A1–A3 A4–A5 B1–B5 C1–C4 D B6–B7 LCCE

Pmed 15.6% 1.6% 7.1% 1.2% �4.1% 75.2% 100.0%
P25% 9.7% 0.9% 3.1% 0.3% �10.8% 59.9% 100.0%
P75% 28.9% 2.4% 15.5% 2.6% �1.2% 86.3% 100.0%

Pmed, P25%, P75%: the median, first quartile, and third quartile of carbon emission proportion of each life-cycle stage.

Fig. 6. ECE calculation results by type of structure and countries/regions. Asia (excl.
CN): Asia excluding China, Aust.: Australia, EU: Europe, NA: North America.
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Based on a literature review, Gustavsson et al. [123] showed
that previous studies provided more energy consumption data
than carbon emission data and that most of those data were not
specified as either the final or primary energy. Personnel-related
carbon emissions were often disregarded in a previous study
[11], but Williams et al. [136] and Cole and Kennan [196] per-
formed case studies in Canada and the UK and demonstrated that
carbon emissions due to workers’ commutes were not negligible.
Furthermore, owing to differences in the conditions and calcula-
tion methods of actual projects, the calculated results may differ
by up to two orders of magnitude. Cole [156] investigated different
structures in Canada and reported their carbon emissions in the
Fig. 7. Carbon emission calculation results for stages A1–A3 in th
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construction stage; Guggemos and Horvath [161] reported that
the energy consumed for constructing steel and concrete struc-
tures was 418 and 939 MJ�m�2, respectively, which were much
higher than the values of 3–7 and 20–120 MJ�m�2, respectively,
in the study by Cole [156].

(3) Use stage (B1–B5). ➀ Calculation method. The ECE in the use
stage (ECEB1–B5) includes the carbon emissions from the
maintenance, repair, renovation, replacement, and trans-
portation of building materials, facilities, and equipment.
These types of carbon emissions are known as ‘‘recurring
ECE”; correspondingly, carbon emissions from material
extraction to the end of construction (A1–A5) are known
as ‘‘initial ECE.” Among the 161 studies investigated, 59
(36.6%) accounted for the use-stage carbon emissions,
among which 43 of the studies performed calculations,
whereas the remaining nine studies used data from the liter-
ature. To determine ECEB1–B5, the most typical method is to
calculate the replacement of building materials during the
use stage based on the expected service life of the building
and the building materials, and then to further calculate
the corresponding recurring ECE. Suzuki and Oka [59], Kofo-
worola and Gheewala [88], Petrovic et al. [129], Iddon and
Firth [143], and Mosteiro-Romero et al. [172] used the
expected lifespan of building materials to estimate ECEB1–
B5 during the use stage. In other studies, ECEB1–B5 was esti-
mated based on empirical data from previous studies
[95,115]. ➁ Calculation result and effect. The reviewed case
studies provided 72 sets of carbon emission calculation
e case studies. (a) Distribution of all results, (b) quartile plot.



Table 7
Contribution of primary building materials to the total ECE.

Building cases Items Contribution to the
total ECE

References

Two types of residential buildings and six types of nonresidential
buildings in Republic of Korea

Primary building materials 78.68%–97.76% [191]

Six residential buildings in Republic of Korea Pre-mixed concrete, steel bars, insulation, concrete bricks,
glass, and gypsum board

> 95% [67]

Residential buildings in Republic of Korea Primary building materials > 82% [70]
129 residential buildings in China Steel, wall materials, mortar, and commercial concrete > 80% [36]
High-rise residential buildings in Hong Kong Concrete + steel 59.2% + 20.1% [52]
An office building in Hong Kong Concrete + steel bars 52.8% + 41.2% [47]
A low-rise residential building in the United Kingdom (UK) Concrete and mortar 99% [142]
Low-rise residential areas in the UK Building materials 50% [139]
Low-rise residential areas in Malaysia Building materials 99% [86]
A school building in Republic of Korea Building material production 93.4% [66]
An insurance office building in Sri Lanka Steel bars, clay bricks, and ready-mixed concrete 70% [93]
A high-rise office building in Thailand Concrete + steel rebars 64% + 17% of ECEA1–

A3

[192]

Two buildings in Australia Building materials 58.1%/49.1% [171]
A high-rise residential building in Australia Building materials 88% [165]
78 office buildings in China Steel, concrete, mortar, and wall materials > 60% [193]

Fig. 8. Carbon emission calculation results for stages A4–A5 in the case studies. (a) Distribution of all results, (b) quartile plot.
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results for stages B1–B5. In general, the ECEmed (ECE25%–
ECE75%) was 114.9 (38.3–308.8) kgCO2e�m�2, which consti-
tuted 7.1% (3.1%–15.5%) of the LCCE (Figs. 4 and 5). For the
cases involving concrete, steel, and timber structures, the
Fig. 9. Carbon emission calculation results for stages B1–B5 in th
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median of ECEB1–B5 was 232.6, 23.0, and 243.4 kgCO2e�m�2,
respectively. Because only four sets of data were obtained
for steel structures, the statistical results presented might
be limited (Fig. 9, Table S6 in Appendix A). The case studies
e case studies. (a) Distribution of all results, (b) quartile plot.
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by Marzouk et al. [81], Kumanayake and Luo [92], and Ortiz
et al. [120] showed that the ECEB1–B5 contributed 0.05%,
3.23%, and 1.7% of the LCCE, respectively. Based on the inves-
tigations by Bastos et al. [116], Petrovic et al. [129], Williams
et al. [136], Moncaster and Symons [139], and Fay et al.
[197], the ECEB1–B5 contributed 28.1%–29.3%, 37%, 44%,
17%, and 40% of the total ECE, respectively.

(4) End-of-life stage (C1–C4). ➀ Calculation method. In the
end-of-life stage, the carbon emission calculation includes
the emissions from building demolition, waste transporta-
tion, and disposal. Of the 161 studies investigated in this
study, carbon emissions in the end-of-life stage C1–C4
(ECEC1–C4) were considered in 70 of the studies (43.5%);
among these, calculations were performed for 53 of the
studies, whereas empirical data were used for the remaining
17. Calculations pertaining to building demolition and the
transportation of dismantled materials were similar to those
made for onsite construction and transportation in the pre-
use stage, being based on summarizing the relevant
mechanical energy consumption and transportation. Differ-
ent carbon emission calculation methods correspond to dif-
ferent waste disposal methods. Owing to the dearth of
carbon emission calculation methods and basic parameters
for the disposal stage, the calculations performed in most
cases were based on different assumptions [63,95,138].
➁ Calculation result and effect. The reviewed case studies
provided 150 sets of carbon emission calculation data for
stages C1–C4. In general, the ECEmed (ECE25%–ECE75%) was
20.9 (5.0–41.3) kgCO2e�m�2, which constituted 1.2%
(0.3%–2.6%) of the LCCE (Figs. 4 and 5). For the cases involv-
ing concrete, steel, and timber structures, the median of
ECEC1–C4 was 26.3, 4.1, and 24.3 kgCO2e�m�2, respectively
(Fig. 10, Table S7 in Appendix A). Similar to sub-stages
B1–B5, different cases presented substantial differences in
terms of the calculation results and effects. The case studies
by Wu et al. [13], Li et al. [42], and Cuéllar-Franca and Aza-
pagic [138] showed that ECEC1–C4 constituted approximately
13.67%, 1%, and 1% of the LCCE, respectively. Li et al. [31] and
Moncaster and Symons [139] concluded that ECEC1–C4
constituted 3%–21% and 21% of the total ECE, respectively.

4.3.2. OCE stage (B6–B7)

(1) Calculation method. The OCE of a building is composed of
two items: the operational energy consumption and the
water consumption. However, water consumption was only
considered in nine of the reviewed studies—namely, those
by Li et al. [29], Kofoworola and Gheewala [88], Passer
Fig. 10. Carbon emission calculation results for stages C1–C4 in th
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et al. [97], Junnila and Horvath [99], Pons and Wadel [122],
Petrovic et al. [129], Cuéllar-Franca and Azapagic [138],
Quintana-Gallardo et al. [151], and Scheuer et al. [157]. Most
of these studies only involved the energy consumption data
and used two main statistical methods. In one of the meth-
ods, the data are categorized based on energy-consuming
items, such as heating, ventilation, and air conditioning
(HVAC), hot water, lighting, electrical appliances, and cook-
ing; in the other method, the data are categorized by energy
types, such as electricity, natural gas, and oil. Energy con-
sumption data are primarily acquired via two methods: sim-
ulation and monitoring. Few studies used actual energy
consumption data [53,57,95] (Table S8 in Appendix A).

(2) Calculation result and effect. The reviewed case studies
provided 143 sets of carbon emission calculation results
for stages B6–B7. In general, the ECEmed (ECE25%–ECE75%)
was 1515.0 (540.0–2260.5) kgCO2e�m�2, which constituted
75.2% (59.9%–86.3%) of the total LCCE (Figs. 4 and 5). The
OCE was related to building function. The reviewed studies
provided a total of 380 OCE datasets, of which 215 sets were
for residential buildings; 138 were for nonresidential build-
ings, including commercial buildings, offices, hotels, and
educational institutes; seven were for mixed-use buildings;
and the remaining 20 sets were unspecified. The OCE calcu-
lation results are shown in Fig. 11 and Table S9 in Appendix
A. The ECEmed (ECE25%–ECE75%) for the residential group was
21.8 (9.0–38.8) kilogram CO2 equivalent per square meter
per year (kgCO2e�m�2�a�1), which was generally lower than
the value of 85.1 (22.1–198.7) kgCO2e�m�2�a�1 for the non-
residential group.

The OCE exhibited geographical differences. According to the
Köppen climate classification method [198], the cases were divided
into four groups: namely, climate zones equatorial, arid, warm
temperate, and snow. The number of OCE data under climate zones
equatorial and arid was relatively small (33 and 8 sets, respec-
tively), while warm temperate and snow had 208 and 80 sets,
respectively. The 33 sets under climate zone A had an ECEmed value
of 214.9 kgCO2e�m�2�a�1, which is substantially higher than the
values in the range of 8.1–32.2 kgCO2e�m�2�a�1 for the cases in
zones B, C, and D. All the cases under climate zone A were from
low-latitude regions in Asia. In addition, the OCE exhibited differ-
ences among different countries/regions (Fig. 11, Table S10 in
Appendix A). The ECEmed (ECE25%–ECE75%) for residential buildings
in China was 23.8 (21.7–30.7) kgCO2e�m�2�a�1, which was lower
than the value of 41.9 (36.2–52.5) kgCO2e�m�2�a�1 for the rest of
Asia. The values for both the China and Asia (excluding China)
groups were significantly higher than the value for the European
e case studies. (a) Distribution of all results, (b) quartile plot.



Fig. 11. Carbon emission calculation results for stages B6 and B7 in the case studies. (a) Building function, (b) Köppen climate zone.
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group, which was 16.7 (7.3–33.8) kgCO2e�m�2�a�1. Nonresidential
buildings showed similar characteristics.

The composition of the OCE varies for different types of build-
ings. Kofoworola and Gheewala [192], Adalbert [199], and Buyle
et al. [200] investigated standard buildings and reported that the
environmental effect of the operation stage constituted 60%–90%
of the LCCE, primarily from the GWP value contributed by carbon
emissions. Studies pertaining to residential buildings by Cuéllar-
Franca and Azapagic [138], Radhi and Sharples [201], and You
et al. [202] in the UK and China showed that the OCE contributed
80%–90% of the LCCE. Heating, cooling, and lighting are the main
sources of OCE, together contributing 82%, 92.7%, 88.2%, and
93.4% of the total OCE in the case studies by Jing et al. [53], Zabalza
Bribián et al. [119], van Ooteghem and Xu [153], and Scheuer et al.
[157], respectively. The non-consideration of water consumption
in most studies may result in underestimated OCE. For example,
Petrovic et al. [129] investigated a single-family house in Sweden
and showed that water consumption over a 100 year lifespan con-
tributed to 6% of the OCE.

4.3.3. Supplementary effects (module D)

(1) Calculation method. Module D included the benefits of
recycling and reusing building materials, as well as energy
recovery. Because this module is not classified into stages
Fig. 12. Carbon emission calculation results for module D in the
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A, B, and C, it is defined as ‘‘supplementary information
beyond the system boundary”. Among the 161 studies inves-
tigated in this review, 28 (17.4%) considered the carbon
emissions in module D, with calculations being performed
for 22 (13.7%) of the studies, and empirical data being used
for the remaining six. The cases presented in this section
are based on scenario assumptions.

(2) Calculation result and effect. Because module D pertains to
carbon reduction benefits, the analysis performed is
described in Section 5.2.5. The reviewed case studies pro-
vided 58 datasets for module D. In general, ECEmed

(ECE25%–ECE75%) was �188.6 (�219.0–�115.5) kgCO2e�m�2,
which constituted �4.1% (�10.8%–�1.2%) of the total LCCE
(Figs. 4 and 5). For cases involving concrete, steel, and timber
structures, the median of the CED was �201.7, �139.4, and
�208.0 kgCO2e�m�2, respectively. Because only four sets of
data were obtained for steel structures, the presented statis-
tical results were limited (Fig. 12, Table S11 in Appendix A).

4.4. Carbon emission factor

4.4.1. Energy (EFe)

(1) Primary energy. For fossil fuels, the EFe is generally calcu-
lated using the fuel’s carbon content and the carbon oxida-
tion rate during the combustion process. According to
case studies. (a) Distribution of all results, (b) quartile plot.
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Chau et al. [6], the EFe ranges of gasoline, diesel, kerosene,
coal, and natural gas are 0.249–0.252, 0.248–0.340, 0.248–
0.259, 0.341–0.486, and 0.18–0.231 kilogram CO2 equivalent
per kilowatt per hour (kgCO2e�kW�1�h�1), respectively. In
the reviewed case studies, most of the basic parameters of
the primary energy were not provided. The FUs of the 15
gasoline, 20 diesel, and 22 natural gas carbon datasets were
unified, and the respective EFe ranges obtained were 0.231–
0.343, 0.163–0.347, and 0.179–0.275 kgCO2e�kW�1�h�1,
which are similar to the results obtained by Ref. [6] (Fig. 13).

(2) Electricity. The EF of electricity is related to the energy mix
used in electricity generation, which changes dynamically
and is affected by time and region. Among the 100 datasets
extracted from the case studies, the EFe was 0.006–1.127
kgCO2e�kW�1�h�1, with Sweden and Australia having the
lowest and highest values, respectively. From a regional per-
spective, Australia had the highest average EFe value (i.e.,
0.871 kgCO2e�kW�1�h�1) from four datasets, followed by
China (i.e., 0.783 kgCO2e�kW�1�h�1) based on the 57 datasets
obtained. The average value from the 15 datasets from other
Asian countries (excluding China) was 0.600 kgCO2e�kW�h�1.
The European electricity EFe was significantly lower, with an
Fig. 13. Carbon emission factors of the primary energy used in t

Fig. 14. Carbon emission factors of the
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average value of 0.329 kgCO2e�kW�1�h�1 based on 23 data-
sets. The use of different electricity EFe values can result in
significantly different calculation results and can thus affect
decision-making (Fig. 14).

4.4.2. Building materials (EFm)

(1) Cement. In the case studies, 69 sets of cement EFm parame-
ters were obtained, ranging between 0.320 and 1.350 kgCO2-
e�kg�1. Among these parameters, the values of 45 sets
(65.2%) ranged between 0.6 and 1.0 kgCO2e�kg�1. In terms
of geographical distribution, the average value for the 45
sets of parameters in China was 0.904 kgCO2e�kg�1, which
was higher than the values in Australia, Europe, and Asia
(excluding China), at 0.881, 0.774, and 0.502 kgCO2e�kg�1,
respectively (Fig. 15). During limestone calcination, a signif-
icant amount of direct CO2 is emitted, making calcination a
primary contributor of the carbon emissions from cement
production. Feiz et al. [203] investigated the production of
carbon emissions from German cement and showed that
the calcination of limestone was the most significant con-
tributor to the carbon emissions with a maximum value of
0.541 kgCO2�kg�1, constituting 64% of ECEA1–A3.
he case studies. (a) Gasoline, (b) Diesel, and (c) Nature gas.

electricity used in the case studies.



Fig. 15. Carbon emission factors of the cement used in the case studies.
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In contrast to limestone calcination, carbonation during cement
use and post-use periods can reabsorb CO2. Several researchers
[204–206] have indicated that the carbon intensity of cement is
significantly overestimated when this process is disregarded. How-
ever, the quantification of this process varies significantly. Xi et al.
[205] estimated that the global CO2 absorption by carbonization
was 43% of the carbon emissions released from cement production
between 1930 and 2013. Based on a concrete frame house, Dodoo
et al. [206] showed that the amount of carbon released by calcina-
tion was 23 tCO2e, which constituted 16% of the total building ECE,
whereas the carbon absorption via carbonization during 100-year
use and post-use periods was 5.4 and 4.7 tCO2e, respectively. How-
ever, Lee et al. [207] considered that CO2 uptake via the carbona-
tion of concrete in the use stage would not exceed 5% of the CO2

emissions in the production stage.
(2) Concrete. A total of 279 sets of concrete EFm parameters

were obtained from the case studies, among which 157 sets
did not include the composition and strength of the con-
crete. In 32 sets, supplementary cementitious materials
were added based on ordinary Portland cement, and 90 sets
specified the compressive strength information. In the first
group of 157 datasets, the average EFm value was 0.144
kgCO2e�kg�1, with the lowest and highest values being
recorded in the North America (0.05 kgCO2e�kg�1) and China
(0.485 kgCO2e�kg�1), respectively. The second group of 32
ordinary Portland cement and supplementary cementitious
materials concrete datasets had an average EFm of 0.105
kgCO2e�kg�1, which was 27% lower than that of the first
group. The third group comprised concrete datasets with
strength information; it clearly indicated a positive correla-
tion between the EFm and the compressive strength of con-
crete (Fig. 16).

(3) Steel. In the cases reviewed here, 172 sets of EFm parameters
for steel were obtained, among which 119 (69.2%) did not
include information pertaining to the steel type and recy-
cling content. The values of the parameters ranged from
0.341 to 6.100 kgCO2e�kg�1, with a difference of 17.9 times
between the maximum andminimum values. The maximum
and minimum values were used in case studies by Kyriakidis
et al. [208] and Choi et al. [209] in Cyprus and Republic of
Korea, respectively. Based on a histogram constructed, the
values were primarily distributed in the range of < 4 kgCO2-
e�kg�1, where 110 (92.4%) sets were in the range of < 3
kgCO2e�kg�1. In addition, 19 and 34 sets were denoted as vir-
gin and recycled steels, respectively. The average EFm of the
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virgin steel was 2.565 kgCO2e�kg�1, whereas the average EFm
of the recycled steel was 1.336 kgCO2e�kg�1 (Fig. 17).
According to the World Steel Association, for every addi-
tional 1 kg of recycled scrap steel used as raw material, the
carbon emissions of steel can be reduced by 1 kgCO2e�kg�1

[210].
(4) Timber. In the case studies, 78 sets of timber EFm parame-

ters were obtained. The EFm of wooden products is affected
by the raw materials and processing methods and can vary
significantly from one product to another. However, in 37
(47.4%) cases, the specific wood type was not specified.
The remaining 41 cases included seven types: hardwood,
softwood, glulam, cross-laminated timber, oriented strand
board, raw bamboo, and glued bamboo. In general, the EFm
parameters ranged from �1.665 to 2.570 kgCO2e�kg�1, with
an average value of 0.404 kgCO2e�kg�1 (Fig. 18). Compared
with the carbon emissions generated during processing, car-
bon storage in raw wood and post-use treatment may have a
more significant effect on carbon flow, resulting in a nega-
tive carbon footprint in the product life cycle [23,123,152].
However, this was not considered in some cases, because
the carbon absorbed by photosynthesis was assumed to be
re-released into the atmosphere through combustion or nat-
ural oxidation [26]. The consideration/non-consideration of
these carbon flows significantly affects the calculation
results.

(5) Aluminum. In the reviewed cases, 36 sets of EFm parameters
for aluminum were obtained, among which three sets were
denoted as virgin aluminum, three sets as recycled alu-
minum, while the rest 30 sets were unspecified as primary
or recycled aluminum. The distribution of the EFm parame-
ters for the 36 sets of aluminum is shown in Fig. 19. The
average value was 10.686 kgCO2e�kg�1. The values of the
parameters ranged from 0.666 to 29.850 kgCO2e�kg�1, with
a 44.8 fold difference between the maximum and minimum
values. Both the minimum and maximum values were
recorded in China [47,173]. The EFm value was influenced
by the recycling condition. In case study by Yan et al. [47],
the EFm values of virgin and recycled aluminum were
8.566 and 0.666 kgCO2e�kg�1, respectively. In Purnell’s
[211] study, the corresponding EFm values were taken as
11.5 and 1.7 kgCO2e�kg�1, respectively.

(6) Glass. In the cases reviewed here, 36 sets of EFm parameters
for glass were obtained, which ranged from 0.550 to 2.820
kgCO2e�kg�1, with a 5.1 fold difference between the maxi-



Fig. 16. Carbon emission factors of the concrete used in the case studies. (a) Concrete without specified information, (b) Concrete with supplementary cementitious materials,
and (c) Concrete specified with compressive strength information. P.Korea: Republic of Korea.

Fig. 17. Carbon emission factors of the steel used in the case studies. (a) Steel, unspecified virgin or recycled (scatterplot), (b) Steel, unspecified virgin or recycled (histogram),
(c) Steel, virgin, and (d) Steel, recycled.
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mum and minimum values. The distribution of the EFm
parameters is shown in Fig. 20. The average was 1.267
kgCO2e�kg�1, with the maximum and minimum values
recorded in China and Australia, respectively [173]. Most of
the cases did not provide specific information about the
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glass. However, even for the same type of glass, there were
differences in the values taken in each case. For example,
for float glass in China, Gong et al. [26] and Yan et al. [47]
used EFm values of 2.588 and 1.858 kgCO2e�kg�1,
respectively.



Fig. 18. Carbon emission factors of the timber used in the case studies.

Fig. 19. Carbon emission factors of the aluminum used in the case studies.

Fig. 20. Carbon emission factors of the glass used in the case studies.
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4.5. Discussion of factors affecting LCCE calculation

4.5.1. Impact of the carbon emission calculation method
Moncaster et al. [145] and Saade et al. [212] performed compar-

ative studies and reported that differences in life-cycle stages,
material boundaries, and fundamental parameters were the pri-
mary contributors to differences in the calculations of carbon emis-
sions. Pomponi and Moncaster [213] showed that the methods
used in case studies differed significantly, resulting in differences
of up to two orders of magnitude, which rendered it impossible
to compare the calculation results. Piccardo and Gustavsson
[131] investigated the effects of different modeling methods on
the analysis of building carbon. The results showed that the mate-
rial calorific value, biochar, calcination and carbonization pro-
cesses, electricity production scenarios, impact distribution of
multifunctional processes, and post-use disposal options affected
15
the LCA of buildings, particularly those constructed using timber
and cement.

The calculation results of the carbon emissions over the entire
life cycle of buildings significantly depend on the life-cycle model-
ing and construction scenarios used. Unlike general products,
buildings are complex systems and—according to general assump-
tions—have a lifespan of decades; as such, more advanced mathe-
matics must be utilized when applying LCA fundamentals to
models for calculating the carbon emissions of buildings, in order
to address key issues at the corresponding stages. This can easily
result in a loss of calculation accuracy, rendering the results unpre-
dictable; furthermore, diametrically opposite results may be
obtained for the same problem, making it difficult to obtain con-
clusions that are conducive to low-carbon decision-making.
4.5.2. Impact of basic carbon emission parameters
Hossain and Ng [214] analyzed the effects of parameters from

different sources on the carbon emission calculation results. The
evaluation results deviated even when the same system bound-
aries and materials were used. Furthermore, differences in the
basic parameters were found to result in a 284%–1044% variation
in the calculation results of ECE [213]. In the case study by Ortiz-
Rodríguez et al, [164] in Spain showed that, when different param-
eters from the life cycle databases GaBi and Ecoinvent were
selected for calculation, the proportion of OCE to LCCE was 84%–
89%, whereas the proportion of carbon emissions in the mainte-
nance stage varied from 2% to 6%. A statistical analysis of 35 exist-
ing studies showed that using certain upstream databases resulted
in significant differences in the evaluation results; in particular, a
difference of 22% was shown for cases in Hong Kong [215].

The carbon emission calculation process is complex and thus is
difficult to trace and reproduce. As mentioned in Section 4.4.2, the
EF values from existing cases differ significantly; moreover, in
most studies, the material variety, content, recycled content,
strength, and other information regarding concrete, steel, and tim-
ber have not been reported. The calculations performed in these
studies thus lack transparency and reliability in terms of the basic
parameters. We consider that, in future studies, researchers must
establish a basic database suitable for a local area and prioritize
its evaluation, improve the transparency of the parameter value
selection for calculating building carbon emissions, consider car-
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bon emission calculation through professional institutions, and
conduct data quality analysis to clarify the reliability of the results
obtained.
5. Reducing building LCCE

5.1. Carbon emission hotspots and carbon reduction principles

5.1.1. Distribution of carbon emissions from buildings
The proportions of the ECE and OCE in LCCE depend on several

factors, such as the building function, materials used, building
envelope performance, building energy efficiency, and building
lifespan. A review by Ibn-Mohammed et al. [216] showed that
ECE constituted 2%–80% of the total LCCE. Studies on traditional
residential buildings with a lifespan of 50–60 years by Mao et al.
[217], Ramesh et al. [218], Harris [219], and Cole and Wong
[220] showed that ECE constituted 11%–40% of the LCCE; in com-
parison, the proportion for traditional nonresidential buildings
with a lifespan of 50–60 years was found to be 10%–27%
[18,217,221]. The proportion can be significantly affected by the
energy carbon intensity, which can result in different priorities in
terms of carbon reduction. For example, a study on a high-rise
building in Australia by Robati et al. [169] showed that the propor-
tion of ECE in LCCE increased from 27% to 58% when different elec-
tricity EFe parameters were used.

In low-energy buildings, the proportion of ECE increases signif-
icantly and can exceed the OCE [15,105]. Chastas et al. [222] ana-
lyzed 95 housing cases and reported that the proportions of ECE
in the LCCE were 9%–22%, 32%–38%, 21%–57%, and 71% for tradi-
tional buildings, passive houses, low-energy buildings, and net-
zero energy consumption buildings, respectively. Röck et al.
[223] analyzed 238 building LCA cases worldwide and showed that
the average proportion of ECE in the LCCE was 20%–25% for build-
ings designed based on existing energy–efficiency regulations; for
high-energy-efficiency buildings, this proportion increased to 45%–
50% and could exceed 90% in extreme cases. Kristjansdottir et al.
[106] investigated the carbon emissions of eight detached houses
in Oslo, Norway, including one active house, two passive houses,
four net-zero energy consumption buildings, and one reference
house designed based on the Norwegian Building Code 2010,
reporting that ECE comprised 60%–75% of the LCCE. In another
study pertaining to an Australian green building, the contribution
of ECE was assumed to be 100% due to the realization of net-zero
emissions in the operation stage [173].

The reviewed case studies provided 309 sets of data, including
calculation results for the ECE, OCE, and LCCE. Of these, 43 sets
qualified for certification as low-energy buildings, green buildings,
net-zero energy consumption buildings, active houses, or passive
houses. In the following analysis, these 43 sets were classified as
the certification group (group C), whereas the remaining 266 sets
were classified as the non-certification (NC) group. Considering
the effect of lifespan, the FUs was unified as ‘‘per building floor
area � per year”.

In terms of the LCCE, the LCCEmed (LCCE25%–LCCE75%) of group C
was 10.00 (6.76–26.57) kgCO2e�m�2�a�1, which was significantly
lower than that of group NC, at 32.17 (22.04–55.08) kgCO2e�m�2-
�a�1. The ECEmed (ECE25%–ECE75%) of groups C and NC was 4.50
(3.40–13.80) kgCO2e�m�2�a�1 and 8.16 (4.19–12.01) kgCO2e�m�2-
�a�1, respectively. Thus, the ECE of group C is lower than those of
the NC group, although a better thermal performance of the build-
ing envelope is generally required for group C. This might be
because 46.5% (20 of 43 cases) of group C were timber structures,
whereas the proportion of timber structures was only 16.2% (43 of
266 cases) for the NC group. The OCEmed (OCE25%–OCE75%) of group
C and the NC group were 6.30 (3.95–11.95) kgCO2e�m�2�a�1 and
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24.35 (14.33–41.81) kgCO2e�m�2�a�1, respectively. The proportion
of ECE—that is, Pmed (P25%–P75%)—for group C was 47.4% (29.4%–
59.2%), which was much higher than that for the NC group, at
24.3% (14.1%–36.0%) (Figs. S3 and S4 in Appendix A).

5.1.2. Principles for reducing buildings’ carbon emissions
Based on the implications and calculation methods for LCCE

presented in Sections 3 and 4, the LCCE can be expressed as
follows:

LCCE ¼
Xi

1
ADm:i � EFm:i þ

Xi

1
ADe:i � EFe:i � CED � CEe

\Where, ADm.i is activity data of the building material i, unit; EFm.i

is carbon emission factor of the building material i, kgCO2e�unit�1;
ADe.i is activity data of the operational energy i, unit; EFe.i is carbon
emission factor of the operational energy i, kgCO2e�unit�1; CED is
carbon reduction by supplementary benefits (module D), kgCO2e;
CEe is carbon reduction by other technologies, kgCO2e.

In the following analysis, technologies for reducing buildings’
carbon emissions are classified into six groups: reducing the activ-
ity data of building materials (ADm) and operational energy (ADe);
decreasing the carbon EFs of EFm and EFe; using supplementary
benefits (CED); and using other carbon reduction technologies
(CEe). Technical content and carbon reduction benefits are
prioritized.

5.2. Reducing buildings’ carbon emissions: Technical content and
benefits

5.2.1. Reducing ADm

Methods to reduce ADm include optimizing the lectotype and
size of building structures; using building materials with higher
strength, lower replacement frequency, and longer life expectancy;
applying industrialized building systems; and adopting lean con-
struction techniques (Table S12 in Appendix A).

Reducing the use of concrete and steel can significantly reduce
carbon emissions during the construction of conventional rein-
forced concrete structures. In studies pertaining to high-rise build-
ings with reinforced concrete structures, Gan et al. [46], Teng and
Pan [54], and Choi et al. [62] optimized the construction lectotype
and component size, which resulted in a 13.5%–31.6% ECE reduc-
tion. Gan et al. [49], Tae et al. [68], and Choi et al. [209] compared
structural design schemes with different material strength levels
and discovered that the ECE was reduced by 11%–16.7% after
improving the strength of steel rebars and concrete. Mequignon
et al. [224] evaluated the effect of buildings’ service life on their
carbon emissions and showed that service life was equally as
important as technical solutions. Heravi et al. [77] demonstrated
that the use of lean techniques in the production and construction
of a prefabricated steel frame reduced the ECE by 4.4% in a residen-
tial building in Iran. Robati et al. [169] achieved an 8% reduction in
ECE by implementing post-tensioned concrete structural systems
in high-rise buildings in Australia.

The advantages of prefabricated concrete over cast-in-place
concrete include less usage of raw materials, less construction
waste, and less resource consumption during construction. At the
material level, Dong and Ng [50] and Dong et al. [51] showed that
the carbon emissions per unit volume of prefabricated concrete
were 10% lower than those of cast-in-place concrete. At the compo-
nent level, Ding et al. [37], Wan Omar et al. [86], and Li et al. [225]
investigated the components of prefabricated concrete and
reported a carbon reduction of 19%–26.27% compared with the cor-
responding cast-in-place concrete components. At the building
system level, the effect of prefabricated concrete on reducing car-
bon emissions are affected by factors such as the prefabrication
rate; it is generally accepted that the carbon reduction effect inten-
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sifies as the prefabrication rate increases. However, researchers
remain doubtful regarding the effect of prefabrication on carbon
emissions [72]. Teng et al. [226] analyzed 27 prefabricated build-
ings and showed that three and five cases indicated increased
ECE and OCE, respectively; moreover, further analysis showed that
the ECE would increase if the materials used in prefabricated build-
ings were not reused. In addition, an increase in transportation
demand may diminish the advantages of prefabricated concrete
[19,52,227].

5.2.2. Reducing EFm
EFm can be reduced using two approaches: One is to use existing

material products with a low carbon footprint, while the other is to
optimize the building material production during stages A1–A3.

(1) Using low-carbon building materials. Concrete, steel, and
timber are the most frequently investigated low-carbon
building materials, owing to their wide range of applications
in the construction sector. Typically, timber structures exhi-
bit lower ECE compared with structures composed of the
other two materials [26,60,82,87,117,124,128,140, 145,150,
169,170,228–233]. However, the carbon reduction benefits
of timber depend on several prerequisites, such as onsite
assembly and appropriate forest management, production
methods, transportation distances, and selection of adhe-
sives [152,195,228–230]. Studies on buildings in Australia
[130], the United States [160], and Sweden [167] showed
that the ECE of timber structures was 26.5%–34% lower than
those of reinforced concrete structures. Comparisons
between concrete and steel structures have reached diamet-
rically opposing conclusions. In the case studies by Su et al.
[12], Gong et al. [26], Vitale et al. [114], and Jönsson et al.
[134], the ECE of steel-structure buildings was 10.4%–48.1%
lower than those of reinforced concrete structures. However,
previous studies [73,74,76,85,161,168,234] concluded that
the ECE of steel-structure buildings were 12.7%–54% higher
than those of reinforced concrete structures.

In addition, the low-carbon potential of fast-growing plants,
such as bamboo and straw, as well as of conventional materials
such as adobe, is receiving increasing attention [235,236]. Compar-
ative studies by Pittau et al. [237] and Pittau et al. [238] showed
that fast-growing plants can store a significant amount of carbon
in a growth cycle and that building materials composed of these
plants exhibit greater carbon-sink potential than wood, which is
characterized by a relatively longer growth cycle. Similar carbon
reduction benefits have been demonstrated in case studies of the
use of bamboo [24] and straw bales [23,75,98,162] as building
materials in China, Iran, the Balkans, and the Andean Patagonia
region. Compared with using modern systems and materials, case
studies of conventional technologies and materials—including the
use of adobe and fly ash blocks [239,240] and limestone and lime
mortar [79,80] in India, Sri Lanka, Palestine, and Iran—exhibited
carbon reduction benefits (Table S13 in Appendix A).

(2) Reducing carbon emissions during the production of
building materials. Measures for reducing carbon emissions
during building material production include the substitution
of high-carbon raw materials, optimization of production
processes, and utilization of process carbon emissions. Rai
et al. [141] evaluated the carbon reduction potential of main
building materials and reported that 34.7%–45.9% of ECEA1–
A3 was reduced when 50% of the cement was composed of
ground granulated blast furnace slag as the raw material,
and that 75.7% of the steel carbon emissions were prevented
when secondary steel was used. Turner and Collins [241]
developed a concrete composed of geopolymers that
reduced ECEA1–A3 by 9%, which is an improvement over con-
ventional ordinary Portland cement concrete. In addition, Xu
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et al. [190] reduced the average ECEA1–A3 of bamboo compo-
nents by 15.7% via product optimization. The development
of scrap-made electric arc furnace process steel is regarded
as one of the major low-carbon measures for producing steel
structure components in China [242].

Because building materials are the primary contributor to the
total ECE, optimizing the production of building materials is cru-
cial. In a study pertaining to reinforced concrete structure build-
ings in Hong Kong, Gan et al. [49] showed that using
supplementary cementitious materials (35% fly ash or 75% ground
granulated blast furnace slag), 100% recycled scrap steel, ecological
cement, and 40 mm aggregates reduced the building ECE by 9%–
39%. Similarly, Teng and Pan [52] investigated the reinforced con-
crete structures of high-rise residential buildings in Hong Kong and
showed that partially replacing OPC with blast furnace slag
reduced the ECE by 22.8%, whereas using cement substitutes
(25% polyfluoroalkoxy) reduced the ECE by 9.8%. Purnell and Black
[243] showed that fly ash and ground granulated blast furnace slag
could reduce the ECEA1–A3 of plain ordinary Portland cement by
20%–30%. Iddon and Firth [143] assessed four typical construction
options in the UK and showed that using concrete composed of a
30% polyfluoroalkoxy mixture reduced the ECE of new housing
by 24% (Table S14 in Appendix A).

5.2.3. Reducing ADe

The operational energy consumption contributes significantly to
the total LCCE of a building. Existing energy-saving technologies for
buildings, whether passive measures or active system optimization,
directly affect buildings’ energy consumption and the corresponding
OCE [127,133,244]. Kneifel [245,246] conducted multiple sets of
combined simulations for 12 prototype buildings in 228 cities and
showed that the OCE was reduced by 9%–33% when conventional
energy-saving measures were implemented. The carbon reduction
benefits of low-energy buildings, green buildings, and passive
houses over the full life cycle of a building have been recognized
in studies in China [17,173], France [102,103,247], Ireland [108],
Italy [112], Switzerland [135], the United States [159], and Australia
[173]. For a campus building in the UK, Korsavi et al. [147] showed
that using a photovoltaic system reduced the OCE by 30%. Atmaca
et al. [96] evaluated a historic building renovation project in Turkey
and showed that the use of high-efficiency HVAC systems reduced
the LCCE by 43%. Legorburu and Smith [248] proposed a discrete
multi-objective optimization framework to determine the optimal
HVAC system for each campus building. These optimal HVAC sys-
tems reduced the LCCE by 15%.

The building envelope, which consumes energy, significantly
affects the OCE of a building. Li et al. [249] evaluated the effect
of phase-change material walls on the emissions of typical rural
houses in Northeast China and showed that the LCCE was reduced
by up to 52.7 kgCO2�m�2�a�1 when reasonable phase-change mate-
rial wall settings were used. Hacker et al. [146] investigated the
100-year LCCE of low-rise residential buildings in the UK and
showed that a building with a heavy building envelope exhibited
up to 7% reduced LCCE compared with a building with a light build-
ing envelope. In another study, the outer walls of two houses in
Turkey were installed with an 80-mm insulation layer, which
reduced the LCCE by 23.4% [94]. Karami et al. [126] reduced the
OCEs released from heating a house in Europe by applying vacuum
insulation technology. Pomponi et al. [250] compared 128 double
skin façade configurations and showed that the double skin façade
generated lower carbon emissions than a single-story façade in
85% of the cases investigated (Table S15 in Appendix A).

5.2.4. Reducing EFe
Aside from energy consumption, another important factor that

determines the OCE of a building is EFe, which depends on the
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energy composition. Mosteiro-Romero et al. [172] compared two
detached houses in the United States and Switzerland. Their results
showed that the OCE in Switzerland was only 279 kilogram CO2

equivalent per square meter heated floor area (kgCO2e�heated
m�2), which was much lower than the 2147 kgCO2e�heated m�2

in the United States because the energy in Switzerland was primar-
ily hydropower and nuclear energy. Ortiz et al. [163] compared
two low-rise residential buildings in Spain and Colombia; owing
to the low electricity EFe, the OCE in Colombia was significantly
lower. Furthermore, a comparison between pure electricity and a
combination of electricity and natural gas as the energy supply
revealed that an appropriate energy mix reduced the OCE by 25%
and 9% in Spain and Colombia, respectively.

In cold-climate regions, the OCE is primarily derived from the
heating system. In general, biomass-based and resistance-heating
systems have the lowest and highest carbon emissions, respec-
tively. Integrated biomass-based district heating can reduce carbon
emissions [123,124]. Based on a large Australian retail mall, Bra-
slavsky et al. [251] showed that only modest investments in com-
bined cooling, heating, and power (CCHP) reduced carbon
emissions by 29.6%, whereas strengthened CCHP investments com-
bined with onsite solar power generation reduced the OCE by
approximately 72%. A study pertaining to a timber building in
Växjö, Sweden, showed that district heating combined with
biomass-based integrated gasification combined-cycle systems
(BIGCC) or heat pumps combined with BIGCC enabled negative
building material production and total LCCE [124]. Zhang and
Wang [22] compared several heating schemes for a high-rise resi-
dential building in a cold area of China and showed that the OCE
was sequentially reduced when a coal-fired boiler, oil-fired boilers,
gas-fired boilers, and solar-assisted heat pumps were used
(Table S16 in Appendix A).

5.2.5. Exploiting the advantages of CED
CED includes the carbon reduction benefits from the recycling

and reuse of building materials and energy recovery. For example,
Blengini [113] investigated a concrete low-rise house in Italy and
showed that compared with landfilling, material recycling after
building demolition reduced the ECE by 18%. Coelho and de Brito
[118] evaluated five constructions waste–disposal methods and
showed that the separation, recovery, and reuse of core materials
reduced carbon emissions in the demolition phase by 77%. Ghose
et al. [252] showed that improving onsite recycling and reusing
construction waste reduced the carbon emissions from building
renovations by 5%–15% in New Zealand. For a high-rise residential
building in China, Wang et al. [38] showed that onsite recycling
was better than factory recycling or landfilling. However, research
and technology pertaining to CED are insufficient, which hinders
the utilization of the associated benefits. Wang et al. [253] investi-
gated nine cities in China and found that 95% of decoration and
renovation waste was disposed of via landfilling.

The effect of CED is particularly pronounced in timber buildings
[254]. For a multistory timber apartment in Sweden, Gustavsson
et al. [123] reported that, during the construction phase, the energy
generated from biomass residue owing to wood processing was
higher than the energy consumed during the construction process,
which resulted in negative net carbon emissions during the pro-
duction of the building materials [124]. Recycling dismantled tim-
ber elements as biofuels to replace fossil fuels can significantly
reduce net carbon emissions [123,167]. Dodoo et al. [206] showed
that the carbon reduction benefits of replacing fossil fuels with dis-
mantled timber were more significant than those of using recycled
concrete or steel. However, the carbon reduction effect primarily
depends on the upstream forest management, production, con-
struction, and treatment of dismantled timber [132,228]. Sathre
and O’Connor [255] and Churkina et al. [256] clarified the range
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of carbon reduction benefits afforded by timber substitution and
highlighted sustainable forest management and the rational use
of wood residues as prerequisites (Table S17 in Appendix A).

5.2.6. Exploiting the potential of CEe
The following measures target carbon emissions that are not

generated by the production and use of building materials and
energy and are thus generally excluded from calculations of build-
ings’ carbon emissions. However, these emissions should be iden-
tified because they can potentially promote the carbon reduction
of buildings in a broader scope.

(1) Carbon sinks of green plants. Based on a literature review,
Besir and Cuce [257] concluded that green roofs can capture
and store carbon and that the annual carbon accumulation
of a vertical greening system is 13.41–97.03 kgCO2�m�2�a�1.
Regarding carbon cost, Seyedabadi et al. [258] showed that
the process of replacing traditional roofs with green roofs
generated 4.6 kgCO2�m�2 of carbon emissions. Similarly,
the carbon reduction performances of green walls and
spaces have been identified [259,260].

(2) Carbon emission control for personnel activities. GHG
emissions from daily activities can be reduced via the appro-
priate management of daily activities. Cheung and Fan [189]
investigated a hotel in Hong Kong and discovered that
approximately 1900 tCO2e of emission was avoided over
the years by implementing strategies involving lighting, air
conditioning, and waste recycling. Among these strategies,
the most prominent was food waste recycling, which
reduced the carbon emissions by 500–700 tCO2e annually.

(3) CO2 capture, utilization, and storage. CO2 capture, utiliza-
tion, and storage are regarded as the only cost-effective
alternative for achieving deep decarbonization for industries
that generate CO2 during their production processes, such as
cement and ceramics [261]. Accelerating CO2 absorption
through carbonation can reduce the carbon emissions from
cement and concrete [205,262]. For example, Qian et al.
[263] attempted to increase the absorption of CO2 and its
conversion to carbonate in cement-based materials, steel
slag, and waste concrete using carbon-trapping bacteria.

(4) Disposal of non-CO2 GHGs. As mentioned in Section 3.2.1,
the GWP of non-CO2 GHGs is typically tens to tens of thou-
sands of times higher than that of CO2, and the leakage of
fluorinated refrigerants can be equivalent to high levels of
carbon emissions. Instead of relying on the maturation of
fluorine-free refrigeration technology, researchers can con-
vert the related fluorides into CO2 through recycling or com-
bustion [177], which can reduce the GWP value to 1 and
thus significantly diminish the corresponding GHG effect.

5.3. Discussion on the combined reduction of building ECE and OCE

5.3.1. Achieving a balance between ECE and OCE
Many carbon–reduction building technologies increase the ECE

but reduce the OCE during building operations, ultimately reducing
the total LCCE. Blengini and Di Carlo [111] compared detached
houses designed as low-energy and standard buildings in Italy.
The results showed that the ECE of the low-energy buildings
increased by 12.5% and their OCE decreased by 71.7%, while the
LCCE of the low-energy buildings was 46.1% of those of the standard
buildings during a 70 year lifespan. Yang et al. [28] investigated
seven representative demonstration timber buildings in China. By
improving the building envelope, the ECE increased by 28.5%, the
OCE decreased by 39.3%, and the LCCE decreased by 32.7%.

Notably, not all OCE reductions are predicated on ECE increases.
The use of natural ventilation, expanded thermostat settings, CCHP
and photovoltaic systems, 10% lighter reinforced concrete rede-
signs, 30% fly ash and recycled brick, cork board insulation, and
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wood-based interior finishes in an office building in the UK
reduced the LCCE by up to 16%, including 32% and 14% reductions
in the ECE and OCE, respectively [144]. Through renovations based
on the passive houses standard in a low-rise apartment in Sweden,
a 50%–82% reduction in OCE was obtained. By optimizing material
usage, particularly by using more wood materials, the ECE can be
reduced by 68% [264] (Table S18 in Appendix A).

5.3.2. Carbon payback period
The carbon payback period is typically used to characterize the

time for offsetting the increase in ECE by a decrease in OCE. An
analysis of a building rehabilitation project in Canada showed that
the ECE caused by retrofits would be balanced by energy savings
within a carbon payback period of 3–13 years [155]. To support
low-carbon decision-making, carbon payback period was used to
judge the carbon reduction efficiency of carbon payback period ele-
ments in Europe [265], as well as energy-saving retrofits for multi-
unit dwellings and office buildings in Canada [266,267].

However, these calculations ignored the fact that the ECE had
already been emitted before the building was used, and achieving
a carbon balance by means of OCE offsetting would take years or
even decades during the building operation. In almost all cases,
the existing static EFe was used for future calculation. Considering
that the future grid EFe drops year by year, the annual amount of
OCE offsetting will decrease correspondingly, which may extend
the carbon payback period and even lead to eventual failure to
achieve a carbon balance.

6. Research gaps and recommendations

6.1. Gaps and challenges

Based on our analysis of the implications, calculations, and car-
bon reduction strategies for the LCCE of buildings, the following
gaps and challenges were identified:

(1) Research goals and ideas pertaining to LCCE are mismatched.
According to the IPCC, direct and indirect carbon emissions
from buildings are classified as coming from the construc-
tion sector, whereas carbon emissions from building mate-
rial production are classified as coming from the industrial
sector. Therefore, this classification will result in an inaccu-
rate understanding of carbon emission sources and may hin-
der the implementation of effective carbon reduction
technologies, because reducing buildings’ LCCE requires
industry collaboration, particularly between the building
material industry and the construction sector. Hence, LCCE
calculation methods and reduction divisions should not be
based on those specified by the IPCC.

(2) Calculating a building’s ECE requires a detailed data list,
whose acquisition is labor-intensive. Current methods for
calculating the carbon emissions of building materials in
the production and use stages require the analysis of build-
ing material consumption by querying technical data such as
design drawings, procurement lists, and project budgets,
while methods for calculating carbon emissions in the con-
struction and demolition stages require the number of
mechanical shifts for each subproject, as well as the materi-
als and components produced onsite. However, the building
materials used in actual projects and the energy-consuming
facilities used during construction and demolition are
diverse. Thus, the relevant data are extremely difficult to
identify and measure accurately.

(3) Significant differences in the calculation results of carbon
emissions among cases in the literature render it difficult
to reach a consensus regarding the carbon emission inten-
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sity of typical buildings and carbon emission reduction tar-
gets. The different settings of system boundaries made it
difficult to summarize and compare the results of different
case studies. The EF values of the primary energy used in
each case were similar. However, the EFs of electricity dif-
fered significantly, and differences by orders of magnitude
were indicated in the EFs of cement, concrete, steel, and tim-
ber. In most studies, the sources of EFs were ambiguous, and
the data quality and transparency were dubious.

(4) Asia—particularly China—has not yet perfected a basic data-
base of local building materials for calculating a building’s
ECE. A reliable database of building materials has not yet
been established in China. Databases from Europe, even
though they are unsuitable for China, have been cited in
numerous case studies. Calculations based on unreliable
data can result in misleading conclusions and hinder the dis-
covery of effective low-carbon options. However, establish-
ing a database based on the measurement of a single
activity within a single enterprise is difficult [268], because
building materials from raw material extraction, transporta-
tion to product manufacturing, and other activities are often
performed in multiple enterprises.

(5) Changes in the electricity carbon EFs as a basic parameter
and its effect on the LCCE of buildings are not considered.
Typically, existing energy EFs are used to calculate future
building OCE. Only individual case studies [242,269] consid-
ered the reduction in the electricity EFs due to the gradual
decarbonization of the electricity mix during a building’s life
cycle. The EFs of electricity changes with time. Disregarding
this changing trend in the electricity mix renders it impossi-
ble to accurately perform future carbon emission calcula-
tions and benefit assessments pertaining to carbon
emission reduction technology.

(6) Most buildings are operated in a ‘‘full space � fixed time”
mode, whereas the potential of ‘‘partial space � partial time”
for OCE reduction has not been exploited. The OCE can be
calculated as follows: [(energy demand
intensity � area � time)/energy efficiency] � energy carbon
EFs. Due to the multiplicative effect, compressing the actual
time and space of energy demand has a magnified carbon
reduction effect. However, the potential of ‘‘partial
space � partial time” for OCE reduction has not been
exploited. In extreme cases, excessive full-time constant
temperature and humidity regulations are imposed for the
entire space of a building, which leads to an unnecessary
increase in OCE.

(7) Uncertainty regarding the benefits and costs of low-carbon
building technologies poses challenges in formulating car-
bon reduction pathways. External factors, such as climate
change, cause changes to the sources of carbon emissions
from building operations, changing the focus of carbon
reduction for buildings [136]. Raw materials, energy,
resource endowments, and technical conditions differ by
location; therefore, borrowing low-carbon technologies
from other locations may not be appropriate. Changes in
the basic parameters of energy and materials will affect
the costs and benefits of carbon reduction technologies.
These uncertainties pose challenges for the further develop-
ment of carbon reduction approaches.

(8) Basic research pertaining to building use, end-of-life, reuse,
and recycling stages is insufficient, resulting in technical
gaps. As summarized in Section 3.1.2, calculations for stages
B, C, and D were performed in only 26.7%, 32.9%, and 13.7%
of the cases, respectively, and comprehensive investigations
into the LCCE of buildings are rare. Insufficient information
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regarding the expected service life of building materials ren-
ders it impossible to calculate and evaluate recurring ECE.
Construction waste during and after use is currently dis-
posed of in landfills due to inadequate research on low-
carbon disposal and recycling technologies, which hinders
the potential to reduce LCCE with supplementary effects.

6.2. Development proposals

To address these research gaps and challenges, the following
recommendations regarding industry standards, calculation meth-
ods, basic parameters, and carbon reduction strategies are
proposed:

(1) Based on the carbon reduction effect of the entire building
life cycle, synergize building materials and building stan-
dards and promote industry cooperation between the build-
ing material and building sectors. Revision or partial
modification is recommended for relevant standards to
enable coordination between carbon emission calculation
methods and indicators in the building material and build-
ing sectors. Based on synergistic standards, a step-by-step
and phased mandatory carbon emission accounting for
building materials and construction enterprises is recom-
mended. Based on massive carbon emission accounting
practices and a carbon emission database, it is possible to
delineate carbon emission baselines and label assessment
standards for the building materials and building sectors.

(2) Based on the synergistic standards recommended above,
integrate the boundaries of and methods for calculating car-
bon emissions from building materials and buildings, and
improve data transparency and calculation reproducibility.
Due to the large number of influencing elements involved,
it is difficult to avoid numerical differences in each building
case; thus, it is more realistic to develop a unified calculation
method in addition to the related reporting and communica-
tion rules. This requires the reporting of calculation results
with information transparency, including transparency
regarding the LCCE system boundary (Table 3), the calcula-
tion steps, and the basic parameters used, in order to pre-
vent misinterpretation of the results.

(3) Investigate the carbon emission boundaries of typical build-
ing material products in different regions for the entire pro-
cess, and establish a basic EFm database for typical building
material products. Leading enterprises producing building
materials must take the lead in clarifying the boundaries of
carbon emissions; standardizing the data-collection meth-
ods for the sourcing of raw materials, production, process-
ing, and factory transportation; and establishing carbon
emissions inventories for typical building material products.
Therefore, technical guidelines should be compiled and pro-
moted for the entire industry. A product labeling method for
EFm should be implemented to ensure that all links of carbon
emission data can be sourced, traced, and updated.

(4) Promote refined and information-based management of the
entire construction process and establish a process-based
basic database of carbon emissions from building construc-
tion and demolition. Leading construction and demolition
enterprises must comprehensively sort out the typical con-
struction and demolition processes of typical building struc-
tures, clarify the carbon emission sources and boundaries of
each process, standardize their data collection methods, and
establish a process for creating carbon emission inventories.
Through standards, policy guidance, and demonstration by
leading enterprises, refined and information-based manage-
ment of materials, processes, and machinery related to con-
struction and demolition would be comprehensively
promoted to the whole industry.
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(5) Based on existing building energy management platforms
and building simulation technology, monitor and predict
building OCE and form an OCE database for typical buildings.
The energy consumption data collected by existing building
energy management platforms can be converted into build-
ing OCE by combining various energy EFs. It is particularly
necessary to predict the development trend of power grid
carbon EFs and to release regional dynamic electricity EFe
data in a timely manner. Based on popularized data collec-
tion and simulation prediction, a target value for a building’s
OCE can be set, which provides basic data support for the
further promotion of low-carbon policies, regulations, and
technologies.

(6) Continue to promote green building certification in order to
guide the reduction of OCE. The comparison in Section 5
showed that, for the group that possessed various green
building certifications (low-energy buildings, green build-
ings, net-zero energy consumption buildings, active houses,
passive houses, etc.), the LCCE was significantly lower than
for the non-certified group. This finding illustrates the posi-
tive contribution of existing green building technologies to
achieving low-carbon goals. Therefore, energy–efficiency
standards for civil buildings should be continually enforced
in order to control energy consumption. In addition, the
energy mix supplied to buildings should be optimized, espe-
cially by developing local renewable energy sources for local
use to reduce energy EFe.

(7) Strengthen collaboration among stakeholders in building
design, technology integration, and engineering application
demonstrations to reduce building ECE. The impact of ECE
will increase further as the OCE decreases. Based on the
analysis in Section 5, the following aspects should be
focused on: a lightweight building structure system with
new low-carbon building materials as the carrier; a modular
manufacturing system, assembled buildings, and industrial-
ized construction technology; strategies and technologies
for construction waste reduction, high-quality recycling,
and service life extension of existing buildings; and integra-
tion with typical construction project types in the use, end-
of-life, recycling, reuse, and development stages of carbon
emission reduction technologies for each link.

7. Conclusion

In this study, a literature review was conducted on the implica-
tions, calculation methods, and low-carbon technology relating to
LCCE. A total of 161 global studies involving 826 calculation cases
were reviewed and investigated, including 85, 69, and 7 studies
pertaining to LCCE, only ECE, and only OCE, respectively. Finally,
research gaps and challenges in existing building LCCE studies
were clarified in terms of the research goals and ideas, calculation
methods, basic parameters, and carbon reduction strategies, and
corresponding development suggestions were proposed.

A review of carbon emission calculation methods showed that
the division of building life-cycle stages provided by ISO 21930
has not been strictly adhered to in practice. The number of case
studies wherein carbon emissions were calculated in stages A1–
A3, A4–A5, B1–B5, B6–B7, C1–C4, and D constituted 90.7%, 56.5%,
26.7%, 57.1%, 32.9%, and 13.7%, respectively, of the total. Only
9.4% of the cases considered the technical equipment system in
the calculation. The recurring ECE generated in stages B1–B5 was
not considered, and specialized calculations for the actual project
were not performed in stages C1–C4 and module D; assumptions
were primarily used instead.

Carbon emission values for each life-cycle stage was extracted
from the cases. In general, the median carbon emissions in stages
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A1–A3, A4–A5, B1–B5, B6–B7, C1–C4, and D were 321.2, 32.2,
114.9, 20.9, 1515.0, and �188.6 kgCO2e�m�2, respectively, and
the corresponding contribution to the LCCE were 15.6%, 1.6%,
7.1%, 1.2%, 75.2%, and �4.1%, respectively. Among the ECE-related
items, none of the stages’ contributions to the total ECE were neg-
ligible (< 5%). The ECE of the cases differed depending on the con-
struction type. Timber structures were unanimously regarded as
the most low-carbon structure, whereas the conclusions regarding
steel and concrete structures differed in different case studies.

Based on an analysis of the distribution of buildings’ carbon
emissions and carbon reduction hotspots, strategies and corre-
sponding benefits were categorized into six groups: reducing activ-
ity data and carbon EFs (ADm, ADe, EFm, and EFe), exploiting
supplementary benefits (CED), and others (CEe). In the reviewed
cases, ADe- and EFe-related technologies successfully reduced
OCE. Compared with the benchmark scheme, an optimized scheme
could reduce the OCE by 10%–72% for active and passive building
energy-saving technologies, and replacing high-carbon electricity
with low-carbon electricity could reduce the OCE by 9%–67%.
Biomass-based energy, in combination with district heating or heat
pumps, could reduce the OCE by up to 90%. Recycling wooden
materials for biomass production and replacing fossil fuels can ide-
ally achieve net-zero carbon or even negative carbon.

ADm- and EFm-related technologies are primarily used to reduce
the ECE. Compared with the benchmark scheme, an optimized
scheme could reduce the ECE by 11%–29.2% by optimizing the
structure lectotype and size and by using building materials with
higher strength, lower replacement frequency, and longer life
expectancy; moreover, it could reduce the ECE by 1.5%–26.3% via
concrete prefabrication. Substituting wood for concrete or steel
as the main building material could reduce the ECE by 13%–
96.5%. The low-carbon potential of rapidly progressing plant-
based building materials, adobes, and other conventional building
materials has garnered significant attention. Replacing high-
carbon raw materials, optimizing production processes, and utiliz-
ing carbon emissions in the building material production stage can
reduce the EF of building materials.

Notably, the benchmark scenarios were set differently in each
case study; therefore, the quantitative results of the carbon reduc-
tion benefits cannot be used as a direct basis for horizontal com-
parisons between different strategies. Each case involves specific
factors that are sensitive to building LCCE; thus, it is necessary to
avoid using the conclusions of one case for another or to present
conclusions based on generalization and deduction. Systematic
carbon reduction strategy optimization can only be performed
after a detailed and specific analysis of all situations is conducted,
based on the entire life cycle of a building. Under a consistent
framework, it is necessary to continue to collect data from practical
scenarios and to gradually improve the current situation of poor-
quality basic data for research on the LCCE of buildings.
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